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ESTIMATION OF SUMMARY CHARACTERISTICS
FROM REPLICATED SPATIAL POINT PROCESSES

Zbyněk Pawlas

Summary characteristics play an important role in the analysis of spatial point processes.
We discuss various approaches to estimating summary characteristics from replicated ob-
servations of a stationary point process. The estimators are compared with respect to their
integrated squared error. Simulations for three basic types of point processes help to indi-
cate the best way of pooling the subwindow estimators. The most appropriate way depends
on the particular summary characteristic, edge-correction method and also on the type of
point process. The methods are demonstrated on a replicated dataset from forestry.
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1. INTRODUCTION

Data in the form of spatial point patterns occur in a wide range of disciplines,
e. g. forestry, biology, medicine, seismology, epidemiology or materials science. Spa-
tial point processes are used to model these kinds of data. The analysis of spatial
point processes is one of basic objects in spatial statistics. For this analysis, summary
characteristics have a fundamental role. Several types of summary characteristics for
point processes have been defined and frequently used, for an overview see e. g. [9].
Much attention in the literature has been devoted to the estimation of summary
characteristics from a single point pattern observed within a fixed bounded window.
However, it is becoming more common in applications that replicated samples of
a spatial point pattern are available (e. g. [2, 6]). The data may be often considered
as independent replications of the same process. We may think of observation of
several i.i.d. point processes (e. g. tissue sections in organs of different patients) or
observation of a single process through several small windows that are sufficiently
distant apart from each other (e. g. tissue sections in some organ at large distances).
There are a number of papers dealing with the analysis of replicated spatial point
patterns, e. g. [2, 4, 6, 7, 13]. In the present paper we focus mainly on the estimation
of summary characteristics.

One of the most popular summary characteristics is the K-function. It is an
example of a second-order characteristic. An important alternative to second-order



Estimation of summary characteristics from replicated spatial point processes 881

characteristics is given by the nearest-neighbour distance distribution function. Our
main interest is the non-parametric estimation of both these characteristics. We will
study an estimator of the K-function and three different estimators of the nearest-
neighbour distance distribution function.

We assume that n independent replications Φ1, . . . ,Φn of a stationary point pro-
cess Φ are observed in windows W1, . . . ,Wn, respectively. Our aim is to estimate
summary characteristics of Φ. The most natural approach is to aggregate the sep-
arate estimators for each of the windows Wi. Some of the refined methods are
reviewed in [9], see also [1, 5]. We present a comparison of different approaches
to the estimation of summary characteristics for the data in the form of replicated
spatial point patterns. Since the processes Φi are assumed to be i.i.d. it is not dif-
ficult to obtain some results concerning asymptotic behaviour as n → ∞, see [1].
However, for small n it is very complicated to derive any theoretical results and
we have to investigate the properties of the estimators by a computer simulation.
We study how the performance of individual methods depends on the type of point
process, intensity and observation windows. We conclude with the application to
real forestry dataset consisting of the positions of trees in several sampling regions.

2. SPATIAL POINT PROCESSES

Point processes are defined as locally finite random subsets of the d-dimensional
Euclidean space Rd. Denote the σ-algebra of Borel sets of Rd by Bd and the system
of bounded Borel sets by Bd

0 . Let N = {ϕ ⊆ Rd : ϕ(B) < ∞ ∀B ∈ Bd
0} be the family

of locally finite subsets of Rd. The symbol ϕ(B) stands for the number of points of
ϕ∩B. We equip N with the σ-algebra N generated by the sets {ϕ ∈ N : ϕ(B) = m},
m = 0, 1, 2, . . . , B ∈ Bd

0 . A spatial point process Φ is a measurable mapping from an
abstract probability space (Ω,A, P) into the measurable space (N ,N). We say that
Φ is stationary if for all y ∈ Rd the translated point process Φ+y = {X +y : X ∈ Φ}
has the same distribution as Φ. Then the mean number of points falling in a set
B ∈ Bd is proportional to the Lebesgue measure of B, i. e. EΦ(B) = λ|B|. The
constant λ is called the intensity of the point process Φ. Given a stationary point
process Φ with intensity λ, its reduced Palm distribution can be defined by

P !
o(U) =

1
λ|A|

E
∑

X∈Φ∩A

1[(Φ\{X})−X∈U ], U ∈ N,

where A ∈ Bd is an arbitrary set with 0 < |A| < ∞. For more details on point
processes we refer to [9] and references therein.

It is useful to describe point processes by simpler objects, such as numbers or
functions. For this purpose, summary characteristics are frequently used in spatial
statistics. We will introduce several well-established summary characteristics for
stationary point processes. The most important numerical summary characteristic is
the intensity λ. Modern point process statistics often works with functional summary
characteristics. Spherical contact distribution function (also known as empty space
function) is defined as

F (r) = P(Φ(b(o, r)) > 0), r > 0,
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where b(x, r) denotes the ball of radius r with centre x ∈ Rd. It can be interpreted
as the distribution function of the random distance from the origin to the nearest
point in Φ: F (r) = P(D ≤ r), where D = infX∈Φ ‖X‖. On the other hand, the
nearest-neighbour distance distribution function

G(r) = P !
o({ϕ ∈ N : ϕ(b(o, r)) > 0}), r > 0,

is the distribution function of the random distance from the typical point of Φ to
its nearest neighbour in Φ. Both F and G functions use only the nearest neighbour
distances. Different type of characteristics are second-order characteristics. Proba-
bly the most popular second-order characteristic is the K-function which is defined
by

K(r) =
1
λ

E!
oΦ(b(o, r)), r > 0,

where E!
o is the expectation with respect to the reduced Palm distribution P !

o. It
means that λK(r) can be interpreted as the mean number of points in a ball of radius
r centred at a typical point of the process which is not counted. Alternatively, we
can write

K(r) =
1

λ2|A|
E
∑

X,Y ∈Φ

1[X∈A,‖X−Y ‖≤r],

where A is an arbitrary set with positive and finite Lebesgue measure |A|.
The data are often formed by a single point pattern observed within a fixed

bounded window W ∈ Bd
0 . However, natural estimators of the summary character-

istics would need information from outside W . For example, a natural estimator of
G(r) would be

Ĝ(r) =
1

Φ(W )

∑
X∈Φ∩W

1[e(X)≤r], (1)

where e(X) = d(X, Φ \ {X}) is the distance from X to its nearest neighbour. This
estimator is only applicable if we have additional information which enables us to
determine e(X). Mostly we have to deal with edge effects problems because only
information on the points in W is available. For points X close to the boundary
we can only observe eW (X) = d(X, (Φ \ {X}) ∩ W ), the distance to the nearest
neighbour in W , while the true nearest neighbour may lie outside W . Replacing
e(X) by eW (X) ≥ e(X) in (1) introduces negative bias in the estimation. Therefore,
different edge-correction methods have been developed, see [9] for a comprehensive
review.

We mention three approaches for the estimation of G(r). In the first approach,
for a given distance r we consider only those points that have a distance larger than
r from the boundary ∂W of the window W (so called minus sampling). This leads
to the border method estimator (or reduced sample estimator), which has the form

Ĝb(r) =
1

Φ(W	r)

∑
X∈Φ∩W	r

1[e(X)≤r], (2)
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where W	r = {x ∈ W : d(x, ∂W ) ≥ r}. The second approach was suggested by
Hanisch in [8], it uses only points that are closer to its nearest neighbour than to
the boundary of the window. The Hanisch estimator is given by

ĜH(r) =
1

λ̂H

∑
X∈Φ∩W

1[e(X)≤d(X,∂W )]

|W	e(X)|
1[e(X)≤r], (3)

where
λ̂H =

∑
X∈Φ∩W

1[e(X)≤d(X,∂W )]

|W	e(X)|
.

Finally, the third approach is the Kaplan–Meier method, motivated by the analogy
with survival analysis (see [1]),

ĜKM(r) = 1−
∏
s≤r

(
1−

∑
X∈Φ∩W 1[e(X)=s,e(X)≤d(X,∂W )]∑

X∈Φ∩W 1[e(X)≥s,d(X,∂W )≥s]

)
. (4)

The detailed comparison of the estimators (2), (3) and (4) can be found in [12].
For the estimation of K(r) translational edge-correction is often used. It can be

shown that
λ̂2K(r) =

∑
X,Y ∈Φ∩W

1[‖X−Y ‖≤r]

|W ∩ (W + (X − Y ))|
(5)

is an unbiased estimator of λ2K(r), see e. g. [9], p. 228. In order to get an es-
timator of K(r) we divide by some estimator of λ2. For example, we can use
λ̂2 = Φ(W )(Φ(W )− 1)/|W |2, which is unbiased in the case of Poisson process,

K̂(r) =
1

λ̂2

∑
X,Y ∈Φ∩W

1[‖X−Y ‖≤r]

|W ∩ (W + (X − Y ))|
. (6)

3. REPLICATED PATTERNS

Frequently, the data can be regarded as replicate observations of the same point
process through different windows (e. g. images taken at several different locations
in the material or tissue). For analysis of replicated spatial data it is important to
estimate summary characteristics of the underlying process.

3.1. Aggregation methods

We assume that n independent copies Φ1, . . . ,Φn of a stationary point process Φ
are observed through observation windows W1, . . . ,Wn. Our aim is to construct
non-parametric estimators of a specific summary characteristic of our interest, say
S(r). There are two natural strategies how to estimate S(r).

The first approach is to take separate estimators Ŝi(r) for each of the windows
Wi and define a weighted average

Ŝw(r) =
n∑

i=1

Ci

C
Ŝi(r), (7)
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where Ci ≥ 0 are the weights and C =
∑n

i=1 Ci. The Ci may be random and we
also admit that they depend on r.

The second strategy is pooling information from all replicated observations. Often
Ŝi(r) are ratio-unbiased estimators, i. e.

Ŝi(r) =
Ui(r)

Vi
, where

EUi(r)
EVi

= S(r).

For example, (2) and (3) are ratio-unbiased estimators of G(r). In [2] the authors
use ratio regression approach to argue that preferable aggregated estimator is then
the ratio of the sum of numerators to the sum of denominators,

Ŝp(r) =
∑n

i=1 Ui(r)∑n
i=1 Vi

. (8)

The justification of this intuitive approach can also be found in [9], p. 262. We will
refer to (8) as the pooled estimator.

The pooled estimator (8) coincides with the weighted average (7) when we take
Ci = Vi. In particular, Vi = Φi((Wi)	r) for the case of the border estimator (2) and
Vi = (λ̂H)i for the Hanisch estimator (3):

Ĝp,b(r) =

∑n
i=1

∑
X∈Φi∩(Wi)	r

1[ei(X)≤r]∑n
i=1 Φi((Wi)	r)

, (9)

Ĝp,H(r) =

∑n
i=1

∑
X∈Φi∩Wi

1[ei(X)≤d(X,∂Wi),ei(X)≤r]/|(Wi)	ei(X)|∑n
i=1

∑
X∈Φi∩Wi

1[ei(X)≤d(X,∂Wi)]/|(Wi)	ei(X)|
, (10)

where ei(x) = d(x,Φi\{x}). The Kaplan–Meier estimator (4) is not a ratio-unbiased
estimator. However, it is natural to define the pooled estimator by analogue of (4)
where both numerator and denominator are replaced by the corresponding sums
over all replicates (see [1]),

Ĝp,KM(r) = 1−
∏
s≤r

(
1−

∑n
i=1

∑
X∈Φi∩Wi

1[ei(X)=s,ei(X)≤δi(X)]∑n
i=1

∑
X∈Φi∩Wi

1[ei(X)≥s,δi(X)≥s]

)
, (11)

where δi(x) = d(x, ∂Wi).
For the estimation of K(r) by the translational edge-correction, see (6), the pooled

estimator (8) becomes

K̂p(r) =

∑n
i=1

∑
X,Y ∈Φi∩Wi

1[‖X−Y ‖≤r]/|Wi ∩ (Wi + (X − Y ))|∑n
i=1 Φi(Wi)(Φi(Wi)− 1)/|Wi|2

(12)

and it coincides with the weighted average estimator (7) if we take Ci =
(
λ̂2
)

i
=

Φi(Wi)(Φi(Wi)−1)/|Wi|2. Another weighting is recommended in [5], p. 123, namely
Ci = Φi(Wi). An alternative approach is to estimate λ2K(r) by the mean of (5),

λ̂2K(r) =
1
n

n∑
i=1

∑
X,Y ∈Φi∩Wi

1[‖X−Y ‖≤r]

|Wi ∩ (Wi + (X − Y ))|
,
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and divide by some estimator λ̂2 of λ2. This approach was used for example in
[10]. It is easy to see that the resulting alternative pooled estimator has the form of
weighted average,

K̂a(r) =
n∑

i=1

(
λ̂2
)

i

nλ̂2
K̂i(r). (13)

However, the weights do not necessarily sum to one. In particular, we will consider(
λ̂2
)

i
= Φi(Wi)(Φi(Wi)− 1)/|Wi|2 and

λ̂2 =
∑n

i=1 Φi(Wi) (
∑n

i=1 Φi(Wi)− 1)

(
∑n

i=1 |Wi|)
2 .

3.2. Comparison of estimators

In [12] series of simulations were carried out for the border estimator of G(r). Re-
call that in this case the pooled estimator Ĝp,b(r) is equal to Ĝw(r) with Ci =
Φi((Wi)	r). Other weights which were considered in [12] are Ci = 1, Ci = |Wi|,
Ci = Φi(Wi) and Ci = Φi(Wi)2. Among these weights the weighting by the squared
point numbers (Ci = Φi(Wi)2) was recommended. The comparison was based with
respect to bias and mean squared error of the estimators.

Our aim is to compare different aggregation methods for the estimation of a sum-
mary characteristic S(r). We measure the quality of the estimators by the mean
weighted integrated squared error

MWISE(a,w) = E
∫ a

0

(Ŝ(r)− S(r))2w(r) dr,

where w(r) is an appropriate weighting function and a ≥ 0 is a chosen constant.
In particular, for S(r) = G(r) we choose w(r) = 1, while for S(r) = K(r) we take
w(r) = 1/r2 in order to eliminate greater variability of estimators of K(r) for large
distances r. The same choice is usual when fitting a point process model by minimum
contrast method, see [5].

We carry out a simulation study for three stationary planar point process models
representing basic types of point processes: Poisson point process (complete spatial
randomness), Thomas process (clustering) and Matérn hard-core process II (regu-
larity), for definitions see [5] or [9]. Poisson process is determined by intensity λ,
Thomas process has three parameters (c̄ – mean number of points per cluster, λp –
intensity of the Poisson process of parent points and σ – standard deviation of the
displacement of a daughter point from its parent point), Matérn hard-core process II
has two parameters (λb – intensity of the Poisson process of proposal points and r0

– hard-core distance). The intensity of Thomas process is λ = λpc̄ and the intensity
of Matérn hard-core process II is λ = (1− e−λbπr2

0 )/πr2
0.

For a given planar point process model we generate realizations in n windows,
then we estimate summary characteristics and afterwards we determine the weighted
integrated squared error. The simulations are independently repeated 10 000 times
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and MWISE is approximated by the arithmetic mean over these 10 000 simulations.
The analytical expression of G(r) is only known for Poisson process (G(r) = 1 −
e−πr2

), the formula for K(r) is known in the case of Poisson process (K(r) = πr2)
and Thomas process (K(r) = πr2 + (1 − e−r2/4σ2

)/λp). In other cases we have
to approximate theoretical functions from Monte Carlo simulations. The statistical
computing and simulation was conducted using R (see [11]) and its contributed
package spatstat (see [3]).

We evaluate the weighted averages given by (7) with the following four choices of
the weights Ci: identical (Ci = 1), window sizes (Ci = |Wi|), point numbers (Ci =
Φ(Wi)) and squared point numbers (Ci = Φ(Wi)2). These aggregated estimators
are computed for each edge-correction method (2), (3), (4) and (6). Moreover, we
determine the pooled estimators (9), (10), (11) and (12) and for the case of estimation
of K(r) we also include the alternative pooled estimator (13) into the comparison.

First we consider congruent windows. Let n = 10 and Wi be unit squares in
R2. We put a = 0.25. For Poisson process two different intensities λ are considered
(5 and 15). As an example of cluster process we use the Thomas process with
parameters c̄ = 5, σ = 0.2 and as an example of regular process we consider the
Matérn hard-core process II with hard-core distance r0 = 0.1. In both these cases
the intensity λ is 15. The resulting average errors obtained for the border estimator
of G(r) are summarized in Table 1, for the Hanisch estimator of G(r) in Table 2,
for the Kaplan–Meier estimator of G(r) in Table 3 and for the translation-corrected
estimator of K(r) in Table 4. The smallest errors for each process are displayed
in bold font. Since the windows are congruent, we have always only three different
weighted averages. Furthermore, we consider the pooled estimators and in the case
of estimation of K(r) also the alternative pooled estimator (13).

estimator Poisson(5) Poisson(15) cluster(15) regular(15)
Ci = 1 = |Wi| 4.409 1.501 4.462 0.874
Ci = Φi(Wi) 3.302 1.066 1.511 0.702
Ci = Φi(Wi)2 3.632 0.955 1.249 0.648
pooled Ĝp,b 3.119 0.794 1.000 0.569

Tab. 1. The values 1000 · MWISE(0.25, 1) obtained from 10 000

simulations in 10 unit square windows Wi. Different aggregated

border method estimators of G(r) are compared for four point

processes.

The results for the border estimators (shown in Table 1) are in accordance with
the conclusions in [12] where the same weights were considered and squared point
numbers were found to be the best choice. However, the pooling approach (9),
which was not involved in the simulation study of [12], outperforms all considered
weighted averages. For the Kaplan–Meier estimator, the pooling approach (11)
is the most acceptable because it has the smallest MWISE in all studied cases.
When using the Hanisch estimator we recommend weighting by number of points.
The Hanisch estimator uses only the points for which we observe the true nearest
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estimator Poisson(5) Poisson(15) cluster(15) regular(15)
Ci = 1 = |Wi| 3.217 0.989 2.453 0.694
Ci = Φi(Wi) 3.462 0.820 0.934 0.607
Ci = Φi(Wi)2 4.924 0.879 1.162 0.614
pooled Ĝp,H 4.592 0.835 1.034 0.603

Tab. 2. The values 1000 · MWISE(0.25, 1) obtained from 10 000

simulations in 10 unit square windows Wi. Different aggregated

Hanisch estimators of G(r) are compared for four point processes.

estimator Poisson(5) Poisson(15) cluster(15) regular(15)
Ci = 1 = |Wi| 3.580 1.064 3.274 0.693
Ci = Φi(Wi) 2.445 0.750 0.997 0.559
Ci = Φi(Wi)2 2.680 0.703 0.980 0.527
pooled Ĝp,KM 1.826 0.631 0.807 0.494

Tab. 3. The values 1000 · MWISE(0.25, 1) obtained from 10 000

simulations in 10 unit square windows Wi. Different aggregated

Kaplan–Meier estimators of G(r) are compared for four point

processes.

neighbour distance. It may happen that only a few points have this property. This
is transparent in the case λ = 5, where individual Hanisch estimators are not very
precise and eventually the best pooling turns out to be simple arithmetic mean. In
our Monte Carlo simulations the mean number of points in a single window is rather
small, this could explain lower quality of Hanisch estimators in comparison with
Kaplan–Meier estimators. In fact, the quality of Hanisch estimators is comparable to
the quality of the border method. Nevertheless, it is known that for larger intensities
and larger r, the reduced sample estimator is less efficient. Of course, in all three
cases the errors are smaller for larger intensity.

In the case of translation-corrected estimator (6) of the K-function, the pooled
estimator (8) is the weighted average estimator with Ci = Φi(Wi)(Φi(Wi) − 1).
Hence, it is clear that this estimator yields almost the same errors as the weighted
average with Ci = Φi(Wi)2. For Poisson and hard-core process these weightings
are favourable. For cluster process averaging by point numbers behaves better, this
approach is recommended in [5], p. 123 and also in [9], p. 263. However, the best
results for cluster process are achieved by the alternative pooled estimator (13). This
pooling method is intended to first estimate λ2K(r) and then obtain the estimator
of K(r).

According to [9], p. 260, if the windows are congruent, then it is a good strategy to
simply form arithmetic means of estimates from different windows. Our simulations
reveal that this may not be the case if the point numbers are too varying. In the
case of cluster process, the errors of arithmetic means are substantially higher than
the errors of other aggregation methods.
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estimator Poisson(5) Poisson(15) cluster(15) regular(15)
Ci = 1 = |Wi| 16.882 1.080 8.863 0.00969
Ci = Φi(Wi) 9.118 0.865 4.618 0.00834
Ci = Φi(Wi)2 7.326 0.814 5.091 0.00789
pooled K̂p 7.296 0.814 5.147 0.00788
alternative pooled K̂a 7.660 0.850 3.416 0.00811

Tab. 4. The values 1000 · MWISE(0.25, 1/r2) obtained from 10 000

simulations observed in 10 unit square windows Wi. Different

aggregated translation-corrected estimators of K(r) are compared for

four point processes.

Poisson cluster regular
estimator H KM H KM H KM
Ci = 1 29.196 32.621 81.092 116.851 21.748 23.533
Ci = |Wi| 26.788 30.130 74.482 106.866 20.022 21.742
Ci = Φi(Wi) 23.823 20.510 24.498 26.737 17.727 16.238
Ci = Φi(Wi)2 27.540 20.470 34.069 28.053 19.163 15.666
pooled Ĝp 24.618 17.967 28.074 21.750 18.804 14.343

Tab. 5. The average errors 1000 · MWISE(10, 1) obtained from

10 000 simulations of point processes observed in 15 windows Wi of

different shape and size. Different aggregated Hanisch and

Kaplan–Meier estimators of G(r) are compared for three types of

point processes with the same intensity.

The windows do not have to be congruent. Therefore, we consider different
collection of sampling windows as well. We take n = 15 polygonal windows of
different size and shape, they come from real dataset described in Section 4. The
estimators are compared on three types of stationary point processes with intensity
0.0065 m−2: Poisson process, Thomas process with parameters c̄ = 5 and σ = 8 m
and Matérn hard-core process II with hard-core distance r0 = 4m. For each process
10 000 replicated samples are generated. Table 5 shows the results for Hanisch and
Kaplan–Meier estimators of G(r). Since the border method estimation has a bit
poorer quality, we do not include it into the comparison this time. Four weighted
averages are compared with the pooled estimators (10) and (11). The errors of the
translation-corrected estimators of K(r) are summarized in Table 6. Four weighted
averages are compared with the pooled estimator (12) and the alternative pooled
estimator (13). The results presented in Table 5 and Table 6 are in accordance with
previous findings.
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estimator Poisson cluster regular
Ci = 1 72.110 716.71 1162.22
Ci = |Wi| 66.475 665.65 1073.26
Ci = Φi(Wi) 51.510 361.04 889.53
Ci = Φi(Wi)2 50.265 447.69 872.46
pooled K̂p 50.340 490.08 877.41
alternative pooled K̂a 54.719 276.98 966.44

Tab. 6. The average errors MWISE(10, 1/r2) obtained from 10 000

simulations of point processes observed in 15 windows Wi of different

shape and size. Different aggregated translation-corrected estimators

of K(r) are compared for three types of point processes with the same

intensity.

4. FORESTRY DATA

We illustrate our study on the data provided by the Forest Management Insti-
tute, Brandýs nad Labem, Czech Republic. The data give the locations of trees
in Vysočina region (Czech Republic) collected in 15 sampling windows that are suf-
ficiently distant apart from each other to assume independence. Altogether 1 777
trees were located. The windows are polygons of different shape and size ranging
from 1 679 to 4 031 square metres. They were chosen in spruce forests of approxi-
mately the same age (about 100 years). Therefore, we may regard the point patterns
as samples of i.i.d. planar point processes. From the visual inspection of the data it
seems that the stationarity assumption holds.

Basic summary characteristics were estimated separately from each window, see
Figure 1 for Hanisch estimates of G(r). Except windows 10 and 14 there are no
apparent substantial differences between windows. All summary statistics suggest
a regular point pattern.

We aggregate the information from all subwindows and calculate the pooled
Kaplan–Meier estimator (11), see Figure 2. For comparison we plot also the theoret-
ical function for the Poisson process with the same intensity as the overall intensity
estimated from the data.

To facilitate visual inspection of estimates of K(r) we prefer to plot the difference
between the estimate and the theoretical value for the Poisson process, which is
πr2. Superimposed translation-corrected estimators K̂i(r), i = 1, . . . , 15, and the
resulting pooled estimator are shown in Figure 3.

The pooled estimators deviate from theoretical functions under complete spatial
randomness and reveal slight regularity at small distances (up to 3 metres). It is
not surprising because trees can not grow too close together due to their physical
size. Based on the pooled estimators of summary characteristics we can perform
Monte-Carlo tests of the complete spatial randomness hypothesis. The L-test (see
[9], p. 95) rejects this null hypothesis.
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Fig. 1. Superimposed Hanisch estimates of G(r) from all 15 windows.
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Fig. 2. Pooled Kaplan–Meier estimate of G(r) is shown by thick

black line, theoretical function for the Poisson process is thin black

line and individual Kaplan–Meier estimates for separate subwindows

are in grey.

5. CONCLUSIONS

When dealing with replicated point patterns there are several strategies how to
estimate summary characteristics such as nearest-neighbour distance distribution
function or K-function. The appropriate strategy depends on the specific summary
characteristic, edge-correction method and point process under consideration. There
are three main estimation approaches for G(r), the border method estimator per-
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Fig. 3. Translation-corrected estimates of K(r): estimates from

individual subwindows (grey) and pooled estimate (thick black).

Identical zero function (thin black line) corresponds to the theoretical

value for the Poisson process.

forms slightly worse than the Hanisch estimator or the Kaplan–Meier estimator. For
both the border and the Kaplan–Meier estimators the pooling strategy is advisable
while for the Hanisch estimator weighting by the number of points can be recom-
mended. The translational edge-correction provides a standard way to estimate
K(r). The pooling method and weighting by the squared point numbers are very
similar and yield aggregated estimates of comparable quality. They turn to be the
most convenient in the case of Poisson and regular processes. For cluster processes
the alternative pooling method behaves particularly well.
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