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ROBUST COORDINATION CONTROL OF SWITCHING
MULTI-AGENT SYSTEMS VIA OUTPUT REGULATION
APPROACH
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In this paper, the distributed output regulation problem of uncertain multi-agent sys-
tems with switching interconnection topologies is considered. All the agents will track or
reject the signals generated by an exosystem (or an active leader). A systematic distributed
design approach is proposed to handle output regulation via dynamic output feedback with
the help of canonical internal model. With common solutions of regulator equations and
Lyapunov functions, the distributed robust output regulation with switching interconnec-
tion topology is solved.
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1. INTRODUCTION

Recently, control and analysis of multi-agent dynamics have become a very active
area in current science and technology in order to reveal tremendous and striking
features/dynamics. Coordination of multi-agent networks has been widely studied,
including consensus, formation, flocking, and coverage, and leader-follower coordi-
nation is an important problem [6, 10, 14, 16, 17].

On the other hand, the robust output regulation problem has been extensively
studied for its strong theoretical and practical background. It is mainly concerned
with designing a control law for an uncertain plant such that the closed-loop system
satisfying the stability and asymptotically tracking a class of reference inputs in
the presence of a kind of disturbances. Note that both the reference inputs and
disturbances are generated by an autonomous differential equation called exosystem.
A significant result on linear systems is the internal model principle which enables the
conversion of the output regulation problem into an eigenvalue placement problem
for an augmented linear system (referring to [2, 21]). Then many significant results
were obtained for nonlinear systems ([1, 11]). For example, the so-called canonical
internal model based on the notion of the steady-state generator was introduced for
converting the robust output regulation problem of the considered nonlinear system
into a robust stabilization problem of an augmented system [11, 15].
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Distributed output regulation (DOR) of multi-agent systems extends the leader-
follower problem with various practical applications including active leader following
model and multi-agent synchronization with complex dynamics or environmental
inputs ([4, 12, 17, 19]). In fact DOR has been studied from different viewpoints.
Simple approaches based on distributed estimation for special class of multi-agent
system (see [6, 8, 10]). A systematical approach is based on internal model to deal
with general models. In fact, conventional internal model has been used in the
distributed output regulation problem for multi-agent systems with fixed topologies
[12, 19]. Unfortunately, this method based on conventional internal model failed to
deal with linear multi-agent systems under switching topology.

The distributed robust output regulation can be viewed as a general framework
of the conventional leader-following problem of multi-agent systems: (i) the inter-
connection topology is switching but keeps connected; (ii) the system contains un-
certainties; (iii) the dynamic of the leader (or the exosystem) is different from the
dynamics of the follower agents; (iv) there are unmeasurable variables for the ex-
osystem and each agent and distributed dynamic output feedback is designed. Our
contribution is threefold compared with [12, 19]. First, we consider uncertain linear
multi-agent systems with general interaction topologies. Second, switching topology
is considered here. In practice, switching topology is more realistic. To deal with
switching interaction topologies, the constructed feedback law in [19] based on con-
ventional internal model failed. Here, using the canonical internal model [11, 15],
we can design a distributed dynamic feedback law to solve the output regulation
problem.

This paper is organized as follows. In Section 2, problem formulation of dis-
tributed output regulation of multi-agent systems is introduced, along with prelimi-
nary knowledge. The existence of canonical internal model is shown for multi-agent
systems in Section 3. Then in Section 4, a general design procedure is proposed
based on canonical internal model. Finally, the concluding remarks are given in
Section 5.

2. PROBLEM FORMULATION

In this section, the problem formulation along with preliminary knowledge is intro-
duced.

First of all, we introduce some basic concepts and notations in graph theory
(referring to [5] for details). A digraph is denoted as G = (O, E), where O =
{1, 2, · · · , κ} is the set of nodes and E is the set of edges. (i, j) ∈ E denotes an edge
leaving from node i and entering into node j if node i can get information from
node j. In this case node j is said to be a neighbor of node i. The special case of
digraph is undirected graph if (i, j) ∈ E once (j, i) ∈ E . A path in digraph G is an
alternating sequence i1e1i2e2 · · · ek−1ik of nodes ij and edges ej = (ij , ij+1) ∈ E for
j = 1, 2, · · · , k − 1. If there exists a path from node i to node j, then node j is said
to be reachable from node i. A node which is reachable from every other node of G
is called a globally reachable node of G.

Here we consider a system consisting of κ agents and a leader (denoted as node 0).
The corresponding digraph is denoted as Ḡ. Regarding the κ agents as the nodes,
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the relationships between κ agents can be conveniently described by an undirected
graph G0 which is a subgraph of Ḡ. Ni (i = 1, . . . , κ) is called the neighbor set of
agent i. The weighted adjacency matrix of G0 is denoted as A0 = (aij)κ×κ ∈ Rκ×κ,
where aii = 0 and aij ≥ 0 (aij > 0 if there is an edge from agent i to agent j). Its
degree matrix D0 = diag{ā0

1, . . . , ā
0
κ} ∈ Rκ×κ is a diagonal matrix, where diagonal

elements ā0
i =

∑κ
j=1 aij for i = 1, . . . , κ. Then the Laplacian of the weighted graph

is defined as L = D0 −A0.
Furthermore, let us consider the digraph Ḡ contains κ agents and the leader with

directed edges from some agents to the leader by the connection weights ai0 > 0 if
agent i can get information from the leader, otherwise ai0 = 0 (note that Ḡ is directed
though G0 is undirected). Set an κ × κ diagonal matrix A0 = diag{a10, . . . , aκ0}.
Define a matrix H = L + A0 to describe the connectivity of the whole graph Ḡ.
Obviously, we have H1 = A01.

The following lemma is about the matrix H ([6]).

Lemma 2.1. H is positive definite if and only if node 0 is globally reachable in Ḡ.

In this paper, the multi-agent output regulation is considered with switching
interaction topologies. To be strict, suppose that there is an infinite sequence of
bounded, non-overlapping, contiguous time-intervals [ti, ti+1), i = 0, 1, · · · , starting
at t0 = 0. To avoid infinite-switching within finite time interval and related non-
smooth description, as usual, we assume that there is a constant τ0 > 0, often
called dwell time, with ti+1 − ti ≥ τ0, ∀i. Denote S = {Ḡ1, Ḡ2, · · · , Ḡµ} as a set
of the graphs with all possible interconnection topologies satisfying node 0 (the
leader) is globally reachable in Ḡ. Take P = {1, 2, · · · , µ} as its index set. To
describe the variable interconnection topology with a given dwell time, we define a
switching signal σ : [0,∞) → P, which is piecewise-constant. Therefore, Laplacian
Lσ associated with the switching interconnection graph Gσ and A0,σ associated
with the connections between agents and the leader are time-varying (switched at
ti, i = 0, 1, · · · ). Obviously, Hσ = Lσ +A0,σ is also time-varying. However, Lp, A0,p

and Hp are time-invariant matrices noting that Ḡp (p ∈ P) is the graph during the
time interval [ti, ti+1).

Here the exosystem (or the leader) in the output regulation problem is expressed
as

v̇ = Γv, y0 = Fv ∈ Rm (1)

where y0 is the output and v ∈ Rq is the exogenous signal representing the distur-
bance input and/or the driving reference signal, while the dynamics of agents are
described by: {

ẋi = A(w)xi + B(w)ui + Ei(w)v
yi = C(w)xi + D(w)ui

i = 1, . . . , κ, (2)

where xi ∈ Rn, yi, ui ∈ Rm are the states, outputs, and control inputs of the agent
i, and w ∈ Rl is the uncertain parameter vector. Ei(w) is an input channel of the
agent i, where the driving force or disturbance v can influence the agent dynamics.
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The regulated output for agent i is denoted as

ei = yi − y0 = C(w)xi + D(w)ui − Fv ∈ Rm, i = 1, . . . , κ. (3)

The distributed control aim is to make ei(t) → 0, i = 1, . . . , κ as t →∞.
Since not all the agents are connected to the exosystem, and some variables of

the exosystem is unmeasurable, y0 is not available to each agent, and therefore,
ei = yi − y0 cannot be used directly in its design unless agent i is connected to the
exosystem. To achieve the aim, distributed algorithms are made, considering that
each agent receives the external state measurements relative to its neighbors or the
exosystem as follows:

eiv =
∑
j∈Ni

aij(yi − yj) + ai0ei, i = 1, . . . , κ, (4)

which is available to agent i.
Denote

x =

x1

...
xκ

 , z =

z1

...
zκ

 , u =

u1

...
uκ

 , e =

e1

...
eκ

 , E(w) =

E1(w)
...

Eκ(w)

 .

Then the multi-agent systems (1) – (3) become
(

ẋ

v̇

)
=

(
Iκ ⊗A(w) 0

0 Γ

)(
x

v

)
+

(
Iκ ⊗B(w)

0

)
u +

(
E(w)

0

)
v

e = (Iκ ⊗ C(w))x + (Iκ ⊗D(w))u− (1⊗ F )v

(5)

with 1 = (1 · · · 1)T ∈ Rκ.
The distributed control law for agent i mainly uses the information of eiv.
In what follows, the distributed control laws are taken in the following dynamic

form: {
ui = Kzzi

żi = Ezzi + Eeeiv

i = 1, . . . , κ, (6)

where zi ∈ Rnz with the dimension nz to be specified later.
Then the closed-loop system can be rewritten as{

ẋc = Aσ
c (w)xc + Bσ

c (w)v
e = Cc(w)xc −Dcv

xc =
(

x
z

)
(7)

where

Aσ
c (w) =

(
Iκ ⊗A(w) Iκ ⊗ (B(w)Kz)

Hσ ⊗ (EeC(w)) Iκ ⊗ Ez + Hσ ⊗ (EeD(w)Kz)

)
, (8)

Bσ
c (w) =

(
E(w)

(Hσ1)⊗ (EeF )

)
,

Cc(w) =
(
Iκ ⊗ C(w) Iκ ⊗ (D(w)Kz)

)
, Dc = 1⊗ F.

The following definition mainly follows the conventional linear system in [11].
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Definition 2.2. The distributed robust output regulation (DROR) problem is
achieved for the system consisting of (2) and (1) under (6) if, for any initial condition
col(x1(0), . . . , xκ(0)), and all sufficiently small parameter perturbation w,

1) the closed-loop system (7) is asymptotically stable with v = 0;

2) for any initial condition v(0),

lim
t→+∞

ei(t) = 0, i = 1, . . . , κ. (9)

In the following, we will list the assumptions for system (7) in the study of its
distributed robust output regulation. For simplicity, denote

(A,B, C, D, Ei) = (A(0), B(0), C(0), D(0), Ei(0)).

Assumption 2.3. Node 0 (the exosystem) is always globally reachable in Ḡσ(t).

Assumption 2.3 is given to describe the connectivity of the switching intercon-
nection topology in order to ensure that the information of the leader (node 0) can
be spread to all the agents somehow. The next assumption, which is widely used for
simplicity in output regulation design, is given for the exosystem (1).

Assumption 2.4. The real parts of the eigenvalues of matrix Γ defined in (1) are
nonnegative.

The following are standard assumptions for output regulation via output feed-
back.

Assumption 2.5. The pair (A,B) is stabilizable.

Assumption 2.6. The pair (C,A) is detectable.

Assumption 2.7. The rank condition

rank

(
A− λI B

C D

)
= n + m,λ ∈ Λ(Γ)

holds, where Λ(Γ) denotes the spectrum of Γ.

3. INTERNAL MODEL AND CONTROL DESIGN

Conventional internal model was applied to linear multi-agent systems with fixed
topologies [12, 19]. However, it does not work for many nonlinear systems and
multi-agent systems with switching topologies. To solve the problem, we employ a
generalized internal model, called canonical internal model, which has been widely
used for nonlinear systems ([11, 13, 15]).

Recalling [11], Assumption 2.7 can guarantee the solvability of regulator equation:{
Xi(w)Γ = A(w)Xi(w) + B(w)Ui(w) + Ei(w)
C(w)Xi(w) + D(w)Ui(w) = F

(10)
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i = 1, . . . , κ, for any matrices Ei(w), F . Denote the solution of (10) is Xi(w), Ui(w),
i = 1, . . . , κ.

Let us first introduce the steady-state generator ([15]).

Definition 3.1. The multi-agent systems consisting of (2), (3) and (1) is said to
have a steady-state generator with output ui = Ui(w)v, i = 1, . . . , κ, if there is a
triple matrix {Θi,Υi,Ξi}, i = 1, . . . , κ, where Θi ∈ Rs×q, Υi ∈ Rs×s and Ξi ∈ Rm×s

for some integer s, such that, for all w ∈ W, some neighborhood of the origin of Rl,

Θi(w)Γ = ΥiΘi(w), Ui(w) = ΞiΘi(w), i = 1, . . . , κ. (11)

If, in addition, the pair (ΞiΘi,ΥiΘi) is observable for i = 1, . . . , κ, then the system
is said to have an observable steady-state generater with output ui = Ui(w)v, i =
1, . . . , κ.

The definition of canonical internal model is introduced as follows.

Definition 3.2. Under Assumptions 2.4 and 2.7, suppose the multi-agent systems
(2), (3) and (1) has a steady-state generator {Θi,Υi,Ξi} with output ui = Ui(w)v, i =
1, . . . , κ. Then we call the following system:

η̇i = Mηi + Mgui, i = 1, . . . , κ (12)

a canonical internal model (candidate) of (2), (3) and (1) with output ui if

MΘi(w) + MgUi(w) = ΥiΘi(w). (13)

Note that the distributed internal model takes the same form for all the agents
(that is, M and Mg are independent of i). The internal model candidate (12) is a
system which asymptotically approaches the steady-state generator (11).

Remark 3.3. In fact, the conventional internal model given in [2] only contains the
information of the exosystem without information of the controlled systems, while
the canonical internal model [11, 15] contains the information of both the exosystem
and the controlled systems. Therefore, the canonical internal model is more powerful
than conventional internal model in control design.

The following lemma shows the existence of an observable steady-state generator
and a canonical internal model candidate for the multi-agent systems consisting of
(2), (3) and (1).

Lemma 3.4. Under Assumptions 2.4 and 2.7, it is always possible to find an ob-
servable steady-state generator and an internal model candidate with output ui =
Ui(w)v, i = 1, . . . , κ for the multi-agent systems (2), (3) and (1), independent of any
switching σ(t).

P r o o f . Denote the minimal polynomial of Γ as

poly(Γ) = λr + γ1λ
(r−1) + · · ·+ γ(r−1)λ + γr,
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and then

Θ̃i(w) = T


Ui(w)
Ui(w)Γ

...
Ui(w)Γr−1

 , i = 1, . . . , κ, (14)

where Ui(w), i = 1, . . . , κ are the solution of (10) and T is a nonsingular matrix to
be defined. Take

Φ̃ =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 1
−γr −γ(r−1) · · · −γ2 −γ1

 , Ψ̃ =


1
0
...
0
0


T

,

Φ = blockdiag(Φ̃, . . . , Φ̃︸ ︷︷ ︸
m

), blockdiag(Ψ̃, . . . , Ψ̃︸ ︷︷ ︸
m

). (15)

Therefore, the systems (2), (3) and (1) has a linearly observable steady-state gener-
ator {Θi,Υ,Ξ} with output ui as follows:

Θi(w) = (Θ̃T
i (w), · · · , Θ̃T

i (w)︸ ︷︷ ︸
m

)T

Υ = TΦT−1

Ξ = ΨT−1

(16)

Then we propose a special class of internal model candidate based on the constructed
steady-state generator (16).

Pick any controllable pairs M̃ ∈ Rr×r and M̃g ∈ Rr×1 with M̃ Hurwitz and has
disjoint spectra with Φ̃. Set

M = blockdiag(M̃, . . . , M̃︸ ︷︷ ︸
m

), blockdiag(M̃g, . . . , M̃g︸ ︷︷ ︸
m

),

and then we claim that

η̇i = Mηi + Mgui, ηi ∈ Rmr (17)

is an internal model candidate of (2), (3) and (1) with output ui, i = 1, . . . , κ.
Since the spectra of the matrices Φ̃ and M̃ are disjoint, and (Ψ̃, Φ̃) is observable,

according to Proposition A.2 in [11], there exists a unique and nonsingular matrix
T̃ satisfying the following Sylvester equation:

T̃ Φ̃− M̃T̃ = M̃gΨ̃. (18)
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Set T = blockdiag(T̃ , . . . , T̃︸ ︷︷ ︸
m

), and then for i = 1, . . . , κ

MΘi(w) + MgUi(w)
= MΘi(w) + MgΨT−1Θi(w)
= TΦT−1Θi(w)
= ΥΘi(w).

Therefore, (17) is an internal model candidate of (2), (3) and (1) with output ui for
i = 1, . . . , κ. �

From Lemma 3.4, systems (2), (3) and (1) has an observable steady-state gener-
ator (16) and an internal model candidate (17) with output ui, i = 1, . . . , κ. Then
we obtain an augmented system:

ẋi = A(w)xi + B(w)ui + Ei(w)v
η̇i = Mηi + Mgui

ei = C(w)xi + D(w)ui − Fv

i = 1, . . . , κ. (19)

To solve the DROR of the switching multi-agent systems (2), (3) and (1), we
construct the following observer-based feedback:

ui = ΨT−1ηi + Kξξi

η̇i = Mηi + Mg(ΨT−1ηi + Kξξi)
ξ̇i = (Aξ + BξKξ)ξi + Lξ(eiv − êiv)

(20)

where

Aξ(w) =
(

A(w) B(w)ΨT−1

0 M + MgΨT−1

)
, Aξ = Aξ(0), (21)

Bξ(w) =
(

B(w)
Mg

)
, Bξ = Bξ(0), (22)

and

êiv =
∑
j∈Ni

aij(C(w)ξi1 + D(w)(ΨT−1ξi2 + Kξξi))

−
∑
j∈Ni

aij(C(w)ξj1 + D(w)(ΨT−1ξj2 + Kξξj))

+ ai0(C(w)ξi1 + D(w)(ΨT−1ξi2 + Kξξi)), (23)

with col(ξi1, ξi2) = ξi, i = 1, . . . , κ as the estimation of col(xi, ηi), i = 1, . . . , κ
and the feedback gain matrices Kξ, Lξ to be determined later (in the next section).

It is not hard to obtain the following formula:

eiv − êiv =
∑
j∈Ni

aij(C(w)(xi − ξi1 − xj + ξj1) + D(w)ΨT−1(ηi − ξi2 − ηj + ξj2))

+ ai0(C(w)(xi − ξi1) + D(w)ΨT−1(ηi − ξi2)− Fv). (24)
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Then the augmented multi-agent system (19) under observer-based feedback (20)
becomes 

ẋi = A(w)xi + B(w)(ΨT−1ηi + Kξξi) + Ei(w)v
η̇i = Mηi + Mg(ΨT−1ηi + Kξξi)
ξ̇i = (Aξ + BξKξ)ξi + Lξ(eiv − êiv)
ei = C(w)xi + D(w)(ΨT−1ηi + Kξξi)− Fv

i = 1, . . . , κ (25)

4. DISTRIBUTED DESIGN FOR SWITCHING CASES

Both state and output feedback laws based on conventional internal model were pro-
posed to solve the distributed output regulation problem of heterogeneous agents for
a specific fixed topology [19], but the method cannot be extended to deal with dis-
tributed output regulation problem in the case of switching interaction topologies.
Here we proposed a distributed dynamic output feedback (20) to solve the robust
regulation problem of linear multi-agent systems with switching connected topolo-
gies, with the help of a canonical internal model.

For the following analysis, we introduce a lemma, whose different versions can be
found in many books (for example [21]).

Lemma 4.1. Consider system ẋ = Ãx + B̃u ∈ Rn, y = C̃x, if (C̃, Ã) is detectable
and matrices M̂, M̃ are positive definite, then there is a unique positive definite
matrix P to satisfy the Riccati equation:

PÃT + ÃP − PC̃T M̂−1C̃P + M̃ = 0.

Furthermore, ÃT − C̃T M̂−1C̃P is stable.

The next lemma was given in [9], to check the positive definiteness of a matrix.

Lemma 4.2. Suppose that a symmetric matrix is partitioned as

R0 =
(

R1 R2

RT
2 R3

)
where R1 and R3 are square. R0 is positive definite if and only if both R1 and
R3 −RT

2 R−1
1 R2 are positive definite.

Recalling (25), let xc = col(x1, η1, x2, η2, . . . , xκ, ηκ, ξ1, . . . , ξκ), and then we have
the closed-loop system consisting of (2) and (1) under the feedback (20) as follows:{

ẋc = Aσ
c (w)xc + Bσ

c (w)v
e = Cc(w)xc −Dcv

(26)

with

Aσ
c (w) =

(
Iκ ⊗Aξ(w) Iκ ⊗ (Bξ(w)Kξ)

Hσ ⊗ (LξCξ(w)) Iκ ⊗ (Aξ + BξKξ)−Hσ ⊗ (LξCξ(w))

)
, (27)
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Aξ(w), Bξ(w) are defined in (21), (22), respectively,

Cξ(w) =
(
C(w) D(w)ΨT−1

)
, (28)

and

Bσ
c (w) =



E1(w)
0
...

Eκ(w)
0

−Hσ ⊗ (LξF )


,

Cc(w) =
(
Iκ ⊗ Cξ(w) Iκ ⊗ (D(w)Kξ)

)
, Dc = 1⊗ F.

At first, we prove the existence of the common regulation matrix Xc(w) as the
solution of regulator equation:{

Xc(w)Γ = Aσ
c (w)Xc(w) + Bσ

c (w)
Cc(w)Xc(w) = Dc

(29)

for system (26).

Theorem 4.3. There is a common regulation matrix Xc(w) for the closed-loop
system (26), independent of the topology switching.

P r o o f . Set

Xc(w) =



X1(w)
Θ1(w)

...
Xκ(w)
Θκ(w)

0
...
0


, (30)

where Xi(w), i = 1, . . . , κ are the solution of the regulator equation (10), which is
guaranteed by Assumption 2.7 and Θi(w), i = 1, . . . , κ are defined in (16). From
(10), Xi(w), Ui(w), i = 1, . . . , κ, only based on A(w), B(w), C(w), D(w), Ei(w), F (w),
are independent of σ(t). According to (14) and (16), Θi(w), i = 1, . . . , κ are
also independent of σ(t). Therefore, Xc(w) is independent of σ(t). In the fol-
lowing we will show Xc(w) is the solution of the regulator equation (29) with
Aσ

c (w), Bσ
c (w), Cc(w), Dc defined in (26). Since Xi(w), i = 1, . . . , κ are the

solution of the regulator equation (10),

Xi(w)Γ = A(w)Xi(w) + B(w)Ui(w) + Ei(w), i = 1, . . . , κ.
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From the proof of Lemma 3.4, we have

Ui(w) = ΨT−1Θi(w), i = 1, . . . , κ.

Then

Xi(w)Γ = A(w)Xi(w) + B(w)ΨT−1Θi(w) + Ei(w), i = 1, . . . , κ. (31)

According to the proof of Lemma 3.4, we have

(M + MgΨT−1)Θi(w) = TΦT−1Θi(w), i = 1, . . . , κ, (32)

bringing
Θi(w) = (Θ̃T

i (w), · · · , Θ̃T
i (w)︸ ︷︷ ︸

m

)T , i = 1, . . . , κ,

Θ̃i(w) = T


Ui(w)
Ui(w)Γ

...
Ui(w)Γr−1

 , i = 1, . . . , κ

into the right side of (32).
Note that

Φ


Ui(w)
Ui(w)Γ

...
Ui(w)Γr−1

 =


Ui(w)Γ
Ui(w)Γ2

...
Ui(w)Γr

 , i = 1, . . . , κ.

Thus
Θi(w)Γ = (M + MgΨT−1)Θi(w), i = 1, . . . , κ. (33)

Recalling Xi(w), i = 1, . . . , κ are the solution of the regulator equation (10), and
Ui(w) = ΨT−1Θi(w), i = 1, . . . , κ, thus

Cξ(w)
(

Xi(w)
Θi(w)

)
− F = 0, i = 1, . . . , κ, Cξ(w) =

(
C(w) D(w)ΨT−1

)
.

Then

Hσ ⊗ (LξCξ(w))


X1(w)
Θ1(w)

...
Xκ(w)
Θκ(w)

−Hσ ⊗ (LξF ) = 0. (34)

According to (31), (33) and (34), Xc(w) is the solution of the regulator equation (29)
with Aσ

c (w), Bσ
c (w), Cc(w), Dc defined in (26). �

Then we obtain the distributed output regulation for the switched multi-agent
system (26):
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Theorem 4.4. With Assumptions 2.3-2.7, the distributed robust output regulation
problem of the system consisting of (2), (3) and (1) can be solved by distributed
output feedback (20).

P r o o f . Based on Theorem 4.3, there is a common regulation matrix Xc(w). There-
fore, we only need to find a common Lyapunov function to prove the convergence
for the switched system.

Since(
A− λI BΨT−1 B

0 M + MgΨT−1 − λI Mg

)
=
(

A− λI 0 B
0 M − λI Mg

)I 0 0
0 I 0
0 ΨT−1 I


and M is Hurwitz together with Assumption 2.5, we can get that (Aξ, Bξ) (defined
in (21) and(22)) is stabilizable. Then there exists Kξ such that

Aξ + BξKξ (35)

is stable.
Considering A− λI BΨT−1

0 M + MgΨT−1 − λI
C DΨT−1

 , (36)

it has full rank for all λ ∈̄σ(Φ) due to Assumption 2.6 and the fact that M +
MgΨT−1 = TΦT−1.

Using the decompositionA− λI BΨT−1

0 M + MgΨT−1 − λI
C DΨT−1

 =

A− λI 0 B
0 M − λI Mg

C 0 D

I 0
0 I
0 ΨT−1


and Assumption 2.7, it easily follows that (36) has full rank for all λ ∈ σ(Φ). Thus,

(Aξ, Cξ) , (37)

is detectable, where Cξ = Cξ(0), Cξ(w) is defined in (28). Since (37) is detectable,
according to Lemma 4.1, AT

ξ −CT
ξ CξPξ is stable, where Pξ is the unique solution of

the following Riccati equation

AξPξ + PξA
T
ξ − PξC

T
ξ CξPξ + I = 0. (38)

Set
LT

ξ = max{1,
1
λ̄
}CξPξ, (39)

where

λ̄ = min{eigenvalues of Hp ∈ Rκ×κ, p ∈ P, Assumption 2.3 holds}. (40)
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Under Assumption 2.3, according to Lemma 2.1, all eigenvalues of the matrices
Hp (p ∈ P) are positive. Moreover, since the set P is finite, λ̄ > 0 is fixed.

Obviously,
˙̄xc = Aσ

c (w)x̄c, x̄c = xc −Xc(w)v, (41)

where Aσ
c (w) is defined in (27).

In what follows, we will show limt→∞ x̄c(t) = 0 in some open neighborhood W
around w = 0. To this end, we will show there is a common Lyapunov function for
system (41) with w ∈ W .

Let Tσ be an orthogonal transformation such that Uσ = TσHσT−1
σ is a diagonal

matrix with the eigenvalues of Hσ along the diagonal. Clearly, Tσ ⊗ Iκ transforms
Hσ ⊗ Iκ into Uσ ⊗ Iκ. Setting

x̃c =
(

I 0
0 Tσ ⊗ Iκ

)(
I 0
−I I

)
x̄c,

we obtain
˙̃xc =(

Iκ ⊗ (Aξ(w) + Bξ(w)Kξ) Iκ ⊗ (Bξ(w)Kξ)
Iκ⊗[Aξ+BξKξ−Aξ(w)−Bξ(w)Kξ] Iκ⊗[Aξ+(Bξ−Bξ(w))Kξ]−Uσ⊗(LξCξ(w))

)
x̃c.

(42)
Set x̃c = (x̃c1, . . . , x̃cκ)T , and then (42) becomes

˙̃xci =
(

Aξ(w) + Bξ(w)Kξ Bξ(w)Kξ

Aξ + BξKξ −Aξ(w)−Bξ(w)Kξ Aξ + (Bξ −Bξ(w))Kξ − λiσLξCξ(w)

)
x̃ci,

for i = 1, . . . , κ,, where λiσ is the ith eigenvalue of Hσ.
Since (35) is stable, there exists an open neighborhood W1 of w = 0 such that

for each w ∈ W1, Aξ(w)+Bξ(w)Kξ is stable. Therefore, there exist positive definite
matrices P∗(w) and Q∗(w) such that for each w ∈ W1,

P∗(w)(Aξ(w) + Bξ(w)Kξ) + (Aξ(w) + Bξ(w)Kξ)T P∗(w) = −Q∗(w).

From (37) and Lemma 4.1, all real parts of the eigenvalues of Aξ − λ(Hσ)LξCξ

(Lξ defined in (39)) are negative, since AT
ξ − αCT

ξ CξPξ, (Pξ defined in (38)) are so
for any α ≥ 1, where λ(Hσ) denotes any eigenvalue of matrix Hσ.

Set Āξ(w) = Aξ + (Bξ −Bξ(w))Kξ − λ(Hσ)LξCξ(w). Then

PξĀ
T
ξ (w) + Āξ(w)Pξ

= −I + PξC
T
ξ CξPξ

− 2λ(Hσ) max{1,
1
λ̄
}PξC

T
ξ CξPξ

+ λ(Hσ) max{1,
1
λ̄
}Pξ(Cξ − Cξ(w))T CξiPξ

+ λ(Hσ) max{1,
1
λ̄
}PξC

T
ξ (Cξ − Cξ(w))Pξ

+ Pξ[Bξ −Bξ(w))Kξ]T + [Bξ −Bξ(w))Kξ]Pξ.
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Due to Cξ = Cξ(0), Bξ = Bξ(0), there exists an open neighborhood W2 of w = 0
such that, for each w ∈ W2

λ(Hσ) max{1,
1
λ̄
}Pξ(Cξ − Cξ(w))T CξPξ

+λ(Hσ) max{1,
1
λ̄
}PξC

T
ξ (Cξ − Cξ(w))Pξ

+Pξ[Bξ −Bξ(w))Kξ]T + [Bξ −Bξ(w))Kξ]Pξ

≤ I/2.

Therefore,

PξĀ
T
ξ (w) + Āξ(w)Pξ ≤ −I/2− PξC

T
ξ CξPξ, w ∈ W2,

which implies that

P−1
ξ Āξ(w) + ĀT

ξ (w)P−1
ξ ≤ −Qξ, Qξ := −(P−1

ξ )2/2− CT
ξ Cξ, w ∈ W2, (43)

where Qξ is obviously positive definite.
Take a Lyapunov function for system (41):

V (x̄c) = x̄T
c JT

c (Iκ ⊗ P (w))Jcx̄c = x̂T
c (Iκ ⊗ P (w))x̂c, (44)

where

P (w) =
(

P∗(w)/$ 0
0 Pξ

)
with $ > 0 to be determined. Clearly, V keeps unchanged with switching signal
σ, which is a candidate of a common Lyapunov function independent of switching.
Moreover,

V = x̂T
c (Iκ ⊗ P (w))x̂c = x̃T

c (Iκ ⊗ P (w))x̃c =
κ∑

i=1

x̃T
ciP (w)x̃ci

because TT
σ = T−1

σ .
The interconnection graph associated with Hp, p ∈ P is unchanged and connected

on an interval [ti, ti+1). Therefore, Ap
c(w) is constant in the interval. Consider the

derivative of V with t ∈ [ti, ti+1):

V̇ |(42) = −
κ∑

i=1

x̃T
ciQ̃(w)x̃ci, (45)

where

Q̃(w) =
(

Q∗(w)/$ Π(w)
ΠT (w) Qξ

)
,

Π(w) = P∗/$(BξKξ)+(Aξ+BξKξ−Aξ(w)−Bξ(w)Kξ)T Pξ.
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From Lemma 4.2, the positive definite of Q̃(w) can be guaranteed by the positive
definiteness of the matrices

Q∗(w)/$, Qξ −$ΠT (w)Q−1
∗ (w)Π(w).

Note that the positive definiteness of

Q̃ξ = Qξ −
1
$

[P∗(BξKξ)]T Q−1
∗ (w)[P∗(BξKξ)]

can be obtained when $ is sufficiently large. Then, due to Aξ + BξKξ = Aξ(0)
+Bξ(0)Kξ, the local positive definiteness of Qξ−$ΠT (w)Q−1

∗ (w)Π(w) results from

Qξ −$ΠT (w)Q−1
∗ (w)Π(w) = Q̃ξ −

$[(Aξ+BξKξ−Aξ(w)−Bξ(w)Kξ)T Pξ]T Q−1
∗ (w)[(Aξ+BξKξ−Aξ(w)−Bξ(w)Kξ)T Pξ]

with the selected $ and a small open neighborhood W3(⊂ W1 ∩W2) of w = 0 such
that, for any w ∈ W3,

[(Aξ+BξKξ−Aξ(w)−Bξ(w)Kξ)T Pξ]T Q−1
∗ (w)[(Aξ+BξKξ−Aξ(w)−Bξ(w)Kξ)T Pξ]

≤ Q̃ξ

2$
.

Recalling the dwell-time assumption and (45) gives

V̇ ≤ −λ̂V/
√
||P (w)||2, ∀t ≥ 0,

with λ̂ = min{eigenvalues of Q̃(w)}, which implies system (42) is asymptotically
stable for each w ∈ W3. Consequently, system (41) is asymptotically stable for
each w ∈ W3. Moreover, e(t) = Cc(w)x̄c(t) + Cc(w)Xc(w)v − Dcv, which implies
limt→∞ e(t) = limt→∞ Cc(w)x̄c(t) = 0. Thus, the conclusion follows. �

Here is an example for illustration.

Example 1. Consider the exosystem

v̇ = Γv, Γ =


0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

 , v =


v1

v2

v3

v4

 ,

with output y0 = v3 (that is, F =
(
0 0 1 0

)
). and κ agents in the form of

ẋi1 = xi1 + xi2 + v1

ẋi2 = xi3

ẋi3 = −(1 + w)xi1 − xi2 + ui

yi = xi2, i = 1, . . . , κ,
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namely

A(w) =

 1 1 0
0 0 1

−(1 + w) −1 0

 , B(w) =

0
0
1

 , E(w) =

1 0 0 0
0 0 0 0
0 0 0 0

 ,

and C(w) =
(
0 1 0

)
, D(w) = 0.

Obviously, the regulated output ei = yi − y0 = xi2 − v3.
The solution of the regulator equation is

Xi(w) =

− 1
2 − 1

2 0 0
0 0 1 0
0 0 0 2

 , Ui(w) =
(
− 1+w

2 − 1+w
2 −3 0

)
, i = 1, . . . , κ.

With the calculation based on Lemma 3.4, we obtain a steady-state generator
{Θi,Υ,Ξ}

Θi(w) =


− 1+w

2 − 1+w
2 −3 0

1+w
2 − 1+w

2 0 −6
1+w

2
1+w

2 12 0
− 1+w

2
1+w

2 0 24

 , i = 1, . . . , κ, (46)

Φ =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 −5 0

 , Ψ =
(
1 0 0 0

)
.

Note that the eigenvalues of Φ are ±i, ±2i (i2 = −1). Thus the rank condition
holds.

Then we can take

M =


−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

 , Mg =


1
1
1
1

 .

Then the dynamic output feedback in the form (20) solves the robust distributed
output regulation problem of the considered systems, where Kξ and Lξ satisfying
(35) and (39), respectively are given by

Kξ =
(
−7 −6 −4 −15 25 −24 10

)
,

Lξ = max

1,
1

min
i=1,...,κ

Re(λ̄i)

(8.16 6.7461 3.1 13.0285 −22.4252 22.44 −9.2397
)
.

The topology of the multi-agent system with 5 agents switches between the two
given topologies periodically carried out in an alternative order: {G1, G2, G1, . . .}
with switching period t = 10. G1 is a graph with weights a23 = a32 = a14 = a41 =
a34 = a43 = a45 = a54 = a10 = a20 = 1, while other weights as 0. G2 is described
by a23 = a32 = a14 = a41 = a31 = a13 = a52 = a25 = a10 = 1, while other weights
are 0. Figure 1 demonstrates the regulated errors of the five agents.
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Fig. 1. Regulated errors of the agents.

5. CONCLUSIONS

In this paper, we analyzed the distributed robust output regulation problem for a
group of mobile agents with uncertainty and switching topologies. We provided that
sufficient conditions for the convergence of all the agents to the leader by constructing
dynamic feedback with canonical internal model.
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