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TREE-CONTROLLED GRAMMARS WITH
RESTRICTIONS PLACED UPON CUTS AND PATHS

Jiř́ı Koutný and Alexander Meduna

First, this paper discusses tree-controlled grammars with root-to-leaf derivation-tree paths
restricted by control languages. It demonstrates that if the control languages are regular, these
grammars generate the family of context-free languages. Then, in a similar way, the paper
introduces tree-controlled grammars with derivation-tree cuts restricted by control languages. It
proves that if the cuts are restricted by regular languages, these grammars generate the family of
recursively enumerable languages. In addition, it places a binary-relation-based restriction upon
these grammars and demonstrate that this additional restriction does not affect the generative
power of these grammars.
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1. INTRODUCTION

Indisputably, the investigation of context-free grammars with restricted derivation trees
represents an important trend in today’s formal language theory as demonstrated by
several publications on this subject (see [3, 5, 6, 7, 9]). In essence, these grammars gen-
erate their languages just like ordinary context-free grammars do; in addition, however,
their derivation trees have to satisfy some prescribed conditions. The present paper
continues with the investigation of this kind.

More specifically, in this paper, we restrict every root-to-leaf path in the derivation
trees of context-free grammars by some control languages. We demonstrate that if these
control languages are regular, the generative power of context-free grammars remains
unchanged – that is, they characterize the family of context-free languages. This result is
of some interest when compared to the study given in [3], which restricts tree levels rather
than paths in this way and proves that the resulting grammars characterize the family
of recursively enumerable languages. Let us also point out that our result significantly
generalizes the study of [6], which only requires that there is at least one root-to-leaf
path in derivation tree restricted by a regular language. Indeed, by [6, Prop. 2], if
derivation trees are restricted so they have to contain at least one path in the given
control regular language, then this restriction does not affect the generative power of
context-free grammars. Our paper proves that this is true even if all paths are restricted
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in this way.
After establishing the path-related results sketched above, we study restrictions placed

on tree cuts, and in this way, we actually open a new investigation area concerning the
subject of this paper because all the other related studies discussed the restrictions
placed on paths or levels, not cuts (see [3, 5, 6, 7, 9]).

More specifically, we introduce the notion of a tree-controlled grammar in which
we restrict its derivation-tree cuts by a prescribed regular language so that for each
derivation tree in the grammar there is a set X of tree cuts that cover all the tree and
X is described by given regular language. Then, we consider all these grammars and
prove that they characterize the family of recursively enumerable languages. Finally, we
introduce a binary relation over the derivation-tree cuts in these grammars and prove
that the family of languages generated by them is also identical with the family of
recursively enumerable languages.

In the conclusion, we formulate some open problems concerning the future investiga-
tion of grammars with restricted paths and cuts.

2. PRELIMINARIES

This paper assumes that the reader is familiar with the graph theory (see [2]) and
the theory of formal languages (see [8]), including the theory of regulated rewriting
(see [4]). In this section, we introduce the terminology and the definitions needed in
the sequel.

For an alphabet V , V ∗ denotes the letter monoid (generated by V under the operation
concatenation), ε is the unit of V ∗, and V + = V ∗ − {ε}. For string x ∈ V ∗, |x| denotes
the length of x. Every subset L ⊆ V ∗ is a language over V .

A context-free grammar is a quadruple G = (V, T, P, S) where, as usual, V is a total
alphabet, T ⊆ V is a terminal alphabet, P is a finite set of the rules of the form p : A → x
where p is a unique label, A ∈ V − T , x ∈ V ∗, and S ∈ V − T is the starting symbol. A
derivation step in a context-free grammar G is defined for u, v ∈ V ∗ and p : A → x ∈ P
as uAv ⇒G uxv [p].

A context-free grammar is referred to as ε-free provided that for each rule p : A →
x ∈ P , x ∈ V +. A context-free grammar G = (V, T, P, S) is regular, if and only if all its
rules are of the form either A → a, A → aB, or A → a, A → Ba, but not both, where
A,B ∈ V − T , a ∈ T .

A context-sensitive grammar is a quadruple G = (V, T, P, S), where V, T , and S have
the same meaning as in a context-free grammar and every rule in P is of the form y → x
with |y| ≤ |x|, or y = S, x = ε. A context-sensitive grammar G = (V, T, P, S) is specified
in Penttonen normal form if every rule in P is either of the form AB → AC, A → BC,
or A → x, where A,B, C ∈ V − T , x ∈ T . A derivation step in a context-sensitive
grammar G is defined for u, v ∈ V ∗ and p : y → x ∈ P as uyv ⇒G uxv [p].

A general grammar is a quadruple G = (V, T, P, S), where V , T , and S have the same
meaning as in a context-free grammar and every rule in P is of the form y → x with
x ∈ V ∗(V −T )V ∗, y ∈ V ∗. A general grammar G = (V, T, P, S) is specified in Penttonen
normal form if every rule in P is either of the form AB → AC, A → BC, A → x, or
A → ε, where A,B, C ∈ V − T , x ∈ T . A derivation step in a general grammar G is
defined for u, v ∈ V ∗ and p : y → x ∈ P as uyv ⇒G uxv [p].
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In the standard manner, for context-free grammar, context-sensitive grammar, and
general grammar G = (V, T, P, S), we introduce the relations ⇒i

G, ⇒+
G, and ⇒∗

G (see
[8]). The language of a context-free grammar, a context-sensitive grammar, or a general
grammar G is defined as L(G) = {x ∈ T ∗ : S ⇒∗

G x}.
The family of regular languages, context-free languages, context-sensitive languages,

and recursively enumerable languages is denoted by REG, CF, CS, and RE, respec-
tively.

Let G = (V, T, P, S) be a context-free grammar. Let G∆(x) denote the set of the
derivation trees of x in G with x ∈ V ∗. Let t ∈ G∆(x) be a derivation tree, then

• root(t) denote the root node of t;

• a level of t is any sequence of all nodes with the same distance from the root of t;

• a path of t is any sequence of nodes with the first node equal to the root of t, last
node equal to a leaf of t, and there is an edge in t between each two consecutive
nodes of the sequence;

• a cut c of t is any sequence of nodes such that each path of t has precisely one
node in c (see [1, chap. 2.4.1]).

Let word(s) denote the string obtained by concatenating all symbols of the sequence
of nodes s in a derivation tree.

Let r : A → B1 . . . Bn ∈ P . The rule tree corresponding to r is the derivation tree
r∆ of height 1 with root(r∆) = A and the sequence of leaves B1 . . . Bn.

A finite automaton is a 5-tuple M = (Q,V,R, s, F ), where Q is a finite set of states,
V is an input alphabet, R is a finite set of moves of the form pa → q with p, q ∈ Q,
a ∈ V ∪ {ε}, s ∈ Q is start state, F ⊆ Q is a set of final states. A configuration of M is
a string χ ∈ QV ∗.

Let pax and qx be two configurations of M , where p, q ∈ Q, a ∈ V ∗∪{ε}, and x ∈ V ∗.
Let r = pa → q ∈ R. The move of M , denoted by `, from pax to qx according to r is
defined as pax ` qx [r].

A finite automaton M = (Q,V,R, s, F ) is referred to as deterministic provided

1. R contains no moves of the form p → q (ε-moves), and

2. for each pa → q ∈ R, R− {pa → q} contains no rule of the form pa → q′ for some
q′ ∈ Q.

In the standard manner, we introduce the relations `n, `+, and `∗ (see [8]). The
language accepted by a finite automaton is defined as L(M) = {w : w ∈ V ∗, sw `∗

f, f ∈ F}.

3. DEFINITIONS

First, using the terminology of the previous section, we define the basic notions given in
[3] and [6]. Then, we introduce new derivation-tree-based restrictions of tree-controlled
grammars – the subject of investigation in this paper.
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A tree-controlled grammar, TC grammar for short, is a pair (G, R), where G =
(V, T, P, S) is a context-free grammar, and R is a control language over V .

Let (G, R) be a TC grammar.

(1) The language that (G, R) generates under the levels control by R is denoted by
levelL(G, R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ levelL(G, R) if and only if there is a derivation tree
t ∈ G∆(x) such that for all levels s of t (except the last one), word(s) ∈ R.

This kind of derivation in TC grammars is studied in [3, 5], and [9].

(2) The language that (G, R) generates under the path control by R is denoted by
pathL(G, R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ pathL(G, R) if and only if there is a derivation tree
t ∈ G∆(x) such that there is path p of t with word(p) ∈ R.

This kind of derivation in TC grammars is studied in [6] and [7].

(3) The language that (G, R) generates under the all-path control by R is denoted by
all-pathL(G, R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ all-pathL(G, R) if and only if there is a derivation tree
t ∈ G∆(x) such that for all paths s of t, word(s) ∈ R.

(4) The language that (G, R) generates under the cuts control by R is denoted by
cutL(G, R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ cutL(G, R) if and only if there is a derivation tree
t ∈ G∆(x) and a set xM of its cuts such that

1. for each c ∈ xM , word(c) ∈ R, and

2. xM covers the whole t.

In other words, (1.) states that xM contains only those cuts, which are described
by R and the meaning of (2.) is that if n is a node of t, then there is c ∈ xM such
that c contains n.

(5) Let � be a binary relation over a sequence xM of the cuts such that for each two
cuts c1, c2 ∈ xM , c1 � c2 if and only if for each node n2 of c2

• either there is a node n1 of c1 such that n2 is a son of n1,

• or n1 = n2.

In other words, n1 6= n2 implies n2 is a son of n1.

The language that (G, R) generates under the ordered-cuts control by R is denoted
by ord-cutL(G, R) and defined by this equivalence:

For all x ∈ T ∗, x ∈ ord-cutL(G, R) if and only if there is a derivation tree
t ∈ G∆(x) and a sequence c1x, c2x, . . . , cnx of the cuts of t, for some nx ≥ 1, such
that
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1. for all i = 1x, 2x, . . . , nx, word(ci) ∈ R,

2. {c1x, c2x, . . . , cnx} covers the whole t, and

3. cix � c(i+1)x
for all i = 1, 2, . . . , n− 1.

In other words, (1.) states that a sequence of the cuts contains only those cuts,
which are described by R, (2.) says that the set defined by a sequence of the cuts
covers the whole t, and the meaning of (3.) is that the cuts in a sequence do not
cross, although they can have some common nodes.

Let X ∈ {level, path, all-path, cut, ord-cut} then X-TC = {XL(G, R)| (G, R) is a
TC grammar} and X-TCε-free = {XL(G, R)| (G, R) is a TC grammar in which G is
ε-free}.

Just like for ordinary context-free grammars, we can introduce (G,R)∆(x) for TC
grammars, which represents a straightforward task left to the reader. Let (G, R) be
a TC grammar where G = (V, T, P, S), then (G,R)∆(x), x ∈ V ∗, denotes the set of
derivation trees with frontier x in G.

S

A B

C c D

a b d e

Fig. 1. An illustration of derivation-tree-based restrictions.

To illustrate (1) through (5) above, suppose that in a TC grammar (G, R), there is
a derivation tree given in Figure 1, where abcde is a terminal string.

• In (1), to have abcde in levelL(G, R), the strings S, AB, CcD have to be in R.

• In (2), to have abcde in pathL(G, R), at least one of the strings SACa, SACb, SAc,
SBDd, SBDe has to be in R.

• In (3), to have abcde in all-pathL(G, R), the strings SACa, SACb, SAc, SBDd,
SBDe have to be in R.

• In (4), to have abcde in cutL(G, R), for example the set xM = {S, AD, CcB,
abcB, Ade} with word(s) ∈ R, for all s ∈ xM , is correct. Note that, however, xM
is not correct in terms of (5) since the cuts cross each other in xM .

• In (5), to have abcde in ord-cutL(G, R), for example the sequence xM = S, AB,
CcB, abcD, abcde with word(s) ∈ R, for each item s of xM , is correct, since the
cuts do not cross.
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4. RESULTS

In this section, we prove that CF = all-path-TC and RE = ord-cut-TC = cut-TC.

Theorem 4.1. CF = all-path-TC

P r o o f . Let L be an all-path-TC language. We assume that L is generated by a
TC grammar (G, R), where G = (V, T, P, S) is a context-free grammar, R is a regular
language over V , and (G, R) generates the language all-pathL(G, R).

Next, we assume R is accepted by a deterministic finite automaton M = (QM , V ,
RM , sM , FM ). Since the paths of a derivation tree of a context-free grammar are of the
form xb with x ∈ (V − T )+, b ∈ T , we assume that each r ∈ RM is of the form pa → q
with either (a) a ∈ V − T and q /∈ FM , or (b) a ∈ T and q ∈ FM .

Let G′ be a context-free grammar G′ = (V ′, T, P ′, S′), where V ′ = Q ∪ T , Q = {〈A,
qA〉 : A ∈ V , qA ∈ QM , qA → qA ∈ RM for some q ∈ QM}, S′ = 〈S, sS〉, sMS → sS ∈
RM , and P ′ is defined in the following way:

If

(1) A → B1B2 . . . Bn ∈ P , n ≥ 1;

(2) qA → qA ∈ RM , for some q ∈ QM ;

(3) qABi → qBi ∈ RM , for each Bi, i = 1, 2, . . . , n;

then add 〈A, qA〉 → B1B2 . . . Bn to P ′, where, for i = 1, 2, . . . , n,

• if Bi ∈ V − T , then Bi = 〈Bi, qBi〉 with qABi → qBi ∈ RM ,

• if Bi ∈ T , then Bi = Bi.

Without any loss of generality, we assume that V ∩QM = ∅. We define the function
g from G′∆(y), y ∈ (V ′)∗, into (G,R)∆(x), x ∈ V ∗, as

for all nodes labeled by a ∈ T , g(a) = a;
for all nodes labeled by 〈A, q〉 ∈ Q, g(〈A, q〉) = A.

To show that all-path-TC ⊆ CF, we first prove the next claim.

Claim: t ∈ (G,R)∆(x), x ∈ V ∗, if and only if d ∈ G′∆(y), y ∈ (V ′)∗, such that
g(d) = t.

Only-If Part : That is, if t ∈ (G,R)∆(x), x ∈ V ∗, then d ∈ G′∆(y), y ∈ (V ′)∗, such
that g(d) = t. This is established by induction on the number of the rule trees, denoted
by m, in t ∈ (G,R)∆(x), x ∈ V ∗.

Basis: Let m = 0. Since m = 0 implies the zero-length derivation, the only rule tree
in t contains only the node S that corresponds to the starting symbol of G. Clearly, the
only rule tree in d is the node that corresponds to the starting symbol of G′ – that is,
〈S, sS〉 with g(〈S, sS〉) = S.
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Induction Hypothesis: Suppose that the only-if part holds for all t ∈ (G,R)∆(uvw),
u, v, w ∈ V ∗, that contains m or fewer rule trees, for some m ≥ 0.

Induction Step: Consider any t ∈ (G,R)∆(uvw) that contains m+1 rule trees. Clearly,
there is some subtree t′ ∈ (G,R)∆(v) of t such that t′ is a rule tree.

Next, we remove just one rule tree from t. If root(t′) = B, then there is t′′ ∈
(G,R)∆(uBw), where u, w ∈ V ∗, B ∈ V − T , that contains m rule trees. There is also
r : B → v ∈ P (and its rule tree r∆) and t′′ is a subtree of t. Hence, by the induction
hypothesis, there is also d′′ ∈ G′∆(y) such that g(d′′) = t′′.

Since uBw ⇒ uvw [r] in G, qBBi → qBi ∈ RM , for each Bi in v, i = 1, 2, . . . , |v|.
Therefore, there is r′ ∈ P ′ (and its rule tree r′∆) such that g(r′∆) = r∆. Thus, we obtain
d ∈ G′∆(y) with g(d) = t.

If Part : That is, if d ∈ G′∆(y), y ∈ (V ′)∗, then t ∈ (G,R)∆(x), x ∈ V ∗, such that
g(d) = t. This is established by induction on the number of the rule trees, denoted by
j, in d ∈ G′∆(y), y ∈ (V ′)∗.

Basis: Let j = 0. Since j = 0 implies the zero-length derivation, the only rule tree in
d contains only the node 〈S, sS〉 that corresponds to the starting symbol of G′. Clearly,
the only rule tree in t contains only the node S that corresponds to the starting symbol
of (G, R) and g(〈S, sS〉) = S.

Induction Hypothesis: Suppose that the if part holds for all d ∈ G′∆(uvw), u, v, w ∈
(V ′)∗, that contains j or fewer rule trees, for some j ≥ 0.

Induction Step: Consider any d ∈ G′∆(uvw) that contains j + 1 rule trees. Clearly,
there is some subtree d′ ∈ G′∆(v) of d such that d′ is a rule tree.

Next, we remove just one rule tree from d – that is, if root(d′) = 〈B, q〉, then there
is d′′ ∈ G′∆(u〈B, q〉w), where u, w ∈ (V ′)∗, 〈B, q〉 ∈ V ′ − T , that contains j rule trees.
There is also r : 〈B, q〉 → v ∈ P ′ (and its rule tree r∆) and d′′ is a subtree of d. Hence,
by the induction hypothesis, there is also t′′ ∈ (G,R)∆(x) such that g(d′′) = t′′.

Since u〈B, q〉w ⇒ uvw [r] in G′, there is r′ ∈ P (and its rule tree r′∆) such that
g(r′∆) = r∆. For each 〈Bi, qBi

〉 in v, there is some q ∈ QM such that qBi → qBi
∈

RM , i = 1, 2, . . . , |v|. Thus, we obtain t ∈ (G,R)∆(x) with g(d) = t.

We can now easily obtain all-path-TC ⊆ CF as follows.

• Let t ∈ (G,R)∆(x), with x ∈ T ∗. Clearly x ∈ L(G, R), there is d ∈ G′∆(y) such
that g(d) = t, and x = y ∈ L(G′). Thus L(G, R) ⊆ L(G′).

• Let d ∈ G′∆(y), with y ∈ T ∗. Clearly y ∈ L(G), there is t ∈ (G,R)∆(x) such that
g(d) = t, and y = x ∈ L(G, R). Thus, L(G′) ⊆ L(G, R).

Therefore, L(G, R) = L(G′) and thus all-path-TC ⊆ CF.

Let L be a context-free language. Without any loss of generality, we assume that L
is generated by a context-free grammar G = (V, T, P, S). Let (G′, R) be a TC grammar
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that generates all-pathL(G′, R) ∈ all-path-TC, where G′ = G, R = (V −T )+T . Clearly
L(G) = L(G′, R), therefore CF ⊆ all-path-TC. Thus, all-path-TC = CF. �

Next, we prove RE = ord-cut-TC = cut-TC.

Theorem 4.2. RE = ord-cut-TC

P r o o f . Let L be a recursively enumerable language. Without any loss of generality, we
assume that L is generated by a general grammar G = (V, T, P, S) in Pentonnen normal
form (see Section 2). Let (G′, R) be a TC grammar that generates ord-cutL(G′, R) ∈
ord-cut-TC, where G′ = (V ′, T, P ′, S), V ′ = V ∪Q, Q = {〈A,B, C〉 : AB → AC ∈ P},
and P ′ is defined in the following way:

1. for A → x ∈ P , A ∈ V − T , x ∈ {ε} ∪ T ∪ (V − T )2, add A → x to P ′;

2. for AB → AC ∈ P , A,B, C ∈ (V − T ), add the set of two rules {B → 〈A,B, C〉,
〈A,B, C〉 → C} to P ′.

Without any loss of generality, we assume that Q ∩ V = ∅. The regular language R
is defined as follows:

R = V ∗ ∪ {V ∗A〈A,B, C〉V ∗ : AB → AC ∈ P,A ∈ V − T, 〈A,B, C〉 ∈ Q}.

We define the function h from (V ′)∗ into V ∗ by:

for all C ∈ V , h(C) = C,
for all 〈A,B, C〉 ∈ Q, h(〈A,B, C〉) = C.

To show that L(G) = L(G′, R), we first prove the next claim.

Claim. S ⇒m w, w ∈ V ∗, in G, if and only if S ⇒n v, v ∈ (V ′)∗, in (G′, R), where
w = h(v), v ∈ R, for m,n ≥ 0.

Only-If Part : That is, if S ⇒m w, w ∈ V ∗, in G, then S ⇒∗ v, v ∈ (V ′)∗, in (G′, R),
where w = h(v), v ∈ R, for m ≥ 0. This is established by induction on m ≥ 0.

Basis: Let m = 0. The only w is S since S ⇒0 S in G. Clearly, S ⇒0 S in (G′, R)
with S = h(S), and since S ∈ V ∗, S ∈ R.

Induction Hypothesis: Let us suppose that the only-if part holds for all derivations
of length m or less, for some m ≥ 0.

Induction Step: Consider a derivation S ⇒m+1 x in G, x ∈ V ∗. Since m + 1 ≥ 1,
there is some y ∈ V + and p ∈ P such that S ⇒m y ⇒ x [p] in G, and by the induction
hypothesis, S ⇒∗ y′, y′ ∈ (V ′)∗, in (G′, R) with h(y′) = y and y′ ∈ R. Next, as far as p
is concerned, we distinguish two cases:

(1) p is of the form AB → AC, A,B, C ∈ V − T ,

(2) p is of the form A → α, A ∈ V − T , α ∈ {ε} ∪ T ∪ (V − T )2.



Tree-controlled grammars with restrictions placed upon cuts and paths 173

Let us discuss (1) through (2) in detail.

(1) Let p be of the form AB → AC, A,B, C ∈ V − T . Then, y′ = y1ABy2 ∈ R,
y1, y2 ∈ (V ′)∗, and B → 〈A,B, C〉 ∈ P ′ is applied in (G′, R). Thus, we obtain
x′ = y1A〈A,B, C〉y2, with h(x′) = x and since x′ ∈ V ∗A〈A,B, C〉V ∗, x′ ∈ R. For
each 〈A,B, C〉 ∈ Q, there is 〈A,B, C〉 → C ∈ P ′ with h(〈A,B, C〉) = h(C) = C.
Thus, x′ ⇒ z′ with h(z′) = h(x′) = x, and since z′ ∈ V ∗, z′ ∈ R.

(2) Let p be of the form A → α, A ∈ V − T , α ∈ {ε} ∪ T ∪ (V − T )2. Then,
y′ = y1Ay2 ∈ R, y1, y2 ∈ (V ′)∗, and A → α ∈ P ′ is applied in (G′, R). Thus, we
obtain x′ = y1αy2 with h(x′) = x, and since x′ ∈ V ∗, x′ ∈ R.

Observe that (1) through (2) cover all possible forms of p so that the only-if part
holds true.

If Part : That is, if S ⇒n v, v ∈ (V ′)∗, in (G′, R), then S ⇒∗ w, w ∈ V ∗, in G where
w = h(v), v ∈ R, for n ≥ 0. This is established by induction on n ≥ 0.

Basis: For n = 0, the only v is S since S ⇒0 S in (G′, R), with h(S) = S and since
S ∈ V ∗, S ∈ R. Clearly, S ⇒0 S in G.

Induction Hypothesis: Let us suppose that the if part holds for all derivations of
length n or less, for some n ≥ 0.

Induction Step: Consider a derivation of the form S ⇒n+1 x′ in (G′, R), where
x′ ∈ (V ′)∗. Since n+1 ≥ 1, there is some y′ ∈ V + such that S ⇒n y′ ⇒ x′ [p] in (G′, R)
and y′ ∈ R, and by the induction hypothesis, S ⇒∗ y in G with h(y′) = y. Next, as far
as p is concerned, we distinguish three cases:

(1) p is of the form B → 〈A,B, C〉, B ∈ V ′, 〈A,B, C〉 ∈ Q,

(2) p is of the form 〈A,B, C〉 → C, 〈A,B, C〉 ∈ Q, C ∈ V ′,

(3) p is of the form A → α, A ∈ V ′, α ∈ {ε} ∪ T ∪ (V − T )2.

Let us discuss (1) through (3) in detail.

(1) Let p be of the form B → 〈A,B, C〉, B ∈ V ′, 〈A,B, C〉 ∈ Q. Then, y = y1By2

and since x′ ∈ R, y1 is of the form y1 = z1A, for some z1 ∈ V ∗. Thus, p : AB →
AC ∈ P is applied in G and x = y1Cy2 with h(x′) = x, y1 = z1A.

(2) Let p be of the form 〈A,B, C〉 → C, 〈A,B, C〉 ∈ Q, C ∈ V ′. Then, y = y1Cy2 = x
with h(x′) = x.

(3) Let p be of the form A → α, A ∈ V ′, α ∈ {ε} ∪ T ∪ (V − T )2. Then, y = y1Ay2

and p : A → α is applied in G. Thus, x = y1αy2 with h(x′) = x.

Observe that (1) through (3) cover all possible forms of p so that the if part holds
true.

The proof of the inclusion RE ⊆ ord-cut-TC can be easily obtained from the claim
above. From the definition of a cut, the following properties straightforwardly follow:
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(1) Every sentential form is a special case of a cut. Therefore, let wM be the sequence
of all sentential forms corresponding to the derivation tree of any w ∈ L(G).

(2) wM covers each node of the derivation tree of w in G at least once. Thus, wM
covers the derivation tree of any w ∈ L(G).

(3) Considering the order of sentential forms of w ∈ L(G) in the derivation S ⇒∗ w
in G, xM satisfies condition 3. stated in the definition of ord-cutL(G, R).

Thus, S ⇒∗ w in G if and only if S ⇒∗ w in (G′, R), w ∈ T ∗. Therefore, L(G) =
ord-cutL(G′, R) and consequently RE ⊆ ord-cut-TC.

Clearly, ord-cut-TC ⊆ RE and, therefore, RE = ord-cut-TC. �

Theorem 4.3. RE = cut-TC

P r o o f . Clearly, cut-TC ⊆ RE. Obviously, by the definitions (4) and (5) in the
previous section, ord-cut-TC ⊆ cut-TC. Thus RE ⊆ cut-TC follows from RE ⊆
ord-cut-TC (see Theorem 4.2). Therefore, RE = cut-TC. �

Corollary 4.4. ord-cut-TC = cut-TC

P r o o f . This corollary straightforwardly follows from RE = ord-cut-TC (Theorem
4.2) and RE = cut-TC (Theorem 4.3). �

5. CONCLUSION

In this concluding section, we summarize the achieved results and point out some im-
portant open questions.

As a generalization of TC grammars that generate the language under path-based
control introduced in [6], we have proved that the generative power of context-free
grammars remains unchanged even if we restrict all paths in their derivation trees by
regular languages.

Then, we have introduced two types of cut-based restrictions on the derivation trees
of context-free grammars, and we have proved that both of them increase the generative
power of context-free grammars so they characterize RE.

A crucially important open problem area consists of the determination of the ge-
nerative power of these grammars without ε-rules. In other words, future investiga-
tions concerning the subject of this paper should try to place ord-cut-TCε-free and
cut-TCε-free into the relation with some other well-known language families, such as
CS.

Obviously, CS ⊆ ord-cut-TCε-free can be established by analogy with demonstrat-
ing RE ⊆ ord-cut-TC in the proof of Theorem 4.2, in which covering the whole
derivation tree by sentential forms is considered. Indeed, the only difference between
Penttonen normal form for general grammars and context-sensitive grammars is that
in the former, the rules of the form A → ε are allowed; while in the later, they are
not. An open problem is whether ord-cut-TCε-free ⊆ CS holds, which would mean
ord-cut-TCε-free = CS.
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Clearly, CS ⊆ cut-TCε-free can be demonstrated similarly as establishing RE ⊆
cut-TC in the proof of Theorem 4.3, in which ord-cut-TC ⊆ cut-TC is consid-
ered. Obviously, based upon a similar argument, ord-cut-TCε-free ⊆ cut-TCε-free

holds. An open problem is whether cut-TCε-free ⊆ CS holds, which would imply
cut-TCε-free = CS.
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motivated regulated grammars. In: Computational Linguistics in the Netherlands 2000,
Selected Papers from the Eleventh clin Meeting (W. Daelemans, K. Sima’an, J. Veenstra,
J. Zavrel, eds.), Rodopi, Amsterdam 2001, pp. 111-125.

[7] C. Mart́ın-Vide and V. Mitrana: Further properties of path-controlled grammars. In:
Proceedings of FG-MoL 2005, The 10th Conference on Formal Grammar and The 9th
Meeting on Mathematics of Language, Edinburgh 2005, pp. 221–232.

[8] A. Meduna: Automata and Languages: Theory and Applications. Springer Verlag, 2005.
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