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WHY L1 VIEW AND WHAT IS NEXT?

László Györfi and Adam Krzyżak

N.N. Cencov wrote a commentary chapter included in the Appendix of the Russian
translation of the Devroye and Györfi book [15] collecting some arguments supporting the
L1 view of density estimation. The Cencov’s work is available in Russian only and it
hasn’t been translated, so late Igor Vajda decided to translate the Cencov’s paper and to
add some remarks on the occasion of organizing the session “25 Years of the L1 Density
Estimation” at the Prague Stochastics 2010 Symposium. In this paper we complete his task,
i. e., we translate the Cencov’s chapter and insert some remarks on the related literature
focusing primarily on Igor’s results. We would also like to acknowledge the excellent work
of Alexandre Tsybakov who translated the Devroye and Györfi book in Russian, annotated
it with valuable comments and included some related references published in Russian only.
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1. INTRODUCTION

The monograph by Devroye and Györfi [15] is devoted to density estimation from
random observations. The book surveys state of the art of the field up to 1983,
discusses in detail the most important results and poses open problems. The title
closely reflects the content, so it may seem to an unexperienced reader that the book
by two young scientists is devoted to a narrow and exotic problem. Nevertheless the
L1 approach seems the simplest and the most natural for the stated problem and
this claim can be rigorously proven. To this end it is sufficient to apply the theory
of statistical inference proposed by Wald [43]. In the short account presented here
we place the subject of the book in the framework of mathematical statistics and
thus complement and make authors’ results more precise, in particular regarding the
choice of the L1 approach and its relation to the L2 approach.

In probability theory we define a probability space (Ω,A, P ) to describe random
events, where Ω is the space of elementary events ω ∈ Ω, A is the σ-algebra in Ω,
and P is a probability measure on A called probability distribution function. The
measurable space (Ω,A) provides a qualitative description of a random variable and
P is a quantitative measure. Let ω1, . . . , ωN be independent measurements of a
given event, i. e., PN{dω} = P{dω1} . . . P{dωN}. By the law of large numbers the
frequency ν(A)/N ≈ P (A) for any event A ∈ A, where ν(A) = card{ωk, ωk ∈ A, k =
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1, . . . , N} with estimation accuracy (measured by probability PN ) improving with
N . The study of behavior of an empirical mean is one of the fundamental problems of
probability theory and it often determines its practical importance. In mathematical
statistics we encounter an inverse problem: given the sequence of random variables
ωk, k = 1, . . . , N from a given probability space (Ω,A) we estimate the “observed”
probability distribution P or any of its characteristics or determine the properties
of an unknown distribution. In the former case we talk about pointwise estimation
problem (PEP) which is the subject of Devroye and Györfi studies and of this article.
We would like to add that pointwise estimation of P is the first step in solving of
many statistical estimation problems, where estimate P ∗ is used to infer properties
of P .

Inverse physics problems are by their nature ill-conditioned. The same is true
for the inverse problems in probability theory. For existence of a strong solution
additional information is needed. For example, consider a family of probability dis-
tributions P = {Pθ, θ ∈ Θ}. If the parameter space Θ is finite then we have the
hypothesis testing problem. If Pθ smoothly depends on a finite dimensional param-
eter vector then we face a parametric estimation problem. In this book particular
attention is given to the estimation problem when family P is smoothly parameter-
ized by a countable dimensional vector of real coordinates. One example is when
random variable is finite with density p(x) in C(2). Finally, family P may be so
large that it cannot be smoothly parameterized: an example is the case of two-
dimensional random variables where the only prior knowledge is assumption about
independence of the components. Traditionally the latter two approaches belong to
the class of nonparametric estimation problems even though the approaches and so-
lution methodologies are entirely different. In particular, the latter approach is only
correct in the weak sense. Naturally this classification is not exhaustive. We only
listed the most important approaches ordering them according to diminishing prior
information along with accuracy. Thus in testing simple hypotheses error probabil-
ity goes down exponentially, in a finite parametric case the pointwise rate is of order
N−1/2 and in a countable parametric case the rate is even slower. The latter is the
case we will consider in detail.

2. DENSITY ESTIMATION AND THE CHOICE OF METRICS

According to Wald [43] in each statistical problem in addition to input data we
should be given a measurable space (∆,B) from which we choose a decision δ ∈ ∆
based on experimental data. The resulting deterministic decision, that is data pro-
cessing rule chosen by a statistician, is expressed by a function δ = f(ω1, . . . , ωN )
depending only on observations and a randomized decision function is expressed by
δ = f(ω1, . . . , ωN ; η) depending also on random parameter η which needs to be de-
termined as well. The randomized and deterministic solutions can be conveniently
described implicitly by a probability distribution M(ω1, . . . , ωN ; dδ) without speci-
fying the space of random experiments.

Wald suggests to measure the accuracy of decision δ by the loss function L(θ, δ),
which a statistician faces when he makes decision δ upon observing Pθ. The quality
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of the decision rule M can be measured by an expected loss or risk

RM(N) = EL(θ, δ) =
∫

∆

L(θ, δ)PN
θ,M (dδ) (1)

where probability measure M = PN
θ,M is defined by

PN
θ,M{·} =

∫
ΩN

M(ω1, . . . , ωN ; ·)Pθ{dω1} . . . Pθ{dωN}. (2)

Note that the risk can be replaced by any quantile of random losses. Nevertheless
knowing family P we can determine distribution PN

θ,M in advance and then choose
the most convenient rule M .

In the inverse problem of probability theory we take as set ∆ of all possible
estimates P ∗ a complete family of all probability distributions P on (Ω,A) denoted
by Cap(Ω,A). For the Lebesgue measurable spaces (Ω,A) after overcoming some
difficulties following the approach of Prokhorov one may embed this set with a σ-
algebra of events and design a measurable space of random probability measures
Cap(Cap(Ω,A),K(A)), where K(A) is the σ-algebra on Cap(Ω,A). In this we use
P (Ai) as parameters where Ai are some elements of A and dependence of P on
parameters K(A) is measurable but not smooth. We adopt the variational distance
criterion for measuring the accuracy of estimate P ∗, namely

|P ∗ − P | = sup
A∈A

[P ∗(A)− P (A)]− inf
A∈A

[P ∗(A)− P (A)], (3)

i. e., the strong metrics in a linear space L1(Ω,A) of all countable additive measures
(positive-negative in general) on (Ω,A);L1(Ω,A) = Lin Cap(Ω,A).

We have the following result (see Cencov [11], Theorem 4)

Theorem 1. Let the loss function for a pointwise estimation problem be specified
by the strong norm. Then the pointwise estimation problem for family Cap(E,A∗)
without prior information is ill-posed, where E is the unit interval and A∗ is an
algebra of its all Lebesgue measurable subsets.

It turns out that for any sequence of decision functions

M(N) : Cap(EN ,A∗N ) → Cap(Cap(E ,A∗),K(A∗))

there exists a probability distribution P ∈ Cap(E,A∗) such that

lim
N→∞

RM(N)(P ) ≥ 1, (4)

where EN is the Cartesian product of N sets E.
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Remark 1. In this respect Devroye and Györfi [16] proved that, for any estimator
PN and 1 > δ > 0, there exists a singular probability distribution P ∗ defined on the
Borel σ-algebra of the interval [0, 1] such that for all N

|PN − P ∗| > 1− δ

almost surely, which means that without any additional information on an unknown
probability distribution P , it is impossible to estimate it consistently in variational
distance. However, if there is a known σ-finite measure Q dominating the non-
atomic part of P , then there is a partitioning-based estimate PN such that

|PN − P | → 0

almost surely, as N →∞ (cf. Barron, Györfi and van der Meulen [3]).

Besides strong metrics on Cap(E,A∗) there exist weak metrics expressed by dis-
tribution functions, where E is the unit interval. A simple one is a uniform distance
metric

ρ(P,Q) = sup
x
|F (x)−G(x)|,

where F (x) = P{[0, x)}, G(x) = Q{[0, x)}. According to the famous Kolmogorov
theorem [25]

sup
x
|F ∗

N (x)− F (x)| → 0

almost surely as N →∞ so that empirical distribution function F ∗
N (x) is a consistent

estimate of the theoretical distribution F . Thus ill-conditioning of the inverse theory
of probability problem is not very strong, likewise numerical differentiation problem
in real analysis.

Here we will not consider the question how much less informative is estimation
in weak metrics from estimation in strong metrics. For more details the reader is
referred to [36]. We will instead consider an example. It is well-known that ev-
ery measure on the real line can be decomposed into linear combination of three
components: discrete, continuous and singular. A discrete measure is concentrated
on a countable set of discrete points with positive measure. A continuous measure
possesses Lebesgue density and a singular measure is concentrated on a subset with
Lebesgue measure zero. All three measures are strictly separated by distributions.
They are also separated in the strong metrics: variational distance between two
measures of different types is equal to 2. In weak metrics continuous and singular
measures are not separable. One may show that there is no consistent rule which
allows to decide whether a given distribution is continuous or singular. It is worth
noting that discrete distributions can be separated from two other types of distri-
butions if and only if the equality between identical results of experiments can be
established with infinite precision.

One can just conclude from preceding discussion that the maximal set for which
PEP is valid in strong metrics sense is a subset of all dominated measures Capd(Ω,A,
Z) on any measurable space (Ω,A) with fixed ideal Z of zero measure sets and,
in particular, a subset of all distributions on real line or unit interval which have
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Lebesgue density. Here Capd(Ω,A, Z) denotes the collection of all probability mea-
sures on (Ω,A) that vanish on the ideal Z. For such subsets of distributions the
variational distance reduces to the standard L1 distance between two densities

|Q− P | =
∫

Ω

|q(ω)− p(ω)|µ(dω), (5)

where µ is a dominating measure, e. g., µ(dx) = dx for a unit interval, and the den-
sity estimate converges to the density. Well-posedness of this problem in pointwise
case has been established in 1976 independently by Abu-Jaoude [1] (his results are
proven in the Devroye and Györfi monograph [15]) and Nadaraya [33]. The former
author used the histogram density estimate while the latter authors the kernel den-
sity estimate. From invariance of the family of all continuous mutually measurable
distributions with respect to the length preserving mappings of the interval onto
itself it follows that any universally consistent decision rule on the interval cannot
be uniformly consistent on this interval [11]. At the same time the risk of the same
decision procedures can converge uniformly over family P for prior distributions P
satisfying stricter conditions.

An important task for a theoretician is quest for the most general approach.
We will now try to elucidate why the L2 approach is inferior to the L1 approach.
Each statistical decision rule M yields an affine mapping from Cap(ΩN ,AN ) to
Cap(∆,B). This is a consequence of the fact that the rule M is determined by
a transitive distribution function. Consider all possible families Cap(Ω,A) and all
possible transitive distributions M from any measurable space (Ω,A) to any other
measurable space (Ω′,A′). They represent an algebraic category CAP, which consists
of subsets Cap(Ω,A). The morphisms (or Markov morphisms) are defined by the
transitive distributions

Q{·} = (PM){·} =
∫

Ω

M(ω; ·)P (dω).

With this all requirements of categories are fulfilled.

1. The identity T mapping each object onto itself is a category, i. e., T (ω, B) =
IB(ω), where IB is an indicator of set B.

2. The composition ST of two Markov mappings is a Markov mapping Π

Π(ω; ·) =
∫

Ω′
T (ω′; ·)S(ω; dω′)

3. The composition is associative, i. e., (ST )R = S(TR).

This fact was first noted by Cencov [5] and independently by Morse and Sacksteder
[29]. In addition, multiplication operation for members as well as multiplication and
averaging operations for morphisms are defined in CAP as well, see Cencov [9]. This
has the following implication [9, 10]: two families of distributions {Pθ, θ ∈ Θ} and
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{Qθ, θ ∈ Θ} sharing parameter set Θ have the same statistical properties if and only
if there exist two Markov morphisms S and T such that

PθS = Qθ, QθT = Pθ, ∀ θ ∈ Θ.

In any theory a common law allows equivalent formulation. In other words the im-
plications of the law should not change when we move from one case to another
provided that they are equivalent in that theory. In classical geometry equivalent
transformations form groups, in statistics they form categories entailing original ge-
ometries. The families of distributions play role of “figures” and Markov morphisms
of “movements”. Many basic notions of mathematical statistics could be interpreted
as invariants, co-invariants or more complex equivariants of that geometry. Since
Markov morphisms are generally not invertible except for a typical for group geom-
etry notion of invariance for congruent shapes (i. e., statistical equivalent families)
we introduce the notion of monotone invariant. We will apply it only for a pair of
probabilistic laws, but it can be easily generalized to a more general family.

Definition. A real-valued function f(P,Q) whose two arguments are probability
distributions defined on the Cartesian product of all elements of Cap(Ω,A) is called
a monotone invariant (relative to the category of Markov morphisms) if

f(PM, QM) ≤ f(P,Q) (6)

for all P,Q,M∈ Ω.
The examples of monotone invariants of a pair of distributions include variational

distance |P −Q| (3), relative entropy

H(P,Q) =
∫

Ω

[
dQ

dP
(ω) ln

dQ

dP
(ω)

]
P (dω) =

∫
Ω

[
ln

dP

dQ
(ω)

]
Q(dω),

and Bhattacharya distance

s(P,Q) = 2 arccos
∫

Ω

√
P (dω)Q(dω) (7)

entailing quadratic Fisher information. As a matter of fact this distance is a unique
invariant Riemann distance metrics up to a multiplicative constant on members
of category CAP. When speaking of smooth sets {Pθ, θ ∈ Θ} of finite measures
it is always tacitly assumed that Pθ is a differentiable function with respect to
θ ∈ Θ ⊂ Rd in a sense of the given metrics. It is easy to show that φ− divergence
of Csiszár [13, 14]

Iφ(P,Q) =
∫

φ

(
dQ

dP
(ω)

)
Q(dω)

also belongs to the class of monotone invariants, where φ is a convex function on
R+. For mutually absolutely continuous measures the notion of entropy reduces to

H(P,Q) =
∫

Ω

[
ln

q(ω)
p(ω)

]
q(ω)µ(dω), (8)
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and the Fisher form for family {Pθ} is

ds2 =
∑
α,β

dθαdθβ

∫
Ω

∂ ln p(ω; θ)
∂θα

· ∂ ln p(ω; θ)
∂θβ

. (9)

An exceptional role of the L1 norm in the class of invariant metrics is elucidated in
the following theorem, see [32].

Theorem 2. If metrics ρ defined on the members of category CAP is monotone,
then

ρ(P,Q) ≥ 1
8
ρ(R1/2, R1/4) · |P −Q|, (10)

where Rθ is probability distribution on Ω2 = {ω1, ω2}, Rθ(ω1) = θ, Rθ(ω2) = 1− θ,
0 ≤ θ ≤ 1.

Thus if statistical problem with variational distance loss function is ill-conditioned
then it remains ill-conditioned whenever the loss function is replaced by any other
invariant metrics (the converse is false). Likewise the variational distance is the
unique (up to multiplicative constant) invariant distance determined by the norm
of the difference, see [8]. More precisely if the metrics ρ on elements of CAP is
invariant with respect to the category and homogeneous, i. e.,

P −Q = λ(P ′ −Q′) ⇒ ρ(P,Q) = λρ(P ′, Q′),

then

ρ(P,Q) =
1
2
ρ(R1/2, R1/4) · |P −Q|.

Similar property holds for general loss functions (for φ-divergence it was proved by
Csiszár) if they are monotone invariants, see [32].

Theorem 3. For a monotone invariant function L(P,Q) satisfying

Q 6= P ⇒ L(P,Q) 6= L(P, P )

there exists a constant c = L(P, P ),∀P and a monotone real function

g(z) = inf
2|x−y|≥z

ρ(Rx, Ry), (11)

where 0 ≤ z ≤ 2, g(z) > 0 with z > 0, g(0) = 0 such that

L(P,Q) ≥ c + g(|P −Q|).

Thus we have shown that the L1 approach investigated by the authors of [15] is
the most general invariant approach to density estimation, the claim which we have
embarked to show.
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Remark 2. For the convex function φ with φ(1) = 0, no φ-divergences except the
constant multiples of variational distance are metrics (cf. Khosravifard, Fooladi-
vanda and Gulliver [24]). Powers of φ-divergences may be metrics (cf. Csiszár
and Fischer [12], Kafka, Österreicher and Vincze [22], Österreicher and Vajda [35],
Vajda [42]). Vajda [41] proved that if function φ is strictly convex then a lower
bound

Iφ(P,Q) ≥ cφ|P −Q|
is impossible for any finite constant cφ, while the sharp lower bound

Iφ(P,Q) ≥ cφ|P −Q|2

holds.

Remark 3. General inequalities have been proven in the Liese and Vajda book
[31]. For example, if φ-divergence is symmetric, which means the convex function φ
with φ(1) = 0 is self-adjoint in the sense

φ(t) = φ∗(t),

where φ∗(t) = tφ(1/t), then

Iφ(P,Q) ≥ gφ(|P −Q|),

where

gφ(t) =
2 + t

2
φ

(
2− t

2 + t

)
, 0 ≤ t < 2

(cf. Proposition 8.28 in [31]). There are similar inequalities for non-symmetric φ-
divergences such that gφ is replaced by the convex envelope of gφ and gφ∗ (cf. (8.26)
in [31]).

Remark 4. The best known inequality involving the variational distance |P − Q|
and the relative entropy H(P,Q) is the Pinsker inequality:

|P −Q|2/2 ≤ H(P,Q)

(cf. Csiszár [13], Kullback [27] and Kemperman [23]), so the relative entropy is
a more demanding divergence. Kullback [27], [28] sharpened the Pinsker inequality
adding a fourth power term:

|P −Q|2/2 + |P −Q|4/36 ≤ H(P,Q),

while the best known lower bound is due to Toussaint [39]:

|P −Q|2/2 + |P −Q|4/36 + |P −Q|6/288 ≤ H(P,Q).

Vajda [40] proved a slightly different lower bound:

log
2 + |P −Q|
2− |P −Q|

− |P −Q|
2 + |P −Q|

≤ H(P,Q).

Vajda [41] gave further upper and lower bounds of H(P,Q) in terms of |P −Q|.
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Remark 5. In order to have distribution estimate consistent in relative entropy,
one needs more information on the underlying distribution. For example, for any
estimator PN , there is a probability distribution P ∗ on the set of positive integers
such that its Shannon entropy is finite and for all N

H(PN , P ∗) = ∞

almost surely (cf. Györfi, Páli and van der Meulen [18]). If there is a known
probability measure Q dominating P such that

H(P,Q) < ∞,

then there is a partitioning-based estimate PN such that

H(PN , P ∗) → 0 as N →∞

almost surely (cf. Barron, Györfi and van der Meulen [3] and Györfi, Páli and van
der Meulen [19]).

The L2 approach also considered by Devroye and Györfi [15] is not invariant since
the squared norm ∫

Ω

[p(ω)− q(ω)]2µ(dω) (12)

depends on the choice of dominating measure µ. It may happen that upon change
of measure the finite norm of the difference becomes infinite, when at the same time
(5) and (8) remain unchanged. Nevertheless for some classes of prior distributions
P it is possible to obtain quasi-invariance by using a set of equivalent L2 norms. We
will consider this approach a bit later.

3. L2 NORM AND EXPONENTIAL DENSITY ESTIMATION APPROACH

Regardless of the lack of invariance the L2 approach is convenient as it allows to de-
sign simple density estimates and analysis of those is straightforward. For instance
projection-based density estimates are intrinsically related to L2 norms. These es-
timates were introduced in 1958 by Cencov and further investigated in [4, 17]. As
shown experimentally by Statultavicius [37] the projection approach is more effi-
cient by an order of magnitude than the Rosenblatt–Parzen kernel approach with
a fixed kernel and storage requirements are of order of magnitude less demanding.
Projection techniques as well as kernel methods with non-positive kernels also suf-
fer from serious problems, namely the plug-in partial Fourier series estimate may
assume negative values and the projected density estimate may turn out not to be
a density. Naturally one may set negative parts to zero and normalize the resulting
estimate so that its integral is one. As Devroye and Györfi have shown [15, p. 269]
this leads to reduction of L1 error, but the simplicity of the projection approach and
its low memory requirements are lost. Thus need arises for an equivariant approach.
The essential requirement is attainment of good precision. It is well-known that the
histogram and kernel approaches with positive kernels converge weakly to densities
in C(2) with the rate N−2/5.
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An exponential density estimation approach proposed by Stratonovich [38] and
Cencov [8] is free of these deficiencies. The idea is not to estimate a density directly
but its logarithm instead. Since the integral of p0(ω) exp[sjqj(ω)] need not be a unit
integral we need to normalize it yielding

p(ω; s) = p0(ω) exp[sjqj(ω)−Ψ(s)], (13)

Ψ(s) = ln
∫

Ω

exp[sjqj(ω)]p0(ω)µ(dω), (14)

where Ψ(s) is the logarithm of the normalizing factor. Equation (13) is valid when
(14) is finite. It is easy to show that Ψ(s) is convex and consequently the set
{s : Ψ(s) < ∞} is convex (possibly empty).

Thus we have designed an exponential family ρ of densities with canonical param-
eter s and domain Dom γ = {s : Ψ(s) < ∞}. Naturally canonical parametrization
is determined up to affine transformations of parameters and statistics qj(ω).

The exponential families are popular in mathematical statistics (and statistical
physics). For more detailed account refer to [2, 6, 8]. Introduce a vector function

t = T(s) =
∫

Ω

q(ω)p(ω; s)µ(dω). (15)

It is well-known that one-to-one and analytical vector function T(s) = grad Ψ(s)
inside the region Dom γ is the Legendre transformation such that

s = grad[sj(t)tj −Ψ(s(t))].

The dependence between s and t is a bit more complex on the boundary of Dom γ,
see [8]. The parameter t will be called a natural parameter of the exponential family.
There exists a simple estimate for this parameter

t∗ = N−1[q(ω1) + . . . + q(ωN )]. (16)

This estimate is efficient, i. e. its Fisher information inequality becomes equality.
The converse is also true: if parameters of the family have efficient estimates then
the family is exponential. The most complicated aspect of the estimation procedure
is derivation of s∗ corresponding to t∗ as the probability density is defined via s.
However, this difficulty is not essential as we need to solve the system of equations
gradΨ(s) = t∗ once at the end. The density p0(ω) is determined up to a multiplica-
tive constant and parameters qj(ω) up to a constant. If we take p0(ω) = p(ω;0),
q(ω) = q(ω;0), where

∫
p(ω;0)q(ω;0) dµ = 0, then Ψ(s) = H(Ps, P0), where en-

tropy is given by (8) and

p(ω; s) = p(ω;0) exp[sjqj(ω;0)−H(Ps, P0)]. (17)

Compare (17) with the multivariate gaussian density with identity covariance matrix
and mean vector s

p(x, s) = p(x,0) exp[sjxj − (s, s)/2]. (18)
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We can draw two conclusions. First, we see that the gaussian family is a unique
family with canonical parametrization corresponding to natural parametrization [8].
For instance in statistical physics a natural parameter temperature t = s−1. Second,
the relative entropy is generalization of the L2 distance. The analogy goes so far
that for the relative entropy non-symmetric Pythagoras theorem holds, see [7].

Theorem 4. If Pσ = arg minsH(R,Ps), where γ = {Ps} is an exponential family,
σ ∈ Int Dom γ then

H(R,Ps) = H(R,Pσ) +H(Pσ, Ps) ∀ s ∈ Dom γ. (19)

When parameters qj(ω;0) in (17) are bounded then the additional condition on σ
can be dropped.

Laplace suggested to measure the loss by a distance between the estimate and
the true value of a parameter. Gauss noted that theory is significantly simplified
for the squared error loss function [30]. For non-gaussian distributions it is natural
to take the loss L = 2H(P ∗, Pθ) instead of any L2(µ) norm dependent on µ. The
main goal of a statistician is to choose a priori reasonable families guaranteeing good
rates of convergence of loss functions (maximum risk, Bayes risk, etc.) Note that
unlike the L1 approach pointwise estimation problem with entropy loss function for
all dominating subsets Capd(E , E∗, Z) is already ill-conditioned, see [11, Theorem 6].

We have already observed that density estimates in general are not uniformly
consistent [11]. Uniformly consistent estimates can only be constructed for a narrow
class P of distributions. First of all one has to assume that

C−1 ≤ dQ

dP
(ω) ≤ C, ∀ω ∈ Ω, ∀P,Q ∈ P, (20)

for some positive constant C. Observe that condition (20) is rather strong. All
Lp(R) norms, 1 ≤ p < ∞, R ∈ P define the unique topology on P and all L2

norms are equivalent when R ∈ P. In light of quasi-invariance of measures we can
derive lower bounds for density estimates and we can get efficient algorithms [8, 21].
Unfortunately the family of distributions satisfying (20) is quite small. For instance
it does not contain gaussian distributions (18).

If we replace the L2(R) norm in the definition of the loss function by the entropy
for which the following always holds

H(P,Q) ≤ ||P −Q||2P . (21)

A family P is quasi-homogeneousness if

C−1 ≤ DR′

[
ln

dP

dQ
(ω)

]
/DR′′

[
ln

dP

dQ
(ω)

]
≤ C (22)

for some fixed constant C and any P,Q,R′, R′′ ∈ P, where DR is the differentiation
operator, see [8]. This condition is locally satisfied by the regular smooth families
in the Cramér–Rao sense. Following [8] we recall a basic result of the optimal
estimation theory.
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Theorem 5. Let {Pθ, θ ∈ Θ} be a compact smooth family of probability distribu-
tions and let Θ be a closed region in Rd. Then for L(θ, P ∗) = 2H(P ∗, P )

lim
N→∞

N · inf
M(N)

sup
θ∈Θ

RM(N)(θ) = dim Θ, (23)

where we do not have to restrict ourselves to estimates P ∗ ∈ {Pθ} and the maximum
likelihood estimate Π(N) is asymptotically optimal

sup
θ∈Θ

|N · RΠ(N)(θ)− dim Θ| → 0, as N →∞. (24)

One may interpret the maximum likelihood estimate as an estimate obtained by
minimizing the relative entropy, see [20, 26] and also [8].

Combining Theorem 4 and Theorem 5 Cencov [8] developed theory of almost
optimal nonparametric density estimation (specifically countably parametric) for
quasi-homogeneous families with properly decreasing information width. As we have
already seen Cencov approach is close to the L2 approach and coincides with it at the
stage of constructing averages of basis (control) functions qj(ω), however it differs
in “interpretation” of the constructed averages (both approaches are equivalent only
for histograms). For details the reader is referred to [8]. Thus it appears to Cencov
that thanks to its equivariance the exponential approach to density estimation has
no less potential than traditional methods discussed in Nadaraya [34] or smoothing
kernel and orthogonal series approaches discussed in the book of Devroye and Györfi.

4. CONCLUSIONS

We have translated into English Cencov’s comments to the Russian translation of
the monograph by Devroye and Györfi [15] and complemented it by the remarks on
the related results concerning the variational distance, φ-divergences and relative
entropy. Cencov used decision theory and the framework of inverse problems in
statistics to which he substantially contributed over the years, see [8] to justify the
validity of L1 approach to density estimation taken by the authors of [15] and its
advantage over L2 approach. He also described an exponential density estimation
approach and showed its many interesting properties by exploiting its relation to
the well-known family of exponential distributions.

(Received October 18, 2010)
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