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ON THE EXTREMAL BEHAVIOR
OF A PARETO PROCESS:
AN ALTERNATIVE FOR ARMAX MODELING

Marta Ferreira

In what concerns extreme values modeling, heavy tailed autoregressive processes defined
with the minimum or maximum operator have proved to be good alternatives to classical linear
ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]).
In this paper we present a complete characterization of the tail behavior of the autoregressive
Pareto process known as Yeh–Arnold–Robertson Pareto(III) (Yeh et al. [32]). We shall see that
it is quite similar to the first order max-autoregressive ARMAX, but has a more robust param-
eter estimation procedure, being therefore more attractive for modeling purposes. Consistency
and asymptotic normality of the presented estimators will also be stated.
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1. INTRODUCTION

The main objective of an extreme value analysis is to estimate the probability of events
that are more extreme than any that have already been observed. By way of example,
suppose that a sea-wall projection requires a coastal defense from all sea-levels, for the
next 100 years. Extremal models are a precious tool that enables extrapolations of this
type. The central result in classical Extreme Value Theory (EVT) states that, for an
i.i.d. sequence, {Xn}n≥1, having marginal cumulative distribution function (cdf) F , if
there are real constants an > 0 and bn such that,

P (max(X1, . . . , Xn) ≤ anx + bn) −→n→∞ Gγ(x) , (1)

for some non-degenerate function Gγ , then it must be the Generalized Extreme Value
function (GEV ),

Gγ(x) = exp(−(1 + γx)−1/γ), 1 + γx > 0, γ ∈ R,

(G0(x) = exp(−e−x)) and we say that F belongs to the max-domain of attraction of Gγ ,
in short, F ∈ D(Gγ). The parameter γ, known as the tail index, is a shape parameter
as it determines the tail behavior of F , being so a crucial issue in EVT. If γ > 0 we
have a heavy tail (Fréchet max-domain of attraction), γ = 0 means an exponential tail
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(Gumbel max-domain of attraction) and γ < 0 indicates a short tail (Weibull max-
domain of attraction). Here we will be interested in heavy tails. Considering the tail
quantile function (q.f.), F−1(1 − t) = inf{x : F (x) ≥ 1 − t}, we have, F ∈ D(Gγ) for
γ > 0, if and only if

F−1(1− tx) ∼ x−γF−1(1− t) , as t →∞, (2)

which is also equivalent to a −1/γ-regularly varying tail at ∞, i. e.,

1− F (x) = x−1/γLF (x), (3)

where LF is a slowly varying function at ∞ (i. e., L(tx)/L(t) ∼ 1, as t →∞). The form
(3) is also called a Pareto-type tail.

The first results in EVT were developed considering independent observations but,
more recently, models for extreme values have been constructed under the more realistic
assumption of temporal dependence. Among these models, stationary Markov chains
are very interesting, specially because they may have a somewhat simple treatment in
what concerns extremal properties. The max-autoregressive moving average processes
MARMA (Davis and Resnick [8]), and also the particular case MAR(1) or ARMAX,
given by,

Xi = max(cXi−1,Wi), (4)

with 0 < c < 1 and {Wi}i≥1 i.i.d. (Alpuim [1]; Canto e Castro [5]; Lebedev [23]) are some
examples. Heavy tailed MARMA, in particular ARMAX, and classical linear ARMA
can be good choices for modeling time series data with sudden large peaks, although the
former processes are more convenient for analysis as their finite-dimensional distribu-
tions can easily be written explicitly (Davis and Resnick [8]). Actually, the well-known
MARMA processes and their generalizations have been applied to various phenomena,
e. g., a solar thermal energy storage system (Daley and Haslett [9]), the water density in
a sill fjord (Helland and Nielsen [15]) or financial series (Zhang and Smith [33]). Heavy
tailed power max-autoregressive processes have also been developed with successful ap-
plication to financial time series modeling (Ferreira and Canto e Castro [13]).

Here we shall focus on the not so well-known autoregressive Pareto processes. Any
stochastic process whose marginal distributions are of the Pareto or generalized Pareto
form is called a Pareto process. As Vito Pareto [26] observed, many economic variables
have heavy tailed distributions not well modeled by the normal curve. Instead, he pro-
posed a model, subsequently called, in his honor, the Pareto distribution. The defining
feature of this distribution is that its survival function P (X > x) decreases at a negative
power of x as x →∞, i. e.,

P (X > x) ∼ cx−α, as x →∞. (5)

Generalizations of Pareto’s distribution have been proposed for modeling economic vari-
ables (a survey can be seen in Arnold [2]).

The classical Pareto distribution has a survival function of the form

FX(x) = (x/σ)−α, x > σ, (6)
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where σ > 0 is a scale parameter and α > 0 is a shape (or inequality) parameter. If X
has distribution (6) we will write X _ P(I)(σ, α).

A minor modification of (6) is obtained by introducing a location parameter µ, i. e.,

FX(x) =
[
1 +

x− µ

σ

]−α

, x > µ. (7)

If X has distribution (7) we will write X _ P(II)(µ, σ, α).
A third variant of Pareto’s distribution has as its survival function

FX(x) =
[
1 +

(x− µ

σ

)α]−1

, x > µ. (8)

and if X has distribution (8) we will write X _ P(III)(µ, σ, α).
Clearly all three of the Pareto distributions (6) – (8) exhibit the tail behavior (5)

postulated by Pareto, i. e., an heavy tail. In practice, it is difficult to discriminate
between models (7) and (8) and the choice may be justifiably made on the basis of
which model is mathematically more tractable.

The classical normal autoregressive processes have proved to be flexible and useful
modeling tools. The Pareto processes can be expected to better model time series with
heavy tailed marginals as well. We will focus on autoregressive Pareto(III) processes,
more precisely, the Yeh–Arnold–Robertson Pareto(III) (Yeh et al. [32]). We shall char-
acterize the right tail behavior and conclude that it is similar to the process ARMAX
(Sections 2.1 and 2.2). Therefore, the above mentioned phenomena usually modeled by
ARMAX processes can also be modeled through a Yeh–Arnold–Robertson Pareto(III) if
we are interested in the tail. We will see that the parameter estimation is more robust in
Yeh–Arnold–Robertson Pareto(III), which makes this process more attractive for mod-
eling purposes (Section 2.3). We will also state consistency and asymptotic normality
of the presented estimators (Section 3).

2. THE YEH–ARNOLD–ROBERTSON PARETO(III) PROCESS

Consider an innovations sequence {εn}n≥1 of i.i.d. random variables (r.v.’s)
Pareto(III)(0,σ,α), with σ, α > 0, and sequence {Un}n≥1 of i.i.d. r.v.’s Bernoulli(p)
(independent of the ε’s). The process {Xn}n≥1 is a first order Yeh–Arnold–Robertson
Pareto(III), in short YARP(III)(1), if it has the form

Xn = min
(
p−1/αXn−1,

1
1− Un

εn

)
, (9)

where 1/0 is interpreted as +∞. By conditioning on Un, it is readily verified that
the YARP(III)(1) process has a Pareto(III)(0,σ,α) stationary distribution and will be
a completely stationary process if X0 _ P(III)(0, σ, α) (Arnold [3]). This process
presents sudden large peaks as can be seen in Figure 1, a similar behavior as the above
mentioned max-autoregressive processes.

Fluctuation probabilities are given by

P (Xn−1 < Xn) =
1 + p

2
(10)
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Fig. 1. Simulated sample paths of YARP(III)(1) processes with

marginals P(III)(0, 1, 1) for p = 0.3 (top-left), p = 0.5 (top-right),

p = 0.7 (bottom-left), p = 0.9 (bottom-right).

and this can be used to develop a simple consistent estimate of p based on an observed
sample path from the process. Estimation of α and σ can be accomplished via the
method of moments provided they exist. Note that, for the first and second moments
we must have α > 1 and α > 2, respectively. Yeh et al. [32] proposed a logarithmic
transformation to avoid moment assumptions. Since α is a tail index, it can be estimated
through tail index estimators. We shall see that the Hill estimator (Hill [16]) has good
properties such as consistency and asymptotic normality.

Another interesting feature is its well behaved extreme values. Consider

Tn = min
0≤i≤n

Xi

and
Mn = max

0≤i≤n
Xi.
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It is readily seen that Tn
d= mini≤N εi, where εi, i ≥ 1, are i.i.d. Pareto(III)(0, σ, α)

and N , independent of εi is such that N − 1 _ Binomial(n, 1 − p) (Arnold [3]). It
follows by conditioning on N that

P (Tn > t) = [1 + ( t
σ )α]−1([1 + p( t

σ )α]/[1 + ( t
σ )α])n , t ≥ 0

and the asymptotic behavior of Tn is given by n(1− p)1/αTn/σ
d→ Weibull(α).

To determine de distribution of Mn it is convenient to consider a family of level
crossing processes {Zn(t)} indexed by t ∈ R+, defined by

Zn(t) =
{

1 if Xn > t
0 if Xn ≤ t.

These two processes are themselves Markov chains with corresponding transition matri-
ces given by

P =
(
1 +

(
t
σ

)α)−1
[

p +
(

t
σ

)α 1− p

(1− p)
(

t
σ

)α 1 + p
(

t
σ

)α

]
Hence, for t ≥ 0, we have

FMn(t) = P (Mn ≤ t) = P (Z0(t) = 0, Z1(t) = 0, . . . , Zn(t) = 0)

= P (X0 ≤ t)P (Zi(t) = 0|Zi−1(t) = 0)n =
(

t
σ

)α

1+
(

t
σ

)α

(
p+

(
t
σ

)α

1+
(

t
σ

)α

)n (11)

and n−1/α

σ Mn
d→ Fréchet(0, (1− p)−1, α).

We also point out that these processes are closed for geometric minima and maxima,
i. e., T = min0≤i≤N Xi and M = max0≤i≤N Xi where N _ Geometric(p), have also
Pareto(III) distribution. Further details can be seen in Arnold, [3].

Before going any further, we determine the transition probability function (tpf) of
the YARP(III)(1) process, as it will be a fundamental tool in the proofs of the results
in the next sections. We start to compute the 1-step tpf:

Q(x, ]0, y]) = P (Xn+1 ≤ y|Xn = x) = P
(
min(p−1/αx, εn

1−Un

)
≤ y)

=
{

1− P ( εn

1−Un
> y), x > yp1/α

1, x ≤ yp1/α

=
{

(1− p)Fε(y), x > yp1/α

1, x ≤ yp1/α.

(12)

Similarly, and after some calculations, we derive the m-step tpf:

Qm(x, ]0, y]) = P
(
Xn+m ≤ y|Xn = x

)
=

{
1−

∏m−1
j=0 [F ε(pj/αy)(1− p) + p], x > ypm/α

1, x ≤ ypm/α.

(13)
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Based on the this function, we compute the m-step fluctuation probabilities fm :=
P (Xn−m < Xn), for any positive integer m:

fm := P (Xn−m < Xn) =
∫ ∞

0

P (Xn > x|Xn−m = x) dFX(x)

=
∫ ∞

0

(1−Qm(x, ]0, x]) dFX(x)

=
∫ ∞

0

m−1∏
j=0

[
F ε(pj/αx)(1− p) + p

]
dFX(x)

=
1
2
(1 + pm),

(14)

where the last step is due to the fact that Fε(x) = FX(x) and can be derived if we take
first m = 1, then m = 2, and so on. Observe that f1 was already introduced in (10). We
will use the fluctuation probabilities to estimate the process parameter, p, in Section 3.

2.1. The dependence structure and the tail dependence

We shall focus on the dependence conditions that will allow a characterization of the
process tail behavior.

We start with the β-mixing condition. A stationary sequence {Xi}i≥1 is said to be
β-mixing if

β(l) := sup
p∈N

E
(

sup
B∈F(Xp+l+1,...)

|P (B|F(X1, . . . , Xp))− P (B)|
)
−→
l→∞

0, (15)

with F(.) denoting the σ−field generated by the indicated random variables.
We will show that YARP(III)(1) is regenerative and aperiodic, sufficient conditions

to derive a β-mixing structure (Asmussen, 1987).

Proposition 2.1. The YARP(III)(1) process is regenerative and aperiodic.

P r o o f . For regeneration we must prove that it has a regeneration set R, i. e., a recur-
rent set R such that, for some m ∈ N, a distribution λ and ε ∈ (0, 1), we have

Qm(x,B) ≥ ελ(B), x ∈ R (16)

for all real borelian B. In what concerns aperiodicity, we must prove that, for any
regeneration set R and any real borelian B, we have

Qm+1(x,B) ≥ ε1λ(B) and Qm(x,B) ≥ ε2λ(B), ∀x ∈ R, (17)

for some m ∈ N and ε1, ε2 ∈ (0, 1). The proof runs along the same steps as in Ferreira
and Canto e Castro [13]).

Consider R =]r,∞[⊂]0,∞[ (which is recurrent because it is in the support of the
process) and B a real borelian set. Let x ∈ R and S =]0, r]. Observe that

Q(x,B) =
∫

B

dQ(x, z) ≥
∫

B∩S

dQ(x, z)
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and, for all x ∈ R, x > r > rp1/α. Hence, by (12),

Q(x,B) ≥
∫

B∩S

dQ(x, z) =
∫

B∩S

(1− p) dFε(z) = ελ(B), (18)

where ε = (1− p)P (ε ∈ S) and λ(·) = P (ε ∈ · ∩ S)/P (ε ∈ S). If B ∩ S = development
(18) still holds. Hence condition (16) holds. Observe now that

Q2(x,B) =
∫

P (Xn+2 ∈ B|Xn+1 = z) dQ(x, z) ≥
∫

S

Q(z,B) dQ(x, z)

and by (12),

Q2(x,B) ≥
∫

S
(1− p)P (ε ∈ B) dQ(x, z) ≥ (1− p)P (ε ∈ B ∩ S)Q(x, S)

= (1− p)P (ε ∈ B ∩ S)P (ε ∈ S)(1− p) = ε1λ(B),

with ε1 = ε(1 − p)P (ε ∈ S). Hence, condition (17) holds by taking, in addition, ε2 = ε
and m = 1. �

The β-mixing condition ensures that the local dependence condition D(un) of Lead-
better [20] holds for any real sequence {un}n≥1. This latter is a condition like mixing
but only required to hold for events of the form {Xi ≤ un} or their intersections. The
D condition leads to the appearance of a dependence parameter, the extremal index
θ ∈ [0, 1], associated with the tendency of clustering of high levels. Whenever θ = 1
we have a similar behavior of an i.i.d. sequence, i. e., large values occur isolated and no
clustering takes place. By a result in Chernick [6], if for each τ > 0 there is a real
sequence {un}n≥1 satisfying

n(1− FX(un)) → τ, n →∞, (19)

and {Xn}n≥1 satisfies D(un), then P (Mn ≤ un) → e−θτ as n →∞, with θ independent
of τ .

Proposition 2.2. The YARP(III)(1) process has extremal index θ = 1− p.

P r o o f . First observe that the quantile function is given by

F−1
X (t) = σ((1− t)−1 − 1)1/α (20)

and that real levels {un}n≥1 satisfying (19) are of the form σ(n/τ − 1)1/α. Hence,
applying (11) and after some calculations, we have

P (Mn ≤ un) = P (Mn ≤ σ(n/τ − 1)1/α) = (1− τ
n (1− p))n → e−τ(1−p).

�

As θ < 1 we have clustering of high values. We can also conclude that the local
dependence condition D′(un) of Leadbetter et al. [21] doesn’t hold since this latter
inhibits high levels clustering. As can be seen in the definition below, condition D′(un)
bounds the probability of more than one exceedance of un on a time-interval of rn =
[n/kn] integers, with kn →∞, as n →∞.
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Definition 2.3. Condition D′(un) will be said to hold for {Xi}i∈Z if for some sequence
{kn} such that kn→∞, as n →∞, we have

lim sup
n→∞

n

rn∑
j=2

P
(
X1 > un, Xj > un

)
= 0.

Several local dependence conditions provide formulas for the computation of θ. For
instance, the local dependence condition ∆(un) introduced in Hsing et al. [18], which
is weaker than β-mixing as it only requires (15) to hold for σ-fields F = σ(XI , . . . , XL)
generated by events {XI ≤ un, . . . , XL ≤ un}, allows to derive θ as the arithmetic
inverse of the mean cluster size (Hsing et al. [18]).
Also the family of conditions D(k)(un), for k ≥ 1 (Chernick et al. [7]) are sufficient to

θ = lim
n→∞

P (M2,k ≤ un|X1 > un)

when the limit exists, where Mi,j = max(Xi, . . . , Xj) for i ≤ j and Mi,j = −∞ for i > j.
The condition D(k)(un) holds for {Xi}i≥1 when

nP (X1 > un ≥ M2,k,Mk+1,rn > un) →
n→∞

0

with rn = [n/kn] and sequence {kn} such that kn →∞ as n →∞ satisfying some specific
conditions. In particular, D(1)(un) ≡ D′(un) and D(2)(un) is implied by condition
D′′(un) of Leadbetter and Nandagopalan [22], defined below.

Definition 2.4. Condition D′′(un) will be said to hold for {Xi}i∈Z if condition D(un)
also holds and, considering a real sequence {kn} such that

kn −→
n→∞

∞ , knαn,ln −→
n→∞

0 , knln/n −→
n→∞

0 , (21)

kn(1− F (un)) −→
n→∞

0 we have

lim sup
n→∞

n

rn−1∑
j=2

P
(
X1 > un, Xj ≤ un < Xj+1

)
= 0.

Proposition 2.5. Condition D′′(un) holds for process YARP(III)(1), for levels un sat-
isfying (19).

P r o o f . Observe that
P (X1 > un, Xj ≤ un < Xj+1)

= P
(
X1 > un,min(p−

j−1
α X1,

p−
j−2

α ε2
1−U2

, . . . ,
p−

1
α εj−1

1−Uj−1
,

εj

1−Uj
) ≤ un,

p−
j
α X1 > un, p−

j−1
α ε2

1−U2
> un, . . . ,

p−
1
α εj

1−Uj
,

εj+1
1−Uj+1

) > un

)
≤ P

(
X1 > un, p−

j−k
α εk

1−Uk
≤ un, p−

j
α X1 > un, p−

j−1
α ε2

1−U2
> un, . . . ,

εj+1
1−Uj+1

) > un

)
, for some k = 2, . . . , j

= P (X1 > un)[Fε(p
j−k

α un)− Fε(p
j−k+1

α un)]
j−1∏
i=0

i6=j−k+1

[F ε(p
i
α un)(1− p) + p]

(22)
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where we have considered min(p−
j−1

α X1,
p−

j−2
α ε2

1−U2
, . . . ,

εj

1−Uj
) 6= p−

j−1
α X1 and Uk 6= 1,

otherwise the probability will be immediately null. Now observe that, for some constant
a,

1− Fε(aun)
1− Fε(un)

=
[1 + (aun/σ)α)]−1

[1 + (un/σ)α)]−1
=

σα + uα
n

σα + (aun)α
∼

n→∞

1
aα

and that levels un satisfying (19) also satisfy n(1 − Fε(un)) → τ , as n → ∞, since
FX(·) = Fε(·). Considering (22) and as Fε(p

j−k
α un) ≤ Fε(un), we have

n
∑[n/kn]−1

j=2 P (X1 > un, Xj ≤ un < Xj+1)

≤ n n
kn

P (X1 > un)[1− Fε(p
j−k+1

α un)− (1− Fε(un))]·

·
j−1∏
i=0

i6=j−k+1

[F ε(p
i
α un)(1− p) + p]

= 1
kn

nP (X1 > un)
[
n(1− Fε(un))

(
1−Fε(p

j−k+1
α un)

1−Fε(un) − 1
)]
·

·
j−1∏
i=0

i6=j−k+1

[F ε(p
i
α un)(1− p) + p]

∼
n→∞

1
kn

τ [τ( 1
pj−k+1 − 1)]pj ∼

n→∞
0.

(23)

�

A generalization of condition D′′(un) is obtained by replacing exceedances with up-
crossings in D(k)(un) and this new family of local conditions, slightly stronger than
D(k)(un), is denoted D̃(k)(un) (cf. Ferreira [12]).

Consider notation Ñn(B) =
∑n

i=1 1{Xi≤un<Xi+1}δi/n(B), with B ⊂ [0, 1], and let
Ñn[i/n, j/n] ≡ Ñi,j .

Definition 2.6. For any k ≥ 2, {Xi}i∈Z satisfies condition D̃(k)(un) if condition ∆(un)
holds and

nP
(
X1 ≤ un < X2, Ñ3,k = 0, Ñk+1,rn

> 0
)
→

n→∞
0,

for some sequence rn = [n/kn] with {kn} satisfying (21).

Condition D̃(2)(un) is also implied by D′′(un). Analogous to the extremal index
as a measure of clustering of exceedances of high levels, Ferreira [12] introduces the
upcrossings index, ϑ ∈ [0, 1], a measure for clustering of upcrossings of high levels. The
family D̃(k)(un), for k ≥ 1, provide a way to compute ϑ too. More precisely, under
conditions ∆(un) and D̃(k)(u(ς

n ) for some k ≥ 2 and for each ς > 0, then the upcrossings
index of {Xi}i∈Z exists and is equal to ϑ if and only if

ϑ = lim
n→∞

P (Ñ3,k(ũ(ς)
n ) = 0|X1 ≤ ũ(ς)

n < X2),



40 M. FERREIRA

for each ς > 0 (Corollary 3.1 in Ferreira [12]). We also have the following relation
between the upcrossings index and the extremal index:

θ =
ς

τ
ϑ (24)

Proposition 2.7. The YARP(III)(1) process has unit upcrossings index.

P r o o f . Observe that condition D′′(un) holds for levels satisfying (19) which imply
nP (X1 ≤ un < X2) → ς, with ς = τ(1− p):

nP (X1 ≤ un < X2) = n[P (X2 > un)− P (X1 > un, X2 > un)]

= n[P (X2 > un)− P (X1 > un, p−1/αX1 > un, ε2
1−U2

> un)]

= nP (X2 > un)− nP (X1 > un)[F ε(un)(1− p) + p] →
n→∞

τ(1− p).

(25)

Therefore, by (24) we obtain ϑ = 1. �

An unit upcrossings index means that no clustering of upcrossings of high levels takes
place.

2.2. Coefficients of tail dependence

Several dependence coefficients have been introduced in the literature to measure the
dependence of a random pair (X, Y ) occurring in the tail. Ferreira and Ferreira [14] have
defined tail dependence coefficients for random pairs (X1, X1+m), i. e., for observations
separated in time by a lag m, m ∈ N (Ferreira and Ferreira [14]). This formulation
is interesting for model diagnosis purposes, similar to the role of the autocorrelation
function in linear models.

Considering marginal uniform normalization, we have the lag-m tail dependence co-
efficient,

λm = lim
t↓0

P (X1+m > F−1
X (1− t)|X1 > F−1

X (1− t)). (26)

Loosely stated, λm is the probability of X1+m being extreme given that X1 is extreme.
According to Ferreira and Ferreira [14] (Proposition 3.2), we can relate the extremal
index θ with coefficients λm, for m ∈ N. In the case λm = 0, the r.v.’s X1 and X1+m

are said to be asymptotically independent, and if 0 < λm ≤ 1 they are asymptotically
dependent. Observe that the boundary cases of total dependence and total independence
correspond to λm = 1 and λm ∼ P (X1+m > F−1

X (1− t)), respectively.

Whenever λm = 0 and one assumes independence, and hence calculates the prob-
ability of a jointly extreme event p = P (X1 > F−1

X (1 − t), X1+m > F−1
X (1 − t)) as

P (X1 > F−1
X (1− t))P (X1+m > F−1

X (1− t)), then one may underestimates p in the case
of positive dependence (i. e., P (X1 > F−1

X (1−t), X1+m > F−1
X (1−t)) ≥ P (X1 > F−1

X (1−
t))P (X1+m > F−1

X (1− t))) or may overestimates p in case of negative dependence (i. e.,
P (X1 > F−1

X (1−t), X1+m > F−1
X (1−t)) ≤ P (X1 > F−1

X (1−t))P (X1+m > F−1
X (1−t))).
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In order to overcome this problem, Ledford and Tawn [24, 25] proposed a model to spec-
ify the “speed” of convergence of P (X1 > F−1

X (1− t), X1+m > F−1
X (1− t)) towards zero.

Based on this approach, Ferreira and Ferreira introduced the lag-m Ledford and Tawn
coefficient, ηm, such that

P (X1 > F−1
X (1− t), X1+m > F−1

X (1− t)) ∼ t1/ηmLηm(t), (27)

as t ↓ 0, where ηm ∈ (0, 1] and Lηm(t) is a slowly varying function at 0. Parameter ηm

regulates the “speed” of convergence in (27) and Lηm(t) gives the relative “strength”
of dependence within a particular value of ηm. The case ηm = 1 and Lηm(t) → a > 0,
as t ↓ 0, corresponds to asymptotic dependence (total dependence if Lηm(t) = 1),
otherwise X1 and X1+m are asymptotic independent. We also have positive dependence
if ηm > 1/2, negative dependence if ηm < 1/2 and (almost) independence if ηm = 1/2
(perfect if Lηm(t) = 1).

Observe that all these measures concern tail dependence based on extremal events
of the type {X1 > x} for large x, i. e. an exceedance of a high level x. This is an
extremal event widely used and applicable in literature but an adverse situation may
also occur with other type of extremal events. For instance, suppose that a sea-wall
projection requires a coastal defense from all sea-levels. An estimation of the probability
of upcrossing the sea-wall height may be of interest. Thus, in an analogous way to λm and
ηm, Ferreira and Ferreira [14] introduced coefficients µm and νm based on upcrossings
events {X1 ≤ x < X2} and {X2+m ≤ x < X3+m}. More precisely, we have the lag-m
upcrossings tail dependence coefficient

µm =lim
t↓0

P (X2+m≤F−1
X (1− t)<X3+m|X1≤F−1

X (1− t) < X2), (28)

and the νm-upcrossings coefficient

P (X1 ≤ F−1
X (1− t) < X2, X2+m ≤ F−1

X (1− t) < X3+m)

∼ P (X1 ≤ F−1
X (1− t) < X2)1/νmLνm(t),

(29)

as t ↓ 0, with function Lνm
(t) slowly varying at 0. The coefficient νm regulates the

“speed” of convergence in (29) and Lνm(t) its relative “strength” given a particular value
of νm. Analogous conclusions of the Ledford and Tawn coefficient ηm are derived, now
concerning upcrossings. More precisely, when νm = 1 and Lνm(t) 6→ 0, we have asymp-
totic dependence of the upcrossings between random pairs (X1,X2) and (X2+m,X3+m)
(total dependence if Lνm(x) = 1) and asymptotic independence otherwise. The cases
νm > 1/2 and νm < 1/2 correspond to, respectively, positive and negative dependence,
and νm = 1/2 an (almost) independence (perfect if Lνm(t) = 1).
According to Ferreira and Ferreira [14] (Proposition 3.3), we can also relate the upcross-
ings index ϑ with coefficients µm, for m ∈ N.

We compute these measures for YARP(III)(1) process. In the following consider
notation at = F−1

X (1− t).

Proposition 2.8. The YARP(III)(1) process has lag-m tail dependence coefficient
λm = pm.
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P r o o f . We have

P (X1 > at, X1+m > at) =
∫∞

at
P (X1+m > at|X1 = u) dFX(u)

=
∫∞

at
[1−Qm(u, ]0, at])] dFX(u)

=
∫∞

at

∏m−1
j=0 [F ε(pj/αat)(1− p) + p] dFX(u)

where in last step we have applied (13). Considering the quantile function given in (20),
we have

1−Qm(u, ]0, at]) =
∏m−1

j=0 [F ε(pj/αat)(1− p) + p]

=
∏m−1

j=0

[
t(1−p)

t+pj(1−t) + p
]

= t + pm(1− t).
(30)

Thus being we obtain

P (X1 > at, X1+m > at) = t + pm(1− t)
∫∞

at
dFX(u)

= t[t + pm(1− t)] = t2(1− pm) + tpm ∼ tpm.
(31)

The result follows from (26). �

For curiosity, observe the power decay of λm, similar to the auto-correlation function of
AR(1) processes.

Proposition 2.9. The YARP(III)(1) process has unit lag-m Ledford and Tawn coeffi-
cient, i. e., ηm = 1, for all positive integer m.

P r o o f . Straightforward from calculations of Proposition 2.8 and (27). �

This result is expected since our process is tail dependent, i. e., λm = pm > 0 by
Proposition 2.8.

In the next two propositions we compute, respectively, µm and νm for process YARP(III)(1).

Proposition 2.10. The YARP(III)(1) process has null lag-m upcrossings tail depen-
dence coefficient, i. e., µm = 0, for all positive integer m.

P r o o f . Applying the reasoning of (25) and (31) we obtain, respectively,

P (X1 ≤ at < X2) = t− t[t + p(1− t)] (32)

and
P (X2 > at, X3+m > at) = t[t + pm+1(1− t)].

Now observe that

P (X1 ≤ at < X2, X2+m ≤ at < X3+m)

= P (X2 > at, X3+m > at)− P (X1 > at, X2 > at, X3+m > at)

−P (X2 > at, X2+m > at, X3+m > at)

+P (X1 > at, X2 > at, X2+m > at, X3+m > at).
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We have successively

P (X1 > at, X2 > at, X3+m > at)

=
∫ ∞

at

P (X3+m > at, X2 > at|X1 = u1) dFX(u1)

=
∫ ∞

at

∫ ∞

at

P (X3+m > at|X2 = u2)Q(u1, du2) dFX(u1)

=
∫ ∞

at

∫ ∞

at

[1−Qm+1(u2, ]0, at])]Q(u1, du2) dFX(u1).

Applying (30), we obtain

P (X1 > at, X2 > at, X3+m > at)

= t[t + pm+1(1− t)]
∫ ∞

at

∫ ∞

at

Q(u1, du2) dFX(u1)

= t[t + pm+1(1− t)]
∫ ∞

at

[1−Q(u1, ]0, at])] dFX(u1)

= [t + pm+1(1− t)][t + p(1− t)]t.

A similar reasoning lead us to

P (X2 > at, X2+m > at, X3+m > at) = [t + pm(1− t)][t + p(1− t)]t

and
P (X1 > at, X2 > at, X2+m > at, X3+m > at)

= [t + pm(1− t)][t + p(1− t)]2t.

Therefore, we have

P (X1 ≤ at < X2, X2+m ≤ at < X3+m)

= t[t + pm+1(1− t)]− [t + pm+1(1− t)][t + p(1− t)]t

−[t + pm(1− t)][t + p(1− t)]t + [t + pm(1− t)][t + p(1− t)]2t

= (1− p)2(1− pm)(1− t)2t2.

(33)

By (32) and (33) we obtain

P (X1 ≤ at < X2, X2+m ≤ at < X3+m)
P (X1 ≤ at < X2)

= (1− p)(1− pm)(1− t)t

and taking t ↓ 0, the upcrossings tail dependence coefficient µm given in (28) is null. �

Proposition 2.11. The YARP(III)(1) process has lag-m coefficient νm = 1/2, for all
positive integer m.
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P r o o f . By (33), we have

P (X1 ≤ at < X2, X2+m ≤ at < X3+m) ∼ t2(1− p)2(1− pm), as t ↓ 0.

and the result follows from (29), corresponding to tail upcrossings (almost) indepen-
dence. �

2.3. YARP(III)(1) and ARMAX

The ARMAX process given in (4), with marginals Fréchet(0, σ, α), i. e., FX(x) =
exp(−(x/σ)−α), and i.i.d. innovations {Zi}i≥1 with cdf, FZ(x) = FX(x)/FX(x/c) =
exp(−(x/σ)−α(1− cα)), have a right tail behavior similar to the YARP(III)(1) process.
More precisely, they are heavy-tailed processes belonging to the Fréchet(α) max-domain
of attraction, with θ = 1 − cα and presenting the same mixing structure and local de-
pendence conditions studied above (Alpuim [1], Canto e Castro [5]). They have also
λm = cmα (i. e., a power decay similar to the one obtained for YARP(III)(1)), ηm = 1,
µm = 0 and νm = 1/2, for all m ∈ N (Ferreira and Ferreira [14]).Therefore, phenom-
ena presenting an ARMAX tail behavior can also be modeled through a YARP(III)(1)
process.

Moreover, based on the m-step transition probability function in ARMAX which is
given by, Qm(x, ]0, y]) =

∏m−1
i=0 FZ(y/ci)1{x<y/cm}, where 1{·} is the indicator function,

we have

P (Xn−1 < Xn) =
∫ ∞

0

P (Xn > Xn−1|Xn−1 = x) dFX(x)

=
∫ ∞

0

(1−Q(x, ]0, x]) dFX(x) =
∫ ∞

0

(1− FZ(x)) dFX(x) =
1− c1/α

2− c1/α
.

(34)

Now observe that every mentioned coefficients involving parameter c depends on α as
well, including the fluctuation probabilities in (34). Hence, if we want to estimate
the ARMAX parameter c we have also to estimate the tail index α, a drawback when
compared with the YARP(III)(1) process (see (10)). Alternatively, we can consider
the unit Fréchet ARMAX, i. e., with marginal cdf FX(x) = exp(−1/x), by normalizing
the values so that they have the standard Fréchet distribution (Lebedev [23]). This is
achieved through the transformation, −1/ log FX(X), for which we still must have to
estimate the parameters σ and α of FX , and hence, once again an inclusion of error
components in advance.

Therefore, YARP(III)(1) processes are more advantageous than ARMAX regarding
data modeling.

3. ESTIMATION OF PROCESS PARAMETERS P AND α

We consider the estimation of the m-step fluctuation probabilities fm in (14). There
exist simple estimates for these probabilities:

f̂m =
1

n−m

n∑
j=m+1

1{Xj−m<Xj}, m ≥ 1. (35)
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The next result states consistency and asymptotic normality for estimators p̂m ob-
tained from equation (14) by plugging in the empirical estimates f̂m. Observe that
p̂ ≡ p̂1 estimates the model parameter p.

Proposition 3.1. Let {Xi}i≥1 be a stationary YARP(III)(1). Then, for each positive
integer m,

n1/2(p̂m − pm) D→ N(0, 4σ2
m) (36)

where

σ2
m = fm(1− fm)(1− 2fm + χm)/(1− χm), (37)

with fm given in (14) and

χm = P (Xj−m<Xj ,Xj−m−1<Xj−1)
fm

. (38)

P r o o f . Observe that f̂m is the mean of Bernoulli trials with Markov dependence.
From Klotz [19], we have that n1/2(f̂m − fm) D→ N(0, σ2

m) holds for σ2
m given in (37),

where χm = P (Xj−m < Xj |Xj−m−1 < Xj−1) with max(0, (2fm − 1)/fm) ≤ χm ≤ 1.
Hence, the result (36) is straightforward by the Delta Method. �

Note that fm ∈ [1/2, 1] and no definite results can be obtained for f̂m < 1/2. However,
the probability of such events goes to zero as n →∞ and hence, this may be an indication
of an inconsistency in our choice of the model. In what concerns the lag m, it can be
chosen in order to obtain the smallest variance (σ2

m) provided that the estimate, f̂m,
takes value in [1/2, 1].

Now we focus on process parameter, α, which can be estimated as the tail index of
the marginal distribution of the YARP(III)(1) process. There are several estimators
in literature such as, Hill estimator [16], Pickands’ estimator [27], maximum likelihood
estimator (Smith [31]), moments estimator (Dekkers et al. [10]), generalized weighted
moments (Hosking and Wallis [17]), among others. Their properties have been derived
in an i.i.d. framework, but there are some studies considering a stationary context (see,
for instance, Rootzén et al. [30], Resnick and Stǎricǎ [28, 29], Drees [11]). The Hill
estimator is the most used in heavy tails or Pareto-type tails which is our case. The β-
mixing structure of YARP(III)(1) process, stated in Proposition 2.1, allows to conclude
consistency and asymptotic normality of Hill estimator (Rootzén et al. [30]). In the
example considered below, the sample paths of Hill estimator for parameter α can be
seen in Figure 2.

3.1. An illustrative example

An illustration of the estimation procedure is now presented. We consider 5000 real-
izations from YARP(III)(1), for cases p = 0.3, 0.5, 0.7, 0.9, with marginal distribution
Pareto(III)(0,1,1).
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In order to obtain an estimate for the variance, we can replace in (37), fm by f̂m

stated in (35) and χm by the empirical counterpart

χ̂m =
1

n−m− 1

n∑
j=m+2

1{Xj−m<Xj ,Xj−m−1<Xj−1}

/
f̂m (39)

or alternatively, use the estimator proposed by Klotz [19],

χ̃m = r−cqm(2s−t)+(n−1) cfm+((r−cqm(2s−t)+(n−1) cfm)2+4r(1−2 cfm)(n−1) cfm)1/2

2(n−1)(1−cfm)
(40)

where q̂m = 1 − f̂m, r =
∑n

i=2 xixi−1, s =
∑n

i=1 xi and t = x1 + xn, which is asymp-
totically equivalent to the maximum likelihood estimator. Again by Klotz [19], we have
that χ̃m is consistent, more precisely,

√
n(χm − χ̃m) D→ N(0, χm(1− χm)/fm). Results

of estimation are summarized in Table 1.
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Fig. 2. Hill sample paths of YARP(III)(1) process, with marginal

Pareto(III)(0,1,1), for p = 0.3, p = 0.5, p = 0.7 and p = 0.9.
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m = 1 m = 2 m = 3 m = 4 m = 5
pm 0.3 0.09 0.027 0.0081 0.00243
p̂m 0.2975 0.1012 0.02622 0.0052
IC(bλ) (0.2886, 0.3063) (0.0790, 0.123516) (-0.0033, 0.0558) (-0.0273,0.0377)

IC(eλ) (0.2886, 0.3063) (0.0790, 0.1235) (-0.0033,0.0558) (0.0377,0.0052)

p̂ 0.297459 0.3182 0.2971 0.2686
(p = 0.3)

pm 0.5 0.25 0.125 0.0625 0.03125
p̂m 0.5011 0.2646 0.1255 0.0625 0.015015
IC(bλ) (0.4926, 0.5096) (0.2384, 0.2906) (0.0879, 0.1630) (0.0141, 0.1108) (-0.0368,0.0669)

IC(eλ) (0.4925, 0.5097) (0.2384, 0.2906) (0.0879, 0.1631) (0.0140, 0.1109) (-0.0369, 0.0669)

p̂ 0.5011 0.5143 0.5006 0.4999 0.4318
(p = 0.5)

pm 0.7 0.49 0.343 0.2401 0.16807
p̂m 0.6903 0.4746 0.3212 0.2266 0.1572
IC(bλ) (0.6839, 0.6968) (0.4491, 0.5002) (0.2764, 0.3660) (0.1667,0.2865) (0.0853, 0.2290)

IC(eλ) (0.6839, 0.6968) (0.4490, 0.5002) (0.2763, 0.3661) (0.1666, 0.2866) (0.0852, 0.2291)

p̂ 0.6903 0.6889 0.6848 0.6899 0.6907
(p = 0.7)

pm 0.9 0.81 0.729 0.6561 0.59049
p̂m 0.9084 0.8251 0.7519 0.6841 0.6244
IC(bλ) (0.9060, 0.9108) (0.8125, 0.8377) (0.7242, 0.7795) (0.6375, 0.7308) (0.5581, 0.6908)

IC(eλ) (0.9060, 0.9108) (0.8125,0.8378) (0.7241, 0.7797) (0.6373,0.7310) (0.5578, 0.6911)

p̂ 0.9084 0.9084 0.9093 0.9095 0.9101
(p = 0.9)

Tab. 1. True values of pm and of parameter p and respective

estimates, considering n = 5000 realizations of the YARP(III)(1)

process, with marginal Pareto(III)(0,1,1), for cases

p = 0.3, 0.5, 0.7, 0.9; IC(bλ) and IC(eλ) are 95% confidence intervals

obtained, respectively, with σ2 estimated using bλ given in (39) and eλ
given in (40); non filled cells mean that a cfm less than 0.5 was

obtained.
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