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ESTIMATORS OF THE ASYMPTOTIC VARIANCE OF
STATIONARY POINT PROCESSES – A COMPARISON

Michaela Prokešová

We investigate estimators of the asymptotic variance σ2 of a d–dimensional stationary
point process Ψ which can be observed in convex and compact sampling window Wn = n W .
Asymptotic variance of Ψ is defined by the asymptotic relation V ar(Ψ(Wn)) ∼ σ2|Wn| (as
n → ∞) and its existence is guaranteed whenever the corresponding reduced covariance

measure γ
(2)
red(·) has finite total variation. The three estimators discussed in the paper are

the kernel estimator, the estimator based on the second order intesity of the point process
and the subsampling estimator. We study the mean square consistency of the estimators.
Since the expressions for the variance of the estimators are not available in closed form
and depend on higher order moment measures of the point process, only the bias of the
estimators can be compared theoretically. The second part of the paper is therefore devoted
to a simulation study which compares the efficiency of the estimators by means of the mean
squared error and for several clustered and repulsive point processes observed on middle-
sized windows.

Keywords: reduced covariance measure, factorial moment and cumulant measures, kernel-
type estimator, subsampling, mean squared error, Poisson cluster process,
hard-core process

Classification: 60G55,62F12

1. INTRODUCTION

In various fields of application statisticians are faced with irregular but in some sense
homogeneous patterns consisting of randomly distributed points or at least point-
like objects which can be observed in a more or less large planar or spatial sampling
window. Stationary point processes provide appropriate models to describe such
phenomena. For a rigorous and detailed introduction in this field we refer the reader
to the two–volume monograph [3] supplemented by the monographs [18] and [11]
where special emphasis is put on statistical analysis of point processes.

Throughout this paper we will denote by Ψ =
∑

i≥1 δXi
a simple stationary point

process on the d–dimensional Euclidean space Rd (equipped with the Euclidean
norm ‖ · ‖ and the corresponding Borel σ–field Bd). Mathematically spoken, Ψ is a
locally finite random counting measure with the discrete random closed set of atoms
{X1, X2, . . .} defined on some common probability space [Ω,A,P] . Since we assume
the process to be simple – i. e. Ψ({x}) ≤ 1 for any location x almost surely, we can
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identify the “atoms” and “points”. Therefore we will speak of “points of Ψ” instead
of “atoms of Ψ” and write “x ∈ Ψ” instead of “Ψ({x}) > 0”.

This simplest numerical characteristic associated with Ψ is its intensity λ defined
as the mean number of points of Ψ per unit volume λ = EΨ([0, 1)d). It is standardly
estimated by λ̂ = Ψ(W )/|W | , where W ⊂ Rd denotes a bounded sampling window
and |W | its volume. We can investigate properties of λ̂ under the increasing domain
asymptotics when we assume observing the process Ψ on a series of bounded (convex)
windows Wn ⊂ Rd which are assumed to expand unboundedly in all directions as
n →∞ .

Under mild mixing conditions (expressible by the reduced covariance measure of
Ψ, see Section 2) the limiting variance of λ̂n = Ψ(Wn)/|Wn| exists:

σ2 := lim
n→∞

|Wn| E(λ̂n − λ)2 = lim
n→∞

Var(Ψ(Wn))
|Wn|

. (1)

The limit (1) is briefly called asymptotic variance of Ψ. Under somewhat stronger
mixing assumptions one can show that

√
|Wn| (λ̂n − λ) converges in distribution to

a Gaussian random variable N (0, σ2) with mean zero and variance σ2 (if σ2 > 0),
see e. g. [6, 10, 12]. This result suggests an asymptotic significance test to check the
hypothetical intensity λ provided that a (weakly) consistent estimator σ̂2

n for σ2 is
available. In a recent paper [7] and the work [4], such estimators are also needed
for testing non–parametric point process hypotheses by using scaled empirical K–
functions or integrated squared error of product density estimators, respectively.
There are other fields of spatial statistics in which asymptotic variances and their
estimation play an important role, see [1, 13].

The problem of estimation of the asymptotic variance was considered in [6], where
a class of kernel estimators σ̂2

n for σ2 was introduced and their L2 consistency proved.
In [9] the asymptotic results were refined by proving a central limit theorem for σ̂2

n

and by obtaining the optimal convergence rates for σ̂2
n by a suitable choice of the

bandwidth in dependence on the tails of the reduced covariance measure γ
(2)
red. Nev-

ertheless estimation of the asymptotic variance is not a simple task and a sufficiently
large amount of data is needed for σ̂2

n to perform reasonably well. This was affirmed
by the simulation study in [9] where the estimation procedure was applied to point
processes of different kinds simulated on medium-sized windows. Alternative meth-
ods for estimating σ2 were also mentioned in [9] but they were not investigated
further.

The main aim of the present paper is to derive the asymptotic properties of the
available estimators of σ2 (σ̂2

n, an alternative estimator from [9] and a subsampling
estimator) and to compare their performance on medium-sized windows by means
of a simulation study. The paper is organised as follows. After reviewing the neces-
sary definitions and background knowledge in Section 2 we introduce the discussed
estimators of σ2 in Section 3 and discuss their consistency. After that Section 4
describes the design and the results of the simulation study.
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2. BACKGROUND

Let us first recall the definitions and relations between factorial moment and factorial
cumulant measures, see [3] for details. The kth-order factorial moment measure α(k)

of Ψ is a locally finite measure on [(Rd)k,Bdk] defined by

∫
(Rd)k

f(x1, . . . , xk) α(k)(d(x1, . . . , xk)) = E
( 6=∑

x1,...,xk∈Ψ

f(x1, . . . , xk)
)

(2)

for any non–negative, Borel measurable function f on (Rd)k , where the sum
6=∑

runs
over k–tuples of distinct points of Ψ . The first-order factorial moment measure α(1)

is called intensity measure and for a stationary (i. e. its distribution is invariant
with respect to simultaneous translations of its points) point process Ψ it holds
α(1)(A) = λ|A| for any A ∈ Bd.

The kth-order factorial cumulant measure γ(k) of Ψ is a locally finite signed
measure on [(Rd)k,Bdk] which is formally connected with the measures α(1), . . . , α(k)

by

γ(k)
( k
×

i=1
Ai

)
=

k∑
j=1

(−1)j−1(j − 1)!
∑

K1∪···∪Kj={1,...,k}

j∏
i=1

α(#Ki)
(
×

ki∈Ki

Aki

)
for bounded A1, . . . , Ak ∈ Bd , where the inner sum is taken over all partitions of
the set {1, . . . , k} in disjoint non–empty subsets K1, . . . ,Kj . In particular, we have
α(1)(A) = γ(1)(A) for A ∈ Bd and

γ(2)(A1 ×A2) = α(2)(A1 ×A2)− α(1)(A1) α(1)(A2) for A1, A2 ∈ Bd .

The second order factorial cumulant measure γ(2) is also called covariance measure
because Cov(Ψ(A1),Ψ(A2)) = γ(2)(A1 ×A2) for any disjoint A1, A2 ∈ Bd.

For a stationary point process Ψ α(k) is invariant under diagonal shifts for any
k ≥ 2 and thus there exists a corresponding reduced kth-order factorial moment
measure α

(k)
red on [(Rd)k−1,Bd(k−1)] which is uniquely determined by the disintegra-

tion formula ∫
(Rd)k

f(x1, . . . , xk)α(k)(d(x1, . . . , xk))

= λ

∫
Rd

∫
(Rd)k−1

f(x1, x2 + x1, . . . , xk + x1) α
(k)
red(d(x2, . . . , xk)) dx1 (3)

where f is as in (2). In the same way we may define the reduced kth-order factorial
cumulant measure γ

(k)
red which turns out to be a signed measure on [(Rd)k−1,Bd(k−1)]

with the Jordan decomposition γ
(k)
red = (γ(k)

red)
+−(γ(k)

red)
− , see e. g.[19] for details. The

corresponding total variation measure |γ(k)
red| = (γ(k)

red)
+ + (γ(k)

red)
− on [(Rd)k−1,Bd(k−1)]

is locally finite, but in general not finite.
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In the special case k = 2 we have γ(2)(· × ·) = α(2)(· × ·)− λ2 | · | | · | and thus we
get γ

(2)
red(·) = α

(2)
red(·)−λ | · | and call γ

(2)
red the reduced covariance measure of Ψ . The

variance Var(Ψ(Wn)) can be expressed by means of this reduced covariance measure
which together with (1) leads to

σ2 = λ + λ lim
n→∞

∫
Rd

|Wn ∩ (Wn − x)|
|Wn|

γ
(2)
red(dx) = λ

(
1 + γ

(2)
red(Rd)

)
,

whenever Wn increases unboundedly in all directions and |γ(2)
red|(Rd) < ∞ . Note

that the latter condition is sufficient but in some exceptional cases not necessary to
ensure the existence of the limit.

The Lebesgue density %(2) of α
(2)
red (if it exists) is called the second–order product

density of Ψ. Further, if Ψ is also isotropic – i. e. its distribution is invariant under
rotations, then %(2)(x) depends only on ‖x‖ and the function g(r) := %(2)(x)/λ for
r = ‖x‖ is called the pair–correlation function of Ψ . In this case

γ
(2)
red(Rd) =

∫
Rd

( %(2)(x)− λ )dx = λ d κd

∫ ∞

0

( g(r)− 1 )rd−1 dr (4)

provided the integrals exist, where κd denotes the volume of the unit ball in Rd.
There is another popular point process characteristic which is closely related with

γ
(2)
red. Namely the K-function

K(r) =
1
λ

(
γ

(2)
red(B(o, r)) + κdr

d
)

, (5)

where B(o, r) denotes the ball centered in the origin o with radius r. Estimators of
the pair-correlation function and the K-function are well investigated (see e. g. [18])
and both the relations (4) and (5) can be used when defining estimators of σ2 as we
will see in the sequel.

The theoretical values of σ2 can be easily obtained for a large class of models,
particularly for any models for which the pair-correlation function or the K-function
is known. Examples of such processes can be found among the processes used for
the simulation study in Section 4. The benchmark value of σ2 = λ is obtained for
the Poisson process for which the complete spatial randomness of this model implies
that γ(k) ≡ 0 for any k larger than 1.

3. ESTIMATORS OF THE ASYMPTOTIC VARIANCE

3.1. Kernel type estimator

The first estimator of asymptotic variance was defined in [6]. Let w : Rd → [0,∞)
be a kernel function which is symmetric, bounded, continuous at the origin o ∈ Rd

and satisfies w(o) = 1 , and let b > 0 be a bandwidth. The kernel estimator of σ2 is
defined by

σ̂2 = λ̂ +
6=∑

x,y∈Ψ

w((y − x)/b)1W (x)1W (y)
|(W − x) ∩ (W − y)|

− ω (b)d λ̂2 , (6)
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where

ω =
∫

W

w(x)dx < ∞ and λ̂2 =
Ψ(W )(Ψ(W )− 1)

|W |2
.

L2-consistency of the estimator was proved in [6] under an increasing domain
asymptotics. Thus let us assume that the point process Ψ is observed on a series of
windows {Wn}n∈N satisfying assumption:

(A1) The sequence of sampling windows satisfies Wn = n W for n ≥ 1 , for some
convex and compact W ∈ Bd fulfilling B(o, ε) ⊂ W for some ε > 0.

Further we need a sequence of bandwidths which increase to infinity as well but
they also should become incresingly small with respect to the size of the observation
window. Thus the second assumption is:

(A2) The (positive) sequence of bandwidths (bn) satisfies 1 ≥ bn −→
n→∞

0
and bnn −→

n→∞
∞ .

As we already mentioned in Section 1 following condition ensures the existence of
σ2:

(A3) The reduced covariance measure of Ψ has finite total variation, i. e., ‖γ(2)
red‖var :=

|γ(2)
red|(Rd) < ∞ .

Finally a moment assumption is needed for the L2-consistency:

(A4) The third– and fourth–order reduced factorial cumulant measures of Ψ have
finite total variation, i. e., ‖γ(k)

red‖var := |γ(k)
red|((Rd)k−1) < ∞ for k = 3, 4 .

Theorem 3.1. (Heinrich [6]) Let σ̂2
n be the estimator defined in (6) with W = Wn,

b = bn n and

λ̂2 = (λ̂2)n =
Ψ(Wn)(Ψ(Wn)− 1)

|Wn|2
. (7)

Under the assumptions (A1) – (A3), the sequence of estimators (σ̂2
n) is asympto-

tically unbiased for σ2 , that is E σ̂2
n −→

n→∞
σ2 .

Under the additional assumptions (A4) and b2
nn −→

n→∞
0 the sequence (σ̂2

n) is mean

square consistent, that is MSE( σ̂2
n ) := E ( σ̂2

n − σ2 )2 −→
n→∞

0 .

From the proof of the theorem in [6] we can moreover get bounds on the bias of
σ̂2

n since

E σ̂2
n−σ2 = λ

∫
Rd

(
w

( x

bn n

)
−1

)
γ

(2)
red(dx)−ω (bn n)d λ

|Wn|2

∫
Rd

|Wn∩(Wn−y) | γ(2)
red(dy) .

Thus the bias can be bounded from above as follows:

| E σ̂2
n − σ2 | ≤ λ

∣∣∣ ∫
Rd

(
w

( x

bn n

)
− 1

)
γ

(2)
red(dx)

∣∣∣ +
(bn

2

)d

ω λ ‖γ(2)
red‖var . (8)
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Let us remark here that for the special case of the cylinder kernel w(x) =
1B(o,1)(x) in R2 we get that σ̂2

n = λ̂n + ̂λ2K(n bn)−π(n bn)2(λ̂2)n, where ̂λ2K(n bn)
is the classical edge-corrected estimator of λ2 times the K-function (see e. g. [18]).
Thus we have an analogy of the relation (5). The leading term in the bias bound (8)
is then equal to λ γ

(2)
red(Bc(o, n bn)), i. e. it is proportional to the tails of γ

(2)
red.

3.2. Estimator based on second order intensity of the point process

The starting point for defining the next estimator of σ2 is the formula (4) which
yields

σ2 = λ +
∫

Rd

( λ %(2)(x)− λ2 ) dx. (9)

Let ̂(λ %(2))n(x) denote an appropriate edge–corrected kernel–type estimator for
λ %(2)(x) defined on the sampling window Wn = nW . Then we can plug this es-
timator into the formula (9) together with the estimators λ̂n and (λ̂2)n for λ and
λ2 , respectively, to obtain the estimator

σ̂2
n,I = λ̂n +

∫
B(o,n bn)

(
̂(λ %(2))n(x) − (λ̂2)n

)
dx , (10)

which was introduced in [9]. Here B(o, n bn) is the ball with center in the origin o
and radius n bn.

The appropriate estimator for λ %(2)(x) can be defined by

̂(λ %(2))n(x) =
1
bd
n

6=∑
u,v∈Ψ

1Wn(u)1Wn(v)
| (Wn − u) ∩ (Wn − v) |

k
(v − u− x

bn

)
, (11)

(see [18]) where the kernel function k : Rd 7→ R1 is assumed to be bounded with
bounded support such that

∫
Rd k(x) dx = 1 and the sequence of bandwidths (bn)

satisfies (A2).
Asymptotic properties of σ̂2

n,I are of course in close relations with asymptotic
properties of (λ %(2))n(x). These were studied in [5] where a central limit theorem was
proved for the case of Poisson cluster processes, and in [8] where almost sure conver-
gence of (λ %(2))n(x) was proved in the setting of β-mixing. In the recent work [4] the
central limit theorem for finite dimensional vectors ((λ %(2))n(xi))i=1,...k was proved
for the general class of Brillinger mixing processes under mild mixing conditions.
Nevertheless these results for the pointwise convergence of (λ %(2))n(x) are not di-

rectly applicable for deriving the properties of the integral
∫

B(o,bn n)
̂(λ %(2))n(x) dx.

Even the uniform rates of convergence from [8] are not directly useful because they
are obtained for a fixed set K ⊂ Rd and we have an expanding set B(o, bn n). Thus
the results for σ̂2

n,I must be obtained directly. Let us prove here the asymptotic
unbiasedness of σ̂2

n,I .

Theorem 3.2. Let the kernel k be bounded with bounded support, symmetric and
such that

∫
Rd k(x) dx = 1 . Under the assumptions (A1) – (A3), the sequence of

estimators (σ̂2
n,I) is asymptotically unbiased for σ2 .
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P r o o f . Let us rewrite

E σ̂2
n,I = λ+E

∫
B(o,n bn)

(
̂(λ %(2))n(x) +λ2

)
dx−E

∫
B(o,n bn)

(
λ2−(λ̂2)n

)
dx . (12)

By Fubini’s theorem and the formula E (Ψ(Wn))2 = α(2)(Wn × Wn) + λ|Wn| the
third term can be rewritten as∫

B(o,n bn)

γ(2)(Wn ×Wn)
|Wn|2

dx ≤ λ

∫
B(o,n bn)

γ
(2)
red(Rd)
|Wn|

dx = O(bd
n),

which goes to 0 for n → ∞. Using Fubini’s theorem on the second term from (12)
we can rewrite it as∫

B(o,n bn)

1
bd
n

[∫
Wn

∫
Wn

k(v−u−x
bn

)
|(Wn − u) ∩ (Wn − v)|

γ(2)(du, dv)

]
dx

+
∫

B(o,n bn)

1
bd
n

[∫
Wn

∫
Wn

k(v−u−x
bn

)
|(Wn − u) ∩ (Wn − v)|

λ2 dudv − λ2bd
n

]
dx = T1 + T2.

(13)

By change of variables we get for T2

T2 =
∫

B(o,n bn)

1
bd
n

[∫
Wn⊕−Wn

∫
(Wn−δ)∩Wn

k( δ−x
bn

)
|(Wn − δ) ∩Wn|

λ2 dudδ − λ2bd
n

]
dx

= λ2

∫
B(o,n bn)

[∫
Wn⊕−Wn

1
bd
n

k

(
δ − x

bn

)
dδ − 1

]
dx

= λ2

∫
B(o,n bn)

∫
W n

bn
⊕−W n

bn

k

(
z − x

bn

)
dz − 1

 dx

≤ λ2

∫
B(o,n bn)

[∫
B(o, n

bn
(2ρ−bn))

k(z)dz − 1

]
dx

where the symbol ⊕ denotes the Minkovski addition and ρ the inradius of W .
Since we assumed k to have bounded support there exists n large enough such
that

∫
B(o, n

bn
(2ρ−bn))

k(z)dz = 1 and T2 = 0.

For T1 we can disintegrate γ(2) and write

T1 =
∫

B(o,n bn)

1
bd
n

[∫
Wn⊕−Wn

∫
(Wn−δ)∩Wn

k( δ−x
bn

)
|(Wn − δ) ∩Wn|

λdu γ
(2)
red(dδ)

]
dx

=
∫

B(o,n bn)

1
bd
n

[∫
Wn⊕−Wn

k

(
δ − x

bn

)
λ γ

(2)
red(dδ)

]
dx

= λ

∫
Wn⊕−Wn

∫
B(o,n)

k

(
δ

bn
− z

)
dz γ

(2)
red(dδ). (14)
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The integral
∫

B(o,n)
k

(
δ
bn
− z

)
dz goes monotonically to 0 when n goes to infinity

for any δ and Wn ⊕−Wn converges to Rd as n →∞. From (A3) it follows that the
term T1 converges to λ γ

(2)
red(Rd) and thus (12) converges to σ2.

�

When we compare the estimators σ̂2
n and σ̂2

n,I heuristically we see the main dif-

ference in the fact, that in case of σ̂2
n,I we first estimate the density of γ

(2)
red and

then integrate it over a domain increasing to Rd whereas by σ̂2
n we try to estimate

the integral γ
(2)
red(Rd) directly. Thus the procedure for σ̂2

n,I introduces some extra
smoothing which can potentially lead to some extra bias – compare the leading terms
in the formulas (8) and (14). From the practical point of view the question is if this
extra bias is noticeable or negligeable – and this is hard to decide theoretically. The
simulation results in Section 4 show that the bias is negligeable for a good choice of
the bandwidth n bn.

3.3. Subsampling estimator

Subsampling is a popular approach for estimating variances of various statistics of
interest (see [14]). However in spatial statistics this approach is not used very often.
Among the reasons are the facts that typically we have only one realization of the
point process at our disposal and (with the exception of the Poisson process) a
complicated dependence structure in the data. Nevertheless since we are interested
in the variance of a very simple statistics λ̂ and both the above mentioned estimators
σ̂2

n and σ̂2
n,I need anyway a reasonably large amount of data to perform well, the

subsampling approach could lead to a competitive alternative for estimating σ2. In
the sequel we define a moving-block variance estimator σ̂2

n,V inspired by the approach
from [15].

Let (bn) be again a sequence of bandwidths fulfilling (A2) and denote Vn =
Wn bn = n bnW a scaled version of the observation window W . For the estimation
of σ2 we will use estimates of the intensity λ̂[Vn+y] = Ψ(Vn+y)

|Vn| computed on the
subwindows Vn + y, where y ∈ W 1−bn

n = {y ∈ Rd : Vn + y ⊂ Wn}. The subsampling
estimator of σ2 is defined as follows:

σ̂2
n,V =

∫
W 1−bn

n

|Vn|
(
λ̂[Vn+y] − λ̂Vn

)2

dy/|W 1−bn
n |, (15)

where λ̂Vn =
∫

W 1−bn
n

λ̂[Vn+y] dy/|W 1−bn
n |.

First let us show that the estimator is asymptotically unbiased.

Theorem 3.3. Under the assumptions (A1) – (A3) the subsampling estimator (15)
is asymptotically unbiased for σ2 .

P r o o f . Obviously

E σ̂2
n,V =

Var(Ψ(Vn))
|Vn|

+
∫

W 1−bn
n

∫
W 1−bn

n

|Vn|
|W 1−bn

n |2
Cov(λ̂Vn+y, λ̂Vn+z)dydz.
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The first term converges to σ2 from our assumptions since the convex averaging
sequence Vn → Rd. The second term is equal to∫

W 1−bn
n

∫
W 1−bn

n

1
|W 1−bn

n |2|Vn|
(γ(2)((Vn +y)×(Vn +z))+λ|(Vn +y)×(Vn +z)|)dydz,

and the second summand can be bounded by 2d|Vn|
|W (1−bn)

n |
which goes to 0 by (A2) and

the convexity of W . We can rewrite the first summand as

1
|W 1−bn

n |2|Vn|

∫
W 1−bn

n

∫
W 1−bn

n

∫
Rd

∫
Rd

λ1(u,u+v)∈Vn×(Vn−y+z) duγ
(2)
red(dv)dydz.

By changing the order of integration and starting with z we get the upper bound
2d|Vn|

|W (1−bn)
n |

‖γ(2)
red‖var which goes to 0 by (A2) and (A3).

�

If we want to compare the bias of σ̂2
n and the subsampling estimator σ̂2

n,V we
have to take into account the shape of the kernel w for σ̂2

n. To simplify the situation
let us assume the cylinder kernel w(x) = 1B(o,1)(x) for σ̂2

n. Then the leading term
in the bias for σ̂2

n will be equal to λ γ
(2)
red(Bc(o, n bn) whereas for σ̂2

n,V it will be

λ γ
(2)
red(Rd)− γ(2)(Vn×Vn)

|Vn| . Thus the subsampling estimator covers less of the mass of

γ
(2)
red than σ̂2

n and should have larger bias for the same value of n bn. This observation
is confirmed by the results of the simulation study in Section 4.

Concerning the mean square consistency of σ̂2
n,V this is harder to prove. It is

possible to proceed by analogy to the methods in [15] and prove L2-consistency
under the assumption of strong mixing.

Recall that for two σ-algebras F1, F2 defined on the same probability space the
strong mixing coefficient is defined by

α(F1,F2) = sup{|P (A1 ∩A2)− P (A1)P (A2)| : A1 ∈ F1, A2 ∈ F2}. (16)

For a stationary point process Ψ the strong mixing coefficient α(p; k) quantifies the
dependence between the behaviour of the point process on sets of volume at most p
separated by a distance larger than or equal to k. Thus for a point process we define

α(p; k) = sup{α(FX(A),FX(B)) : d(A,B) ≥ k, |A| ≤ p, |B| ≤ p}, p ≥ 0

where d(A,B) = inf{|x− y| : x ∈ A, y ∈ B} is the distance between the sets A and
B, FX(A) denotes the σ-algebra generated by Ψ ∩ A and the supremum is taken
over all measurable subsets A, B in Bd.

The assumption of strong mixing enables to find bounds on the integrals of the
covariances, needed in the proof of the following theorem.

Theorem 3.4. Let (A1) – (A3) be fullfiled and assume

(A5) there exist ε > 0 and Cε > 0 such that E

(
Ψ(Vn)−λ|Vn|√

|Vn|

)4+ε

< Cε for any n.
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Moreover assume that the point process Ψ is strongly mixing – i. e. α(p, pd) → 0
as p →∞. Then the subsampling estimator σ̂2

n,V is mean square consistent.

P r o o f . We can rewrite σ̂2
n,V as

σ̂2
n,V =

1
|W 1−bn

n |

∫
|W 1−bn

n |

[√
|Vn|

(
λ̂Vn+y − E λ̂Vn+y

)]2

dy

− 1
|W 1−bn

n |2

[∫
|W 1−bn

n |

√
|Vn|

(
λ̂Vn+y − E λ̂Vn+y

)
dy

]2

=
1

|W 1−bn
n |

∫
|W 1−bn

n |
[h(Vn + y)]2 dy − 1

|W 1−bn
n |2

[∫
|W 1−bn

n |
h(Vn + y)dy

]2

,

where we denote h(Vn + y) =
√
|Vn|

(
λ̂Vn+y − E λ̂Vn+y

)
.

We will proceed analogously to the general proof of Theorem 2 in [15]. Let us

moreover denote H(Vn + y) = |Vn|
(
λ̂Vn+y − E λ̂Vn+y

)2

. We will start by showing
the following two convergencies:

Yn =

∫
|W 1−bn

n | h(Vn + y)dy

|W 1−bn
n |

L2

−→ lim
n→∞

Eh(Wn) = 0, (17)

and

Un =

∫
|W 1−bn

n |H(Vn + y)dy

|W 1−bn
n |

L2

−→ lim
n→∞

EH(Wn) = lim
n→∞

Var (Ψ(Wn))
|Wn|

= σ2. (18)

For both Yn and Un we have that EYn = Eh(Vn) and EUn = EH(Vn) by Fubini
and the stationarity of Ψ. Thus it is enough to show that both Var Yn and Var Un

go to zero to obtain (17) and (18). By using Fubini’s theorem again we get

Var Yn =
∫

W 1−bn
n

∫
W 1−bn

n

1
|W 1−bn

n |2
Cov(h(Vn + y), h(Vn + z))dydz,

and analogous expression for Un and H. For h we have proved that this expression
goes to 0 with n →∞ in the proof of Theorem 3.3. For the case of H we will proceed
analogously to the proof of Theorem 1 in [15].

We divide the integral into two parts:

Var Un =
∫

W 1−bn
n

∫
W 1−bn

n

d(Vn+y,Vn+z)≤p

1
|W 1−bn

n |2
Cov(H(Vn + y),H(Vn + z))dydz

+
∫

W 1−bn
n

∫
W 1−bn

n

d(Vn+y,Vn+z)>p

1
|W 1−bn

n |2
Cov(H(Vn + y),H(Vn + z))dydz

= T1 + T2.
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Now, let p = |Vn|1/d and denote r = sup{|x − y|, x, y ∈ W}, the size of W . Then
|{z : d(Vn+y, Vn+z) ≤ p}| is for any fixed y bounded from above by κd(3n bnr+2l)d

and thus

T1 ≤
∫

W 1−bn
n

Var(H(Vn))κd(3n bnr + 2l)d

|W 1−bn
n |2

≤ C
ε

4+ε
ε κd2d((3r n bn)d + 2d(n bn)d|W |)

|W 1−bn
n |

= O(bd
n), (19)

where we used Jensen’s inequality and the assumption (A5).
For T2 first observe that under the assumption d(Vn + y, Vn + z) > p we have

Cov(H(Vn+y),H(Vn+z)) = Var(H(Vn))Corr(H(Vn+y),H(Vn+z)) ≤ C
ε

4+ε
ε 4 α(p, |Vn|),

using again Jensen’s inequality and assumption (A5) and by Lemma 1.2.1 in [20].
Thus

T2 ≤ 4C
ε

4+ε
ε α(p, |Vn|) = 4C

ε
4+ε
ε α(p, pd),

which converges to 0 by our mixing assumption.
Now comming back to the expression for σ̂2

n,V we see that σ̂2
n,V = Un + Y 2

n . Un

converges to σ2 in L2 and thus we only need to show that Y 2
n

L2

−→ 0, or equivalently

Yn
L4

−→ 0.

This is proved exactly like in the proof of Theorem 2 in [15] from Yn
L2

−→ 0,

Un
L2

−→ σ2, EY 4
n ≤ EU2

n by a lemma about uniform integrability and Lr convergence
from [2]. �

The assumption of strong mixing is actually not such a strong assumption and
for example all the processes we used in the simulation study satisfy it (see e. g. [16]
chapter 5 for a detailed discussion). Moreover it seems plausible (see [4] chapter 7)
that the L2 consistency of the subsampling estimator σ̂2

n,V can be proved without
strong mixing only under suitable integrability assumptions on the higher order
reduced cumulant measures. Nevertheless the proof of such a proposition would be
highly technical (compare [4] chapter 7) and out of the scope of the current paper.

Concerning the practical implementation of the subsampling estimator the inte-
grals in the definition of σ̂2

n,V must be of course approximated by finite Riemann
sums resulting in

σ̂2
n,V =

∑
yk∈W 1−bn

n ∩G

δd |Vn|
(
λ̂[Vn+yk] − λ̂Vn

)2

/|W 1−bn
n |, (20)

where λ̂Vn
is also approximated as follows

λ̂Vn =

 ∑
yk∈W 1−bn

n ∩G

δd λ̂[Vn+yk]

 /|W 1−bn
n |.
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Here G denotes a rectangular grid of points δ
21 + δZd. Under the assumptions of

Theorem 3.4 and if n, 1
δ → ∞ the estimator (20) is also an L2-consistent estimator

of σ2.
In practice we must of course decide the value of δ which may influence the

behaviour of the approximated estimator σ̂2
n,V . Nevertheless the simulation expe-

riments indicate that if the value of δ is reasonably small (see the next section for
details) then the efficiency of σ̂2

n,V is practically not influenced by the exact choice
of δ – at least for the range of reasonable choices of the tuning parameter b.

4. SIMULATION STUDY

To compare the efficiency of the three above introduced estimators on medium-sized
windows a simulation study was carried out. We considered several specific statio-
nary point processes in R2 some of them exibiting clustering among the points some
of them repulsion (they will be described in detail later on). Since the simulation
study in [9] showed qualitatively similar behaviour of the estimator σ̂2

n on windows
of various sizes and a reasonable performance only for large enough windows we
decided to use the window W20 = [−20, 20]2 for processes of (approximately) unit
intensity.

For the simulated processes values of the three different estimators of σ2 were
computed for the same generated point patterns:

— σ̂2
n with the cylinder kernel w(x) = 1B(o,1)(x) (black colour in the graphs)

— σ̂2
n,I with the cylinder kernel k(x) = 1

π1B(o,1)(x) (green colour in the graphs)

— σ̂2
n,V where the integral was approximated by the Riemann sum (20) over

subsquares with centers in a regular grid with δ equal to 0.2 (red colour in the
graphs).

We have chosen the cylinder kernel 1B(o,1) for computational simplicity and because
it proved to be optimal for σ̂2

n according to the simulation study in [9].
All estimators were computed for a series of bandwidths b = n bn the range of

which depended on the particular point processes used for the estimation.
The squared bias, the variance and the MSE were estimated for each of the three

estimators from 1000 realizations of the simulated point processes.
Before coming to the results we briefly describe the point process models used and

compute their σ2 as well as their reduced covariance mesure γ
(2)
red ; more information

on these models can be found e. g. in [18].

1. Poisson process with intensity λ = 1 (γ(2)
red ≡ 0 and σ2 = λ = 1 ).

2. Matérn cluster process with intensity λ = 1, mean cluster size µ = 5 and cluster
radius r = 1/2 (γ(2)

red(Bc(o, 1)) = 0 and σ2 = λ(1 + µ) = 6 ).

This Poisson cluster process is generated by a stationary Poisson process of
parent points with intensity µ−1; the typical cluster consists of a Poisson dis-
tributed number of daughter points with locations independently and uni-
formly distributed on the disk B(o, r) .
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3. Matérn cluster process with intensity λ = 1, mean cluster size µ = 5 and cluster
radius r = 1 (γ(2)

red(Bc(o, 2)) = 0 and σ2 = 6 ).

In comparison with the point process 2 we have less concentrated clusters.

4. Thomas cluster process with intensity λ = 1, mean cluster size µ = 5, and variabil-
ity parameter v = 1/2 (γ(2)

red(Bc(o, r)) = µ exp{−r2/4v} and σ2 = λ(1 + µ) = 6 ).

This Poisson cluster process has the same parent point process and cluster size
distribution as in 2 and 3, but each member in the typical cluster has indepen-
dent N (0, v)–distributed components. Thus, the clusters are unbounded (and
the support of γ

(2)
red is the whole R1) in contrast to the Matérn cluster process

3 and 4.

5. Thomas cluster process with intensity λ = 1, mean cluster size µ = 5 and vari-
ability parameter v = 1.

The clusters of this process are less concentrated than those of 4.

6. Matérn (II) hard–core process with hard–core distance h = 1/2 and λp = 1 .

This point process, denoted by Ψhc, is derived from a stationary Poisson
process Ψp with intensity λp by dependent thinning. The points x ∈ Ψp

are marked independently by random numbers m(x) distributed uniformly on
(0, 1) . Then Ψhc consists of those points of Ψp which survive the following
thinning procedure:

x ∈ Ψhc iff x ∈ Ψp and m(x) < min{m(y) : y ∈ Ψp, 0 < ‖y − x‖ ≤ h}.

It can be shown that Ψhc has the intensity λ = (1− exp{−λpπh2 })/πh2 and
the pair–correlation function

g(r) =


0 if r < h ,
2Gh(r)(1−exp(−λpπh2))−2πh2(1−exp(−λpGh(r)))

πh2Gh(r)(Gh(r)−πh2)λ2 if h ≤ r < 2 h ,

1 if r > 2 h ,

where Gh(r) = 2h2
(
π − arccos( r

2h ) + h
2

√
4h2 − r2

)
.

Thus, |γ(2)
red|(Bc(o, 2h)) = 0 and in our case with λp = 1 and h = 1/2 we get

γ
(2)
red(B(o, 1)) = −0.494 , λ = 0.693 , σ2 = 0.350 .

The point processes (1.) – (5.) have intensity λ = 1 and the remaining point
process (6.) has a slightly smaller intensity.

The Figures 1 and 2 present the obtained results of our simulation study. The
solid lines in the below graphics show the (empirical) relative MSE

rel MSE(·) = MSE(·)/(σ2)2,
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Fig. 1. Performance of the estimators of σ2 on W20.

of the different estimators of σ2 as function of the quantity b = n bn. To get the idea
of the bias-variance trade off in dependence on the choice of b, values of the empirical
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Fig. 2. Performance of the estimators of σ2 on W20.

variance of the estimators (dashes lines) and the squared bias (dotted lines) are also
shown in the figures.
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We can say that the kernel estimator σ̂2
n has overall the best performance closely

followed by the estimator σ̂2
n,I . The smaller efficiency of σ̂2

n,I is caused by the
bias of the estimator, the variances of σ̂2

n and σ̂2
n,I are similar especially for the

cluster processes. This is in accordance with the theoretical properties since σ̂2
n

with the cylinder kernel is unbiased for b such that γ
(2)
red(Bc(o, b)) = 0, not just

asymptotically unbiased like the other estimators. The bias of σ̂2
n,I can be explained

by “oversmoothing”, since in σ̂2
n,I we first estimate the density of γ

(2)
red and then

integrate it to get the estimate of γ
(2)
red(R2) whereas σ̂2

n estimates the integral γ
(2)
red(R2)

directly. The “oversmoothing” effect can be also seen in case of the Matérn hard-core
process and larger values of the bandwidth b – the kernel estimate of the γ

(2)
red density

is too coarse to identify the fluctuations and thus produces an extra negative bias
in the estimate of σ2. Figure 3 shows the bias separately for the two representative
cases of the clustered Thomas process (4.) and the Matérn hard-core process.
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Fig. 3. Relative bias of the estimators of σ2 for Thomas and

Matérn II processes.
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Concerning the subsampling estimator σ̂2
n,V it has smaller variance than the other

two nevertheless its performance is mainly determined by the bias which is substan-
tially larger than by the other two estimators. This can be nicely seen in case of the
Poisson process where the γ

(2)
red vanishes thus we estimate σ2 = λ and σ̂2

n,V exhibits
the best performance.

By the subsampling estimator there is moreover one extra tuning parameter –
namely the value of the grid cell size δ used for the discretization. The results shown
in the figures used the choice δ = 0.2. Nevertheless to check the influence of this
parameter we also computed the estimates σ̂2

n,V with other values of δ, namely 0.1
and 0.5. The results were almost identical (therefore we do not show the graphs
here) some difference could be observed only for the larger values of the parameter
b where the efficiency of the estimator is not so good anyway.

Let us also remark here that even though we have the common scale for the b
parameter on the x-axis it has different meaning for the subsampling and the other
two estimators. Thus the minimal MSE (which of course depends on the choice of b)
is attained in different values of b for σ̂2

n,V and for the other two estimators. σ̂2
n and

σ̂2
n,I have virtually the same argument of minima of the MSE and their performance

is the same in the neighbourhood of this optimal value. As expected this optimal
value is close to the value r for which γ

(2)
red(Bc(o, r)) = 0 or γ

(2)
red(Bc(o, r)) ≈ 0 (for

processes with γ
(2)
red with infinite support) since for b ≈ r the estimator σ2 becomes

unbiased and any further increase of the bandwidth b produces only increase of
the variance of the estimator, but does not bring any further information (compare
Figure 2 and Figure 3). The optimal value of b for the subsampling estimator is
significantly larger than for σ̂2

n.
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