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DETECTION OF TRANSIENT CHANGE IN MEAN
– A LINEAR BEHAVIOR INSIDE EPIDEMIC INTERVAL

Daniela Jarušková

A procedure for testing occurrance of a transient change in mean of a sequence is
suggested where inside an epidemic interval the mean is a linear function of time points.
Asymptotic behavior of considered trimmed maximum-type test statistics is presented.
Approximate critical values are obtained using an approximation of exceedance probabilities
over a high level by Gaussian fields with a locally stationary structure.

Keywords: detection of transient change, trimmed maximum-type test statistic, extremes
of Gaussian fields

Classification: 62F05, 60G60, 60G70

1. INTRODUCTION

A sequence of independent identically distributed random variables X1, . . . , Xn that
correspond to some observations taken at time points i = 1, . . . , n represents a basic
stochastic model. However, it can happen that in an interval [k1+1, k2] ⊂ [1, n] with
an unknown beginning k1 +1 and an unknown end k2 a subsequence Xk1+1, . . . , Xk2

behaves differently from the rest of the sequence, e. g., the behavior of the mean of the
observations inside this interval differs from the mean of the observations outside it.
The simplest situation occurs when the observations taken in the interval [k1 +1, k2]
vary around some constant mean value while the observations taken outside the
interval vary around another constant mean. Such model was called by Levin and
Kline [10] an “epidemic model” because they applied it for modeling an epidemic
outbreak in medical applications. The epidemic model was studied in details by
Antoch and Hušková [1] and it was also treated by Csörgő and Horváth [5]. The
epidemic models as well as other models with a “transient change” may be applied
not only in medicine but also in signal detection or pattern recognition. Motivated
by these applications Loader [11], Siegmund [13], Siegmund and Venkatranan [14]
and Siegmund and Yakir [15] obtained very interesting results that are closely related
to the results of this paper.

It is clear that the mean in an “epidemic interval” [k1+1, k2] need not be constant
but it can behave for instance as a function of time points i = k1 + 1, . . . , k2 that
is linear in some unknown parameters. In this paper we study the situation when
the mean in [k1 + 1, k2] is a linear function of time while outside the interval it is
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constant.
The epidemic models or models with a transient change belong to the change

point models. In change point analysis statistical inference has usually two steps.
In the first step we decide whether there is a change and if the answer is positive
then in the second step we estimate change points together with parameters of the
model. Our paper is devoted to the decision problems. The problem of estimation
with a constant mean in an epidemic interval was solved by Hušková [7]. General
asymptotic theory for change points estimators in linear models can be found in
Feder [6] and Bai and Perron [2].

The decision problems in change point analysis are solved by hypotheses testing.
For decision, whether the null hypothesis that claims that all observations have the
same mean is to be rejected, we suggest to apply maximum-type test statistics.
The maximum-type test statistics arise in a natural way. First, we choose a test
statistic for testing the null hypothesis against the corresponding alternative with
fixed known change point(s). Then, we calculate values of such statistics for all
considered positions of the change point(s). The null hypothesis is rejected if at least
one of these values is larger than a chosen critical value, i. e., if the maximal value
is larger than a chosen critical value. In linear models with known change points
the test statistic is often based on the least squares estimates of the parameters of
the models that describe stochastic behavior of the observations taken in intervals
between the change points. To get reasonable estimates of these parameters we will
assume that at least a certain given proportion of all time points (say 100α%, where
α is a chosen small number) is situated inside the epidemic interval and in case the
mean outside the epidemic interval is also unknown then we assume that a certain
given proportion of time points is situated outside the interval. In the other words
we propose to use so called trimmed maximum-type test statistics (the maximum
is taken over all ”reasonable” pairs of time points) instead of over-all maximum-
type test statistics. The disadvantage of the trimmed maximum-type test statistics
is that the value of α has to be chosen subjectively and the choice affects critical
values significantly. On the other side, using the “functional central limit theorem”,
see Bickel and Wichura [3], we can easily obtain asymptotic distributions of test
statistics under the null hypothesis. The limit variables have a form of maxima of
Gaussian random fields and with the help of the theory of extremes of Gaussian fields
with a locally stationary structure, see Piterbarg [12], we can obtain approximations
of distribution functions for large argument values. These approximations provide
us with approximate critical values.

2. DETECTION OF TRANSIENT CHANGE WHEN THE MEAN IN EPIDEMIC
INTERVAL IS CONSTANT

We start with the alternative claiming that the mean inside an epidemic interval is
constant. The problem was solved by Jarušková and Piterbarg [8] and that is why
we treat it only briefly.

Suppose that we observe a random sequence X1, . . . , Xn. We would like to test
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the null hypothesis H0 against the alternative A1:

H0 : Xi = µ+ ei, i = 1, . . . , n, (1)
A1 : ∃ 1 ≤ k1 < k2 < n such that

Xi = µ+ ei, i = 1, . . . , k1,

Xi = µ+ ∆µ + ei, i = k1 + 1, . . . , k2,

Xi = µ+ ei, i = k2 + 1, . . . , n.

We suppose that ∆µ 6= 0 is an unknown real number. The error terms {ei} are i.i.d.
and E ei = 0, E e2i = σ2 (known) and E |ei|2+∆ <∞ for some ∆ > 0.

First, we start with a known baseline value µ. Without a loss of generality we
can set µ = 0. (This holds not only here but in all our testing problems.) For a
given α the trimmed maximum-type test statistics look as follows:

max
1≤k1<k2<n
[α n]≤k2−k1

∑k2
i=k1+1Xi

σ
√
k2 − k1

(for one-sided alternative), (2)

max
1≤k1<k2<n
[α n]≤k2−k1

∣∣ ∑k2
i=k1+1Xi

∣∣
σ
√
k2 − k1

(for two-sided alternative). (3)

For an unknown baseline µ the test statistics have the form:

max
1≤k1<k2<n

[α n]≤k2−k1≤[(1−α) n]

∑k2
i=k1+1(Xi − X̄)

σ
√

(k2 − k1)
(
1− (k2 − k1)/n

) (for one-sided alternative),

(4)

max
1≤k1<k2<n

[α n]≤k2−k1≤[(1−α) n]

∣∣ ∑k2
i=k1+1(Xi − X̄)

∣∣
σ
√

(k2 − k1)
(
1− (k2 − k1)/n

) (for two-sided alternative).

(5)

We introduce random fields {UW (t1, t2) =
(
W (t2)−W (t1)

)
/
√
t2 − t1, 0≤ t1<t2≤1}

and {UB(t1, t2) =
(
B(t2)−B(t1)

)
/
√

(t2 − t1)
(
1− (t2 − t1)

)
, 0≤ t1<t2≤1}, where

{W (t), 0 ≤ t ≤ 1} is a Wiener process and {B(t), 0 ≤ t ≤ 1} is a Brownian bridge.
Using the “functional central limit theorem”, see Bickel and Wichura [3], we get (as
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n→∞) that under H0 it holds:

max
1≤k1<k2<n
[α n]≤k2−k1

∑k2
i=k1+1Xi

σ
√
k2 − k1

D−→ max
0≤t1<t2<1
α≤t2−t1

UW (t1, t2),

max
1≤k1<k2<n
[α n]≤k2−k1

∣∣ ∑k2
i=k1+1Xi

∣∣
σ
√
k2 − k1

D−→ max
0≤t1<t2<1
α≤t2−t1

|UW (t1, t2)|,

max
1≤k1<k2<n

[α n]≤k2−k1≤[(1−α) n]

1√
n

∑k2
i=k1+1(Xi − X̄)

σ
√

k2−k1
n

(
1− k2−k1

n

) D−→ max
0≤t1<t2<1

α≤t2−t1≤1−α

UB(t1, t2),

max
1≤k1<k2<n

[α n]≤k2−k1≤[(1−α) n]

1√
n
|
∑k2

i=k1+1(Xi − X̄)|

σ
√

k2−k1
n

(
1− k2−k1

n

) D−→ max
0≤t1<t2<1

α≤t2−t1≤1−α

|UB(t1, t2)|.

Theorem 2.1. As u→∞, it holds

P
(

max
0≤t1<t2<1
α≤t2−t1

UW (t1, t2) > u
)

∼ 1
4

( 1
α

+ logα− 1
)
u4

(
1− Φ(u)

)
,

P
(

max
0≤t1<t2<1
α≤t2−t1

|UW (t1, t2)| > u
)

∼ 1
2

( 1
α

+ logα− 1
)
u4

(
1− Φ(u)

)
,

P
(

max
0≤t1<t2<1

α≤t2−t1≤1−α

UB(t1, t2) > u
)

∼ 1
4

( 1
α

+ 2 log
(1− α

α

)
− 1

1− α

)
u4

(
1− Φ(u)

)
,

P
(

max
0≤t1<t2<1

α≤t2−t1≤1−α

|UB(t1, t2)| > u
)
∼ 1

2

( 1
α

+ 2 log
(1− α

α

)
− 1

1− α

)
u4

(
1− Φ(u)

)
.

P r o o f .
The zero mean unit variance Gaussian field {UW (t1, t2), 0 ≤ t1 < t2 ≤ 1} has the

covariance function rW (t1, t2; s1, s2) satisfying

rW (t1, t2; t1+h, t2+k) = 1− 1
2(t2 − t1)

|h|− 1
2(t2 − t1)

|k|+o(|h|+|k|) ash→ 0, k → 0.

The zero mean unit variance Gaussian field {UB(t1, t2), 0 ≤ t1 < t2 ≤ 1} has the
covariance function rB(t1, t2; s1, s2) satisfying

rB(t1, t2; t1 + h, t2 + k) = 1− 1
2(t2 − t1)

(
1− (t2 − t1)

) |h|
− 1

2(t2 − t1)
(
1− (t2 − t1)

) |k|+ o(|h|+ |k|) as h→ 0, k → 0.
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Both fields are fields with a locally stationary structure and Theorem A.1 may be
applied with

IA =
∫∫

0≤t1<t2≤1
α≤t2−t1

1
4 (t2 − t1)2

dt1dt2 =
1
4

( 1
α

+ logα− 1
)
,

respectively

IA =
∫∫

0≤t1<t2≤1
α≤t2−t1≤(1−α)

1
4 (t2 − t1)2(1− (t2 − t1))2

dt1dt2

=
1
4

( 1
α

+ 2 log
(1− α

α

)
− 1

1− α

)
.

�

Tables 1 – 4 present approximate critical values of (2), (3), (4), (5) calculated ac-
cording to Theorem 2.1.

5% crit.v. 1% crit.v.
α = 0.05 3.862 4.343
α = 0.10 3.559 4.093

Table 1. Approximate critical values
of (2) – µ is known.

5% crit.v. 1% crit.v.
α = 0.05 4.002 4.462
α = 0.10 3.801 4.291

Table 2. Approximate critical values
of (4) – µ is unknown.

5% crit.v. 1% crit.v.
α = 0.05 4.080 4.528
α = 0.10 3.803 4.294

Table 3. Approximate critical values
of (3) – µ is known.

5% crit.v. 1% crit.v.
α = 0.05 4.209 4.641
α = 0.10 4.023 4.480

Table 4. Approximate critical values
of (5) – µ is unknown.

3. DETECTION OF TRANSIENT CHANGE WHEN THE MEAN IN EPIDEMIC
INTERVAL IS A LINEAR FUNCTION WITH DISCONTINUITIES
AT CHANGE POINTS

We consider the following testing problem:

H0 : Xi = µ+ ei, i = 1, . . . , n, (6)
A2 : ∃ 1 ≤ k1 < k2 < n such that

Xi = µ+ ei, i = 1, . . . , k1,

Xi = µ+ ∆µ + b
( i
n
− k1 + k2 + 1

2n

)
+ ei, i = k1 + 1, . . . , k2,

Xi = µ+ ei, i = k2 + 1, . . . , n,

where ∆µ 6= 0 and/or b 6= 0. The random errors {ei} have the same properties as
before. Notice that the general linear function inside the interval [k1 + 1, . . . , k2] is
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parametrized as yi = ∆µ + b
(
i/n − (k1 + k2 + 1)/(2n)

)
, i = k1 + 1, . . . , k2, with

(k1 + k2 + 1)/2n being the average of (k1 + 1)/n, . . . , k2/n.
First again, we consider the situation when µ is known so that we can assume

µ = 0. Under the assumption that k1 and k2 are known and fixed, the least squares
estimates of ∆µ and b have the form:

∆̂µ =

∑k2
i=k1+1Xi

k2 − k1
, b̂ =

∑k2
i=k1+1

(
i
n −

k1+k2+1
2n

)
Xi∑k2

i=k1+1

(
i
n −

k1+k2+1
2n

)2 .

Under H0 the estimates ∆̂µ and b̂ are uncorrelated (due to the parametrization of
the linear function inside the epidemic interval) and for n large the statistic

χ2
1(k1, k2) =

( ∑k2
i=k1+1Xi

)2

σ2(k2 − k1)
+

( ∑k2
i=k1+1

(
i
n −

k1+k2+1
2n

)
Xi

)2

σ2
∑k2

i=k1+1

(
i
n −

k1+k2+1
2n

)2

has approximately a χ2 distribution with two degrees of freedom. The trimmed
maximum-type test statistic has the form:

max
1≤k1<k2<n
[α n]≤k2−k1

χ2
1(k1, k2) (7)

and using the “functional central limit theorem”, see Bickel and Wichura [3], it
follows that under H0 it converges in distribution (as n → ∞) to a maximum of a
χ2 random field:

max
1≤k1<k2<n
[α n]≤k2−k1

χ2
1(k1, k2)

D−→ max
0≤t1<t2<1
α≤t2−t1

(
UW (t1, t2)

)2 +
(
V (t1, t2)

)2
.

Similarly as {UW (t1, t2)}, the field{
V (t1, t2) =

∫ t2
t1

(
s− t2+t1

2

)
dW (s)√

(t2−t1)2

12

, 0 ≤ t1 < t2 ≤ 1
}

is a zero mean unit variance Gaussian field. A traditional way how to deal with a
maximum of a χ2 process or a field is to use the identity:

max
0≤t1<t2<1
α≤t2−t1

√(
UW (t1, t2)

)2 +
(
V (t1, t2)

)2

= max
0≤t1<t2<1
α≤t2−t1

max
−π≤θ≤π

UW (t1, t2) cos θ + V (t1, t2) sin θ.

The random field {X1(t1, t2, θ) = UW (t1, t2) cos θ + V (t1, t2) sin θ, 0 ≤ t1 < t2 ≤
1,−π ≤ θ ≤ π} is a zero mean unit variance Gaussian field with a covariance
function

rX1(t1, t2, θ; s1, s2, ψ) = r11(t1, t2; s1, s2) cos θ cosψ + r22(t1, t2; s1, s2) sin θ sinψ
+ r12(t1, t2; s1, s2) cos θ sinψ + r21(t1, t2; s1, s2) sin θ cosψ,
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where r11(t1, t2; s1, s2) is the covariance function of {UW (t1, t2)}, r22(t1, t2; s1, s2) is
the covariance function of {V (t1, t2)} and r12(t1, t2; s1, s2) and r21(t1, t2; s1, s2) are
the mixed covariance functions. For h→ 0, k → 0 and φ→ 0 it holds

rX1(t1, t2, θ;t1 + h, t2 + k, θ + φ) = 1− φ2

2
− 1

2(t2 − t1)
(
cos θ −

√
3 sin θ

)2 |h|

+
1

2(t2 − t1)
(
cos θ +

√
3 sin θ

)2 |k|+ o(|h|+ |k|+ φ2).

Now, we consider the case of an unknown µ. For the known fixed values of change
points 1 ≤ k1 < k2 < n the least squares estimates of b is the same as before, while
the least squares estimates of µ and ∆µ are:

µ̂ =

∑k1
i=1Xi +

∑n
i=k2+1Xi

n− (k2 − k1)
, ∆̂µ =

n
∑k2

i=k1+1(Xi − X̄)

(k2 − k1)
(
n− (k2 − k1)

) .
For large n the statistic

χ2
2(k1, k2) =

( ∑k2
i=k1+1(Xi − X̄)

)2

σ2(k2 − k1)(1− k2−k1
n )

+

( ∑k2
i=k1+1

(
i
n −

k1+k2+1
2n

)
Xi

)2

σ2
∑k2

i=k1+1

(
i
n −

k1+k2+1
2n

)2

has approximately χ2 distribution with two degrees of freedom. The trimmed
maximum-type test statistic has a form:

max
1≤k1<k2<n

[α n]≤k2−k1≤[(1−α) n]

χ2
2(k1, k2) (8)

and under H0 it converges in distribution (as n→∞) to a limit variable:

max
1≤k1<k2<n

[α n]≤k2−k1≤[(1−α) n]

χ2
2(k1, k2)

D−→ max
0≤t1<t2<1

α≤t2−t1≤1−α

(
UB(t1, t2)

)2 +
(
V (t1, t2)

)2
.

Similarly as before,

max
0≤t1<t2<1

α≤t2−t1<(1−α)

√(
UB(t1, t2)

)2 +
(
V (t1, t2)

)2 = max
0≤t1<t2<1

α≤t2−t1≤1−α

max
−π≤θ≤π

X2(t1, t2, θ),

where {X2(t1, t2, θ) = UB(t1, t2) cos θ + V (t1, t2) sin θ, 0 ≤ t1 < t2 ≤ 1,−π ≤
θ ≤ π} is a zero mean unit variance Gaussian field with a covariance function
rX2(t1, t2, θ; s1, s2, ψ). For h→ 0, k → 0 and ϕ→ 0 it holds:

rX2(t1, t2, θ; t1 + h, t2 + k, θ + ϕ) = 1− ϕ2

2

− 1
2(t2 − t1)

( cos θ√
1− (t2 − t1)

−
√

3 sin θ
)2 |h|

+
1

2(t2 − t1)
( cos θ√

1− (t2 − t1)
+
√

3 sin θ
)2 |k|+ o(|h|+ |k|+ ϕ2).
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Theorem 3.1. For u→∞ it holds

P
(

max
0≤t1<t2<1
α≤t2−t1

(
UW (t1, t2)

)2 +
(
V (t1, t2)

)2
> u2

)
∼ 1√

π
CW u5

(
1− Φ(u)

)
,

P
(

max
0≤t1<t2<1

α≤t2−t1≤1−α

(
UB(t1, t2)

)2 +
(
V (t1, t2)

)2
> u2

)
∼ 1√

π
CB u

5
(
1− Φ(u)

)
,

where CW = 3
2
√

2

(
1
α + logα− 1

)
π and CB = π

16
√

2

(
24

(
1
α −

1
1−α

)
+ 21 log α

1−α

)
.

P r o o f .
The Gaussian fields {X1(t1, t2, θ)} and {X2(t1, t2, θ)} are fields with a locally

stationary structure and Theorem A.1 may be applied with

IA = CW =
1√
2

1
4

∫∫
0≤t1<t2≤1
α≤t2−t1

1
(t2 − t1)2

∫ π

−π

(cos2 θ − 3 sin2 θ)2 dθdt1dt2,

IA = CB

=
1√
2

1
4

∫∫
0≤t1<t2≤1

α≤t2−t1≤1−α

∫ π

−π

( cos2 θ
(1− t2 + t1)(t2 − t1)

− 3 sin2 θ

(t2 − t1)

)2

dθdt1dt2.

�

Tables 5 – 6 present approximate critical values of (7), (8) calculated according to
Theorem 3.1.

5% crit.v. 1% crit. v.
α = 0.05 4.849 5.230
α = 0.10 4.624 5.029

Table 5. Approximate critical values
of (7) – µ is known.

5% crit.v. 1% crit. v.
α = 0.05 4.855 5.235
α = 0.10 4.635 5.038

Table 6. Approximate critical values
of (8) – µ is unknown.

4. DETECTION OF TRANSIENT CHANGE WHEN THE MEAN IN EPIDEMIC
INTERVAL IS A LINEAR FUNCTION CONTINUOUS AT ONE CHANGE
POINT

We consider the following testing problem:

H0 : Xi = µ+ ei, i = 1, . . . , n, (9)
A3 : ∃ 1 ≤ k1 < k2 < n such that

Xi = µ+ ei, i = 1, . . . , k1,

Xi = µ+ c
(k2

n
− i

n

)
+ ei, i = k1 + 1, . . . , k2,

Xi = µ+ ei, i = k2 + 1, . . . , n,
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where c 6= 0. The random errors {ei} have the same properties as before. Notice
that the linear function yi = µ + c (k2/n − i/n), i = k1 + 1, . . . , k2, is continuous
at k2.

First again, we consider the situation when µ is known and therefore, we may
assume µ = 0. Under the assumption that k1 and k2 are known and fixed, the least
squares estimates of c has the form:

ĉ =

∑k2
i=k1+1

(
k2
n − i

n

)
Xi∑k2

i=k1+1

(
k2
n − i

n

)2 .

Under H0 the trimmed maximum-type test statistics

max
1≤k1<k2<n
[α n]≤k2−k1

∑k2
i=k1+1

(
k2
n − i

n

)
Xi

σ
√∑k2

i=k1+1

(
k2
n − i

n

)2
(for one-sided alternative) (10)

max
1≤k1<k2<n
[α n]≤k2−k1

|
∑k2

i=k1+1

(
k2
n − i

n

)
Xi|

σ
√∑k2

i=k1+1

(
k2
n − i

n

)2
(for two-sided alternative) (11)

converge in distribution (as n→∞):

max
1≤k1<k2<n
[α n]≤k2−k1

∑k2
i=k1+1

(
k2
n − i

n

)
Xi

σ
√∑k2

i=k1+1

(
k2
n − i

n

)2

D−→ max
0≤t1<t2<1
α≤t2−t1

∫ t2
t1

(t2 − s) dW (s)√
(t2 − t1)3/3

,

max
1≤k1<k2<n
[α n]≤k2−k1

|
∑k2

i=k1+1

(
k2
n − i

n

)
Xi|

σ
√∑k2

i=k1+1

(
k2
n − i

n

)2

D−→ max
0≤t1<t2<1
α≤t2−t1

|
∫ t2

t1
(t2 − s) dW (s)|√
(t2 − t1)3/3

.

The covariance function rX3(t1, t2; s1, s2) of a zero mean unit variance Gaussian field
{X3(t1, t2) =

∫ t2
t1

(t2 − s) dW (s)/
√

(t2 − t1)3/3; 0≤ t1 <t2≤1} has an expansion:

rX3(t1, t2; t1 + h, t2 + k) = 1− 3
2(t2 − t1)

|h| − 3
8(t2 − t1)2

k2 + o(|h|+ k2)

as h→ 0, k → 0.

For µ unknown the trimmed maximum-type test statistics have the form for the
one-sided alternative:

max
1≤k1<k2<n

[α n]≤k2−k1≤[(1−α)n]

∑k2
i=k1+1

(
k2
n − i

n

)
(Xi − X̄)

σ
√∑k2

i=k1+1

(
k2
n − i

n

)2 − 1
n

( ∑k2
i=k1+1(

k2
n − i

n )
)2

(12)

and for the two-sided alternative:

max
1≤k1<k2<n

[α n]≤k2−k1≤[(1−α)n]

∣∣ ∑k2
i=k1+1

(
k2
n − i

n

)
(Xi − X̄)

∣∣
σ
√∑k2

i=k1+1

(
k2
n − i

n

)2 − 1
n

( ∑k2
i=k1+1(

k2
n − i

n )
)2
. (13)
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Under H0 they converge in distribution (as n→∞) to:

max
0≤t1<t2<1

α≤t2−t1<(1−α)

∫ t2
t1

(t2 − s) dW (s)−W (1) (t2−t1)
2

2√
(t2−t1)3

3 − (t2−t1)4

4

,

resp. to:

max
0≤t1<t2<1

α≤t2−t1<(1−α)

∣∣ ∫ t2
t1

(t2 − s) dW (s)−W (1) (t2−t1)
2

2

∣∣√
(t2−t1)3

3 − (t2−t1)4

4

.

The covariance function rX4(t1, t2; s1, s2) of a zero mean unit variance Gaussian field

{X4(t1, t2) =
( ∫ t2

t1
(t2 − s) dW (s)−W (1) (t2−t1)

2

2

)
/
√

(t2−t1)3

3 − (t2−t1)4

4 ; 0≤ t1<t2≤
1} has an expansion:

rX4(t1, t2; t1 + h, t2 + k) = 1− 6
(t2 − t1)

(
4− 3(t2 − t1)

) |h|
−

6
(
1− (t2 − t1)

)(
10− 9(t2 − t1)

)
(t2 − t1)2

(
4− 3(t2 − t1)

)2 k2 + o(|h|+ k2) as h→ 0, k → 0.

Theorem 4.1. For u→∞ it holds

P
(

max
0≤t1<t2<1
α≤t2−t1

X3(t1, t2) > u
)

∼ 1√
π

3
√

3
4
√

2

( 1
α

+ logα− 1
)
u3

(
1− Φ(u)

)
,

P
(

max
0≤t1<t2<1
α≤t2−t1

|X3(t1, t2)| > u
)
∼ 2

1√
π

3
√

3
4
√

2

( 1
α

+ logα− 1
)
u3

(
1− Φ(u)

)
,

P
(

max
0≤t1<t2<1

α≤t2−t1≤(1−α)

X4(t1, t2) > u
)

∼ 1√
π
C4α u

3
(
1− Φ(u)

)
,

P
(

max
0≤t1<t2<1

α≤t2−t1≤(1−α)

|X4(t1, t2)| > u
)
∼ 2

1√
π
C4α u

3
(
1− Φ(u)

)
,

where C4α = 6
√

6
∫ 1−α

α
(1−x)3/2(10−9x)1/2

x2(4−3x)2 dx.

P r o o f .
The Gaussian fields {X3(t1, t2), 0 ≤ t1 < t2 ≤ 1} and {X4(t1, t2), 0 ≤ t1 < t2 ≤ 1}

are fields with a locally stationary structure and Theorem A.1 can be applied.
�

Tables 7 – 10 present approximate critical values of (10), (11), (12), (13) calculated
with the help of Theorem 4.1.
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5% crit.v. 1% crit. v.
α = 0.05 3.668 4.146
α = 0.10 3.370 3.897

Table 7. Approximate critical values
of (10) – µ is known.

5% crit.v. 1% crit. v.
α = 0.05 4.039 4.467
α = 0.10 3.795 4.254

Table 8. Approximate critical values
of (12) – µ is unknown.

5% crit.v. 1% crit. v.
α = 0.05 3.883 4.331
α = 0.10 3.610 4.097

Table 9. Approximate critical values
of (11) – µ is known.

5% crit.v. 1% crit. v.
α = 0.05 4.230 4.636
α = 0.10 4.001 4.434

Table 10. Approximate critical values
of (13) – µ is unknown.

5. REMARKS

Remark 5.1. In the considered hypotheses testing problems we supposed that the
variance σ2 is known. If σ2 is unknown it can be replaced by any consistent estimate,
e. g. by σ̂2 =

∑n
i=1(Xi−X̄)2/n, but the procedures have a larger power if we estimate

σ2 by σ̃2 = RSS(k̂1, k̂2)/n, where RSS(k1, k2) is a residual sum of squares of the
corresponding problem calculated at time points (k̂1, k̂2) that maximize the trimmed
maximum-type test statistic.

Remark 5.2. Let {Xi} be i.i.d. standard normal variables. Kabluchko [9] has
shown that for the over-all maximum-type test statistic

max
1≤k1<k2≤n

∑k2
i=k1+1Xi√
k2 − k1

it holds

lim
n→∞

P
(

max
1≤k1<k2≤n

∑k2
i=k1+1Xi√
k2 − k1

≤ an + bn x
)

= exp
(
− e−x

)
, x ∈ R1,

where an and bn are given by

an =
√

2 log n+
(1/2) log log n+ logH − log 2

√
π√

2 log n
, bn =

1√
2 log n

,

where

H =
∫ ∞

0

exp
{
− 4

∞∑
k=1

1
k

Φ
(
−

√
k/(2y)

)}
dy ≈ 0.21.

It seems plausible that similar results might be obtain for other over-all maximum-
type test statistics as well. However, application of these asymptotic distributions
for calculation of approximate critical values is limited.
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Remark 5.3. Consider any of our three test procedures. Suppose that the corre-
sponding alternative holds true with k∗1 = [nτ1], k∗2 = [nτ2], where 0 ≤ τ1 < τ2 ≤ 1,
α ≤ τ2 − τ1 (for a known baseline µ) or α ≤ τ2 − τ1 ≤ 1− α (for an unknown base-
line µ). Clearly, the trimmed maximum-type test statistic is stochastically larger
than the corresponding test statistic for known fixed change points k∗1 < k∗2 which is
asymptotically consistent. It follows that the trimmed maximum-type test statistic
is also asymptotically consistent.

A. APPENDIX

Results of this paper are based on Theorem 7.1 of Piterbarg [12] where the ap-
proximation of exceedance probability over a high threshold for locally stationary
processes is presented. For applications it seems more natural to study directly the
expansion of the covariance function of the studied Gaussian field than to study the
behavior of this covariance function in the transformed coordinates as in Piterbarg’s
definition of locally stationary fields. Moreover, we need to consider the situation
when the functions in the expansion may be equal to zero on zero Lebesque measure
sets. Therefore, we state Theorem 7.1 of Piterbarg [12] in a slight modification.

Theorem A.1. Let {X(x), x ∈ Rm} be a zero mean unit variance Gaussian field
defined on a compact set A ⊂ Rm with a covariance function r(x;y) = EX(x)X(y).
We suppose that for x ∈ A, y ∈ A the covariance function r(x;y) has the following
expansion:

r(x1, . . . , xm; x1 + h1, . . . , xm + hm)
= 1− c1(x1, . . . , xm)|h1| − · · · − cp(x1, . . . , xm)|hp|
− cp+1(x1, . . . , xm)h2

p+1 − · · · − cm(x1, . . . , xm)h2
m

+ o(|h1|+ · · ·+ |hp|+ h2
p+1 + · · ·+ h2

m) as h1 → 0, . . . , hm → 0,

where c1(x1, . . . , xm), . . . , cm(x1, . . . , xm) are continuous functions on A. If we
suppose that the Lebesque measure mes

{
x; c1(x) = 0 ∪ · · · ∪ cm(x) = 0

}
= 0 then

P
(
max
x∈A

X(x) > u
)

=
1

π(m−p)/2
IA u

m+p
(
1− Φ(u)

)(
1 + o(1)

)
as u→∞, (14)

where IA =
∫
. . .
A

∫
c1(x) . . . cp(x)

(
cp+1(x)

)1/2
. . .

(
cm(x)

)1/2 dx1 . . .dxm.

P r o o f .
First, suppose that all c1(x), . . . , cm(x) are strictly positive. Then there exist

constants K1 > 0, K2 > 0 such that K1 ≤ c1(x) ≤ K2, . . . ,K1 ≤ cm(x) ≤ K2 for
all x ∈ A. For ε > 0 we can find δ > 0 such that for any x ∈ A and y ∈ A such that
||x − y|| < δ it holds

1− c1(x)|y1 − x1|− · · · − cm(x)(ym − xm)2 − ε

2
(
|||y − x|||

)
≤ r(x;y)

≤ 1− c1(x)|y1 − x1|− · · · − cm(x)(ym − xm)2 +
ε

2
(
|||y − x|||

)
,
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(|||a||| = |a1|+ · · ·+ |ap|+ a2
p+1 + · · ·+ a2

m) and |c1(x)− c1(y)| ≤ ε/2, . . . , |cm(x)−
cm(y)| ≤ ε/2. Then for any η ∈ A and any x ∈ A, y ∈ A such that ||x − η|| ≤ δ
and ||y − η|| ≤ δ it holds

1− c1(η)|y1 − x1|− · · · − cm(η)(ym − xm)2 − ε
(
|||y − x|||

)
≤ r(x;y) ≤

1− c1(η)|y1 − x1|− · · · − cm(η)(ym − xm)2 + ε
(
|||y − x|||

)
.

Therefore, {X(x)} is a Gaussian field with a locally stationary structure and ac-
cording to Theorem 7.1 of Piterbarg [12] the assertion (14) holds true.

Now suppose that c1(x) ≥ 0, . . . , cm(x) ≥ 0 butmes
{
x; c1(x) = 0∪· · ·∪cm(x) =

0
}

= 0. There exist constants K > 0 and δ > 0 such that for |||y − x||| ≤ δ

r(x;y) ≥ 1−K |||y − x|||.

Further there exists a number n0 ∈ N such that A ⊂ ∪n0
i=1Ai and for any i = 1, . . . , n0

and x ∈ Ai and y ∈ Ai it holds |||x − y||| ≤ δ. Moreover for any i there exists
a homogeneous zero mean unit variance Gaussian field {X̃i(x), x ∈ Ai} with a
covariance function ri(x;y) satisfying:

ri(x;y) = 1−K|||y − x|||+ o(|||y − x|||) as ||x− y|| → 0,

and
ri(x; y) ≤ r(x;y) for all x ∈ Ai, y ∈ Ai.

Clearly
P

(
max
x∈Ai

X̃i(x) > u
)
≥ P

(
max
x∈Ai

Xi(x) > u
)
.

Further, for any ε > 0 we can find a compact set Aε such that mes(Aε) ≤ ε and
for x ∈ A−Aε (a closure of A−Aε) it holds c1(x) > 0∩· · ·∩ cm(x) > 0. Therefore,
for all u > 0

P
(

max
x∈Aε

X(x) > u
)
≤

n0∑
i=1

P
(

max
x∈Ai∩Aε

X̃i(x) > u
)

and it holds

lim sup
u→∞

P
(
maxx∈Aε X(x) > u

)
um+p(1− Φ(u))

≤ n0
1

π(m−p)/2
K(m+p)/2 ε.

It follows that for any ε′ > 0

1
π(m−p)/2

(
IA − ε′) ≤ lim inf

u→∞

P
(
maxx∈AX(x) > u

)
um+p(1− Φ(u))

≤ lim sup
u→∞

P
(
maxx∈AX(x) > u

)
um+p(1− Φ(u))

≤ 1
π(m−p)/2

(
IA + ε′).

�
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[7] M. Hušková: Estimators for epidemic alternatives. Comment. Math. Univ. Carolinae
36 (1995), 279–291.
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