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IMPROVING FEATURE SELECTION PROCESS
RESISTANCE TO FAILURES CAUSED BY
CURSE-OF-DIMENSIONALITY EFFECTS

Petr Somol, Jiř́ı Grim, Jana Novovičová, and Pavel Pudil

The purpose of feature selection in machine learning is at least two-fold – saving mea-
surement acquisition costs and reducing the negative effects of the curse of dimensionality
with the aim to improve the accuracy of the models and the classification rate of classi-
fiers with respect to previously unknown data. Yet it has been shown recently that the
process of feature selection itself can be negatively affected by the very same curse of di-
mensionality – feature selection methods may easily over-fit or perform unstably. Such an
outcome is unlikely to generalize well and the resulting recognition system may fail to de-
liver the expectable performance. In many tasks, it is therefore crucial to employ additional
mechanisms of making the feature selection process more stable and resistant the curse of
dimensionality effects. In this paper we discuss three different approaches to reducing this
problem. We present an algorithmic extension applicable to various feature selection meth-
ods, capable of reducing excessive feature subset dependency not only on specific training
data, but also on specific criterion function properties. Further, we discuss the concept
of criteria ensembles, where various criteria vote about feature inclusion/removal and go
on to provide a general definition of feature selection hybridization aimed at combining
the advantages of dependent and independent criteria. The presented ideas are illustrated
through examples and summarizing recommendations are given.

Keywords: feature selection, curse of dimensionality, over-fitting, stability, machine learn-
ing, dimensionality reduction
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1. INTRODUCTION

A broad class of decision-making problems can be solved by the learning approach.
This can be a feasible alternative when neither an analytical solution exists nor the
mathematical model can be constructed. In these cases the required knowledge can
be gained from the past data which form the so-called “learning” or “training” set.
Then the formal apparatus of statistical pattern recognition can be used to learn
the decision-making.

A common practice in multidimensional classification methods is to apply a fea-
ture selection (FS) procedure as the first preliminary step. The aim is to avoid
over-fitting in the training phase since, especially in the case of small and/or high-
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dimensional data, the classifiers tend to adapt to some specific properties of training
data which are not typical for the independent test data. The resulting classifier
then poorly generalizes and the classification accuracy on independent test data de-
creases [5]. By choosing a small subset of “informative” features, we try to reduce
the risk of over-fitting and thus improve the generalizing property of the classifier.
Moreover, FS may also lead to data acquisition cost savings as well as to gains in
processing speed. An overview of various feature selection approaches and issues
can be found in [17, 24, 25, 36].

In most cases, a natural way to choose the optimal subset of features would be
to minimize the probability of a classification error. As the exact evaluation of error
probability is usually not viable, we have to minimize some estimates of classification
error or at least some estimates of its upper bound, or even some intuitive probabilis-
tic criteria like entropy, model-based class distances, distribution divergences, etc.
[5, 20]. Many existing feature selection algorithms designed with different evaluation
criteria can be categorized as filter [1, 4, 51] wrapper [20], hybrid [3, 38, 41] or em-
bedded [12, 13, 14, 21, 28, 29]. Filter methods are based on performance evaluation
functions calculated directly from the training data such as distance, information,
dependency, and consistency, [5, 25] and select feature subsets without involving
any learning algorithm. Wrapper methods require one predetermined learning algo-
rithm and use its estimated performance as the evaluation criterion. The necessity
to estimate the classification performance in each FS step makes wrappers consider-
ably slower than filters. Hybrid methods primarily attempt to obtain wrapper-like
results in filter-like time. Embedded methods incorporate FS into modeling and can
be viewed as a more effective but less general form of wrappers. In order to avoid
biased solutions the chosen criterion has to be evaluated on an independent valida-
tion set. The standard approach in wrapper-based FS is thus to evaluate classifier
accuracy on training data by means of cross-validation or leave-one-out estimation.
Nevertheless, the problem of over-fitting applies to FS criteria and FS algorithms
as well [31] and cannot be fully avoided by means of validation, especially when
the training data is insufficiently representative (due to limited size or due to bias
caused by the faulty choice of training data). It is well known that different opti-
mality criteria may choose different feature subsets [5] and the same criterion may
choose different subsets for differently sampled training data [31]. In this respect
the “stability” of the resulting feature subsets becomes a relevant viewpoint [22, 42].
To summarize, although the key purpose of FS is to reduce the negative impact of
the curse of dimensionality on classification accuracy, the FS process itself may be
affected by the very same curse of dimensionality with serious negative consequences
in the final pattern recognition system.

In this paper we suggest several ways of reducing FS over-fitting and stability
problems. In subset-size-optimizing scenarios we suggest putting more preference
on effective reduction of the resulting subset size instead of criterion maximization
performance only. In accordance with [31] we suggest placing less emphasis on the
notion of optimality with respect to the chosen criterion (see Section 2). In analogy
to the idea of multiple classifier systems [19] that has proved capable of consid-
erable classification accuracy improvement, we suggest employing ensembles of FS
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criteria instead of single criterion to prevent feature over-selection (see Section 3).
We suggest FS process hybridization in order to improve generalization ability of
wrapper-based FS approaches [20] as well as to save computational time (see Sec-
tion 4). Section 5 summarizes the presented ideas and concludes the paper.

Let us remark, that there is a similar problem studied in statistics which is based
on penalizing the models fit to data by the number of their parameters. In this
way the complexity of statistical models can be optimized by means of special well-
known criteria like Akaikes information criterion (AIC) or Bayes information crite-
rion (BIC). However, in the case of feature selection methods, the resulting subset of
features is only a preliminary step to model fitting. Thus, instead of optimizing a sin-
gle penalized criterion, we only use some very specific properties of feature selection
procedures to avoid the negative consequences of possible over-fitting tendencies.

1.1. Feature Subset Selection Problem Formulation

We shall use the term “pattern” to denote the D-dimensional data vector z =
(z1, . . . , zD)T of measurements, the components of which are the measurements of
the features of the entity or object. Following the statistical approach to pattern
recognition, we assume that a pattern z is to be classified into one of a finite set of M
different classes Ω = {ω1, ω2, . . . , ωM}. We will focus on the supervised case, where
the classification rule is to be learned from training data consisting of a sequence of
pattern vectors z with known class labels.

Given a set Y of D = |Y| features, let us denote Xd the set of all possible subsets
of size d, where d represents the desired number of features (if possible d � D). Let
us denote X the set of all possible subsets of Y, of any size. Let J(X) be a criterion
function that evaluates feature subset X ∈ X . Without any loss of generality, let us
consider a higher value of J to indicate a better feature subset. Then the traditional
feature selection problem formulation is: Find the subset X̃d for which

J(X̃d) = max
X∈Xd

J(X). (1)

Let the FS methods that solve (1) be denoted as d-parametrized methods. The
feature selection problem can be formulated more generally as follows: Find the
subset X̃ for which

J(X̃) = max
X∈X

J(X). (2)

Let the FS methods that solve (2) be denoted as d-optimizing methods. Most of the
traditional FS methods are d-parametrized, i. e., they require the user to decide what
cardinality the resulting feature subset should have. The d-optimizing FS procedures
aim at optimizing both the feature subset size and its contents at once, provided
the suitable criterion is available (classifier accuracy estimates in FS wrappers [20]
can be used while monotonic probabilistic measures [5] can not). For more details
on FS criteria see [5, 20].

Remark 1.1. It should be noted that if no external knowledge is available, deter-
mining the correct subspace dimensionality is, in general, a difficult problem de-
pending on the size of training data as well as on model complexity and as such is
beyond the scope of this paper.
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1.2. Sub-optimal Search Methods

Provided a suitable FS criterion function [5, 20] has been chosen, feature selection
is reduced to a search problem that detects an optimal feature subset based on the
selected measure. Then the only tool needed is the search algorithm that generates
a sequence of feature subsets to be evaluated by the respective criterion (see Fig-
ure 1). A very large number of various methods exists. Despite the advances in

Fig. 1. Feature selection algorithms can be viewed as black box

procedures generating a sequence of candidate subsets with respective

criterion values, among which intermediate solutions are chosen.

optimal search [26, 46], for larger than moderate-sized problems we have to resort
to sub-optimal methods. (Note that the number of candidate feature subsets to be
evaluated increases exponentially with increasing problem dimensionality.) Deter-
ministic heuristic sub-optimal methods implement various forms of hill climbing to
produce satisfactory results in polynomial time. Unlike sequential selection [5], float-
ing search does not suffer from the nesting problem [30] and finds good solutions for
each subset size [27, 30]. Oscillating search and dynamic oscillating search can im-
prove existing solutions [43, 45]. Stochastic (randomized) methods like random sub-
space [23], evolutionary algorithms [15], memetic algorithms [52] or swarm algorithms
like ant colony [16] may be better suited to over-come local extrema, yet may take
longer to converge. The Relief algorithm [47] iteratively estimates feature weights
according to their ability to discriminate between neighboring patterns. Determinis-
tic search can be notably improved by randomization as in simulated annealing [10],
tabu search [48], randomized oscillating search [45] or in combined methods [9]. The
fastest and simplest approach to FS is the Best Individual Feature (BIF), or individ-
ual feature ranking. It is often the only applicable approach in problems of very high
dimensionality. BIF is standard in text categorization [37, 50], genetics [35], etc.
BIF may be preferable not only in scenarios of extreme computational complexity,
but also in cases when FS stability and over-fitting issues hinder considerably the
outcome of more complex methods [22, 33]. In order to simplify the presentation of
the key paper ideas we will first focus on a family of related FS methods based on
the sequential search (hill-climbing) principle.
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Fig. 2. Comparing subset search methods’ course of search.

a) Sequential Forward Selection, b) Sequential Forward Floating

Selection, c) Oscillating Search, d) Dynamic Oscillating Search.

1.2.1. Decomposing Sequential Search Methods

To simplify the discussion of the schemes to be proposed let us focus only on the
family of sequential search methods. Most of the known sequential FS algorithms
share the same “core mechanism” of adding and removing features (c-tuples of c
features) to/from a working subset. The respective algorithm steps can be described
as follows:

Definition 1.1. Let ADDc() be the operation of adding the most significant feature
c-tuple T +

c to the working set Xd to obtain Xd+c:

Xd+c = Xd ∪ T +
c = ADDc(Xd), Xd, Xd+c ⊆ Y (3)

where
T +

c = arg max
Tc∈Y \Xd

J +(Xd, Tc) (4)

with J +(Xd, Tc) denoting the evaluation function form used to evaluate the subset
obtained by adding Tc, where Tc ⊆ Y \Xd, to Xd.

Definition 1.2. Let RMVc() be the operation of removing the least significant fea-
ture c-tuple T −c from the working set Xd to obtain set Xd−c:

Xd−c = Xd \ T −c = RMVc(Xd), Xd, Xd−c ⊆ Y (5)

where
T −c = arg max

Tc∈Xd

J−(Xd, Tc) (6)
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with J−(Xd, Tc) denoting the evaluation function form used to evaluate the subset
obtained by removing Tc, where Tc ⊆ Xd, from Xd.

In standard sequential FS methods the impact of feature c-tuple adding (or re-
moval) in one algorithm step is evaluated directly using a single chosen FS criterion
function J(·), usually filter- or wrapper-based (see Section 1):

J +(Xd, Tc) = J(Xd ∪ Tc), J−(Xd, Tc) = J(Xd \ Tc) . (7)

1.2.2. Simplified View of Sequential Search Methods

In order to simplify the notation for a repeated application of FS operations we
introduce the following useful notation

Xd+2c = ADDc(Xd+c) = ADDc(ADDc(Xd)) = ADD2
c (Xd) , (8)

Xd−2c = RMVc(RMVc(Xd)) = RMV 2
c (Xd) ,

and more generally

Xd+δc = ADDδ
c(Xd), Xd−δc = RMV δ

c (Xd) (9)

Using this notation we can now outline the basic idea behind standard sequential
FS algorithms very simply. For instance:

(Generalized) Sequential Forward Selection, (G)SFS [5, 49] yielding a subset of t
features, t = δc, evaluating feature c-tuples in each step (by default c = 1):

1. Xt = ADDδ
c(∅).

(Generalized) Sequential Forward Floating Selection, (G)SFFS [30] yielding a subset
of t features, t = δc, t < D, evaluating feature c-tuples in each step (by default
c = 1), with optional search-restricting parameter ∆ ∈ [0, D − t]. Throughout the
search all so-far best subsets of δc features, δ = 1, . . . , b t+∆

c c are kept:

1. Start with Xc = ADDc(∅), d = c.

2. Xd+c = ADDc(Xd), d = d + c.

3. Repeat Xd−c = RMVc(Xd), d = d − c as long as it improves solutions already known
for the lower d.

4. If d < t + ∆ go to 2, otherwise return the best known subset of t features as result.

(Generalized) Oscillating Search, (G)OS [45] yielding a subset of t features, t < D,
evaluating feature c-tuples in each step (by default c = 1), with optional search-
restricting parameter ∆ ≥ 1:

1. Start with arbitrary initial set Xt of t features. Set cycle depth to δ = 1.

2. Let X↓
t = ADDδ

c(RMV δ
c (Xt)).

3. If X↓
t better than Xt, let Xt = X↓

t , let δ = 1 and go to 2.
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4. Let X↑
t = RMV δ

c (ADDδ
c(Xt)).

5. If X↑
t better than Xt, let Xt = X↑

t , let δ = 1 and go to 2.

6. If δc < ∆ let δ = δ + 1 and go to 2.

(Generalized) Dynamic Oscillating Search, (G)DOS [43] yielding a subset of opti-
mized size p, evaluating feature c-tuples in each step (by default c = 1), with optional
search-restricting parameter ∆ ≥ 1:

1. Start with Xp = ADD3
c(∅), p = 3c, or with arbitrary Xp, p ∈ {1, . . . , D}. Set cycle

depth to δ = 1.

2. While computing ADDδ
c(RMV δ

c (Xt)) if any intermediate subset of i features, Xi, i ∈
{p − δc, p − (δ − 1)c, . . . , p} is found better than Xp, let it become the new Xp with
p = i, let δ = 1 and restart step 2.

3. While computing RMV δ
c (ADDδ

c(Xt)); if any intermediate subset of j features, Xj ,
j ∈ {p, p+ c, . . . , p+ δc} is found better than Xp, let it become the new Xp with p = j,
let δ = 1 and go to 2.

4. If δc < ∆ let δ = δ + 1 and go to 2.

Obviously, other FS methods can be described using the notation above as well.
See Figure 2 for visual comparison of the respective methods’ course of search.

Note that (G)SFS, (G)SFFS and (G)OS have been originally defined as d-parametrized,
while (G)DOS is d-optimizing. Nevertheless, many d-parametrized methods evalu-
ate subset candidates of various cardinalities throughout the course of search and
thus in principle permit d optimization as well.

2. THE PROBLEM OF FRAGILE FEATURE SUBSET PREFERENCE AND
ITS RESOLUTION

In FS algorithm design it is generally assumed that any improvement in the cri-
terion value leads to better feature subset. Nevertheless, this principle has been
challenged [31, 33, 34] showing that the strict application of this rule may easily
lead to over-fitting and consequently to poor generalization performance even with
the best available FS evaluation schemes. Unfortunately, there seems to be no way
of defining FS criteria capable of avoiding this problem in general, as no criterion
can substitute for possibly non-representative training data.

Many common FS algorithms (see Section 1.2) can be viewed as generators of a
sequence of candidate feature subsets and respective criterion values (see Figure 1).
Intermediate solutions are usually selected among the candidate subsets as the ones
with the highest criterion value discovered so far. Intermediate solutions are used
to further guide the search. The solution with the highest overall criterion value
is eventually considered to be the result. In the course of the search the candidate
feature subsets may yield fluctuating criterion values while the criterion values of
intermediate solutions usually form a nondecreasing sequence. The search generally
continues as long as intermediate solutions improve, no matter how significant the
improvement is and often without respect to other effects like excessive subset size
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Fig. 3. In many FS tasks very low criterion increase is accompanied

by fluctuations in selected subsets; both in size and contents

increase, although it is known that increasing model dimensionality in itself increases
the risk of over-fitting.

Therefore, in this section we present a workaround targeted specifically at im-
proving the robustness of decisions about feature inclusion/removal in the course of
feature subset search.

2.1. The Problem of Fragile Feature Preference

In many FS tasks it can be observed that the difference between criterion values
of successive intermediate solutions decreases in time and often becomes negligible.
Yet minimal change in criterion value may be accompanied by substantial changes
in subset contents. This can easily happen, e. g., when many of the considered
features are important but dependent on each other to various degrees with respect
to the chosen criterion, or when there is large number of features carrying limited
but nonzero information (this is common, e. g., in text categorization [37]). We
illustrate this phenomenon in Figure 3, showing the process of selecting features on
spambase data [8] using SFFS algorithm [30] and estimated classification accuracy of
Support Vector Machine (SVM, [2]) as criterion [20]. Considering only those tested
subset candidates with criterion values within 1% difference from the final maximum
achieved value, i. e., values from [0.926, 0.936], their sizes fluctuate from 8 to 17. This
sequence of candidate subsets yields average Tanimoto distance ATI [18, 42] as low
as 0.551 on the scale [0, 1] where 0 marks disjunct sets and 1 marks identical sets.
This suggests that roughly any two of these subsets differ almost in half of their
contents. Expectedly, notable fluctuations in feature subset contents following from
minor criterion value improvement are unlikely to lead to reliable final classification
system. We will refer to this effect of undue criterion sensitivity as feature over-
evaluation. Correspondingly, Raudys [31] argues that to prevent over-fitting it may
be better to consider a subset with slightly lower than the best achieved criterion
value as a FS result.
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2.2. Tackling The Problem of Fragile Feature Subset Preferences

Following the observations above, we propose to treat as equal (effectively indistin-
guishable) all subsets known to yield primary criterion value within a pre-defined
(very small) distance from the maximum known at the current algorithm stage [40].
Intermediate solutions then need to be selected from the treated-as-equal subset
groups using a suitable complementary secondary criterion. A good complementary
criterion should be able to compensate for the primary criterion’s deficiency in dis-
tinguishing among treated-as-equal subsets. Nevertheless, introducing the secondary
criterion opens up alternative usage options as well, see Section 2.2.2.

The idea of the secondary criterion is similar to the principle of penalty functions
as used, e. g., in two-part objective function consisting of goodness-of-fit and number-
of-variables parts [12]. However, in our approach we propose to keep the evaluation of
primary and secondary criteria separated. Avoiding the combination of two criteria
into one objective function is advantageous as it a) avoids the problem of finding
reasonable combination parameters (weights) of potentially incompatible objective
function parts and b) enables to use the secondary criterion as supplement only in
cases when the primary criterion response is not decisive enough.

Remark 2.1. The advantage of separate criteria evaluation comes at the cost of
necessity to specify which subset candidates are to be treated as equal, i. e., to set
a threshold depending on the primary criterion. This, however, is transparent to
define (see below) and, when compared to two-part objective functions, allows for
finer control of the FS process.

2.2.1. Complementary Criterion Evaluation Mechanism

Let J1(·) denote the primary FS criterion to be maximized by the chosen FS algo-
rithm. Let J2(·) denote the secondary (complementary) FS criterion for resolving
the “treated-as-equal” cases. Without any loss of generality we assume that a higher
J2 value denotes a more preferable subset (see Section 2.2.2 for details). Let τ ∈ [0, 1]
denote the equality threshold parameter. Throughout the course of the search, two
pivot subsets, Xmax and Xsel, are to be updated after each criterion evaluation. Let
Xmax denote the subset yielding the maximum J1 value known so far. Let Xsel de-
note the currently selected subset (intermediate solution). When the search process
ends, Xsel is to become the final solution.

The chosen backbone FS algorithm is used in its standard way to maximize J1. It
is the mechanism proposed below that simultaneously keeps selecting an intermediate
result Xsel among the currently known “treated-as-equal” alternatives to the current
Xmax, allowing Xsel 6= Xmax if Xsel is better than Xmax with respect to J2 while being
only negligibly worse with respect to J1, i. e., provided

J1(Xsel) ≥ (1− τ) · J1(Xmax) ∧ J2(Xsel) > J2(Xmax) . (10)

Algorithmic Extension: Whenever the backbone FS algorithm evaluates a feature
subset X (depicting any subset evaluated at any algorithm stage), the following up-
date sequence is to be called:
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1. If J1(X) ≤ J1(X
max), go to 4.

2. Make X the new Xmax.

3. If J1(X
sel) < (1− τ) · J1(X

max) ∨ J2(X
sel) ≤ J2(X

max), make X also the new Xsel and
stop this update sequence.

4. If
`
J1(X) ≥ (1 − τ) · J1(X

max) ∧ J2(X) > J2(X
sel)

´
∨

`
J2(X) = J2(X

sel) ∧ J1(X) >

J1(X
sel)

´
, make X the new Xsel and stop this update sequence.

The proposed mechanism does not affect the course of the search of the primary
FS algorithm; it only adds a form of lazy solution update. Note that the presented
mechanism is applicable with a large class of FS algorithms (cf. Sect 2).

Remark 2.2. Note that in a single backbone FS algorithm run it is easily possible
to collect solutions for an arbitrary number of τ values. The technique does not add
any additional computational complexity burden to the backbone FS algorithm.

Remark 2.3. Note that to further refine the selection of alternative solutions it is
possible to introduce another parameter σ as an equality threshold with respect to
the criterion J2. This would prevent selecting set Xsel

1 at the cost of Xsel
2 if

J2(Xsel
1 ) > J2(Xsel

2 ) , (11)

but

J2(Xsel
1 ) ≤ (1 + σ) · J2(Xsel

2 ) ∧ J1(Xsel
2 ) > J1(Xsel

1 ) ≥ (1− τ) · J1(Xmax) . (12)

We do not adopt this additional mechanism in the following so as to avoid the choice
of another parameter σ.

2.2.2. Complementary Criterion Usage Options

The J2 criterion can be utilized for various purposes. Depending on the particular
problem, it may be possible to define J2 to distinguish better among subsets that J1

fails to distinguish reliably enough.
The simplest yet useful alternative is to utilize J2 for emphasising the preference

of smaller subsets. To achieve this, J2 is to be defined as

J2(X) = −|X| . (13)

Smaller subsets not only mean a lower measurement cost, but more importantly in
many problems the forced reduction of subset size may help to reduce the risk of
over-fitting and improve generalization (see Section 2.3).

More generally, J2 can be used to incorporate feature acquisition cost minimiza-
tion into the FS process. Provided a weight (cost) wi, i = 1, . . . , D is known for each
feature, then the appropriate secondary criterion can be easily defined as

J2(X) = −
∑
xi∈X

wi . (14)



Improving feature selection resistance to failures caused by curse-of-dimensionality 411

Table 1. FS with reduced feature preference fragility for various τ –

lower-dimensional data examples. Bullets mark cases where τ > 0 led

to improvement.

SFFS dermatology, D = 34, spectf, D = 44, spambase, D = 57,
6 classes, 358 samples 2 classes, 267 samples 2 classes, 4601 samples
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S
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0 8 .977 .917 2 .827 .761 16 .937 .883
0.001 dtto dtto dtto dtto dtto dtto dtto dtto dtto

0.005 dtto dtto dtto dtto dtto dtto 10 .934 .879
0.01 dtto dtto dtto dtto dtto dtto 9 .930 .884 •
0.02 7 .966 .922 • dtto dtto dtto 8 .921 .870
0.03 6 .955 .922 • dtto dtto dtto 6 .912 .872
0.04 5 .944 .933 • 1 .797 .791 • 5 .904 .871
0.05 dtto dtto dtto dtto dtto dtto 4 .896 .866

3
N

N

0 16 .994 .933 11 .948 .769 30 .930 .871
0.001 dtto dtto dtto dtto dtto dtto 24 .930 .872 •
0.005 dtto dtto dtto dtto dtto dtto 20 .926 .871 •
0.01 dtto dtto dtto dtto dtto dtto 18 .923 .876 •
0.02 6 .983 .950 • dtto dtto dtto 14 .913 .867
0.03 5 .966 .939 • 7 .925 .776 • 9 .905 .856
0.04 dtto dtto dtto dtto dtto dtto 8 .896 .828
0.05 dtto dtto dtto 6 .910 .716 7 .887 .807

Table 2. FS with reduced feature preference fragility for various τ –

higher-dimensional data examples. Bullets mark cases where τ > 0

led to improvement.

DOS(15) gisette, D = 5000, madelon, D = 500 xpxinsar, D = 57
2 classes, 1000 samples 2 classes, 2000 samples 7 classes, 1721 samples
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0 10 .922 .856 21 .841 .804 12 .873 .863
0.001 9 .921 .860 • dtto dtto dtto dtto dtto dtto

0.005 7 .918 .862 • 17 .837 .817 • 9 .871 .867 •
0.01 5 .914 .854 15 .833 .812 • 7 .866 .897 •
0.02 3 .906 .852 13 .825 .816 • 6 .864 .896 •
0.03 dtto dtto dtto dtto dtto dtto 5 .856 .871 •
0.04 2 .890 .856 • 12 .811 .793 4 .840 .845
0.05 dtto dtto dtto dtto dtto dtto dtto dtto dtto

3
N

N

0 15 .958 .904 18 .891 .844 16 .847 .854
0.001 dtto dtto dtto dtto dtto dtto 14 .847 .854 •
0.005 13 .954 .898 13 .888 .842 12 .844 .848
0.01 11 .950 .892 9 .883 .850 • 10 .840 .847
0.02 8 .940 .892 7 .877 .848 • 9 .837 .825
0.03 6 .930 .874 6 .869 .847 • 5 .823 .842
0.04 5 .922 .89 5 .858 .854 • dtto dtto dtto

0.05 4 .914 .87 dtto dtto dtto 4 .812 .837
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2.3. Experimental Results

We illustrate the potential of the proposed methodology on a series of experi-
ments where J2 was used for emphasising the preference of smaller subsets (see Sec-
tion 2.2.2). For this purpose we used several data-sets from UCI repository [8] and
one data-set – xpxinsar satellite – from Salzburg University. Table 1 demonstrates
the results obtained using the extended version (see Section 2.2) of the Sequential
Forward Floating Search (SFFS, [30]). Table 2 demonstrates results obtained using
the extended version (see Section 2.2) of the Dynamic Oscillating Search (DOS, [43]).
For simplification we consider only single feature adding/removal steps (c-tuples with
c = 1). Both methods have been used in wrapper setting [20], i. e., with estimated
classifier accuracy as FS criterion. For this purpose we have used a Support Vec-
tor Machine (SVM) with Radial Basis Function kernel [2] and 3-Nearest Neighbor
classifier accuracy estimates. To estimate final classifier accuracy on independent
data we split each dataset to equally sized parts; the training part was used in 3-fold
Cross-Validation manner to evaluate wrapper criteria in the course of FS process, the
testing part was used only once for independent classification accuracy estimation.

We repeated each experiment for different equality thresholds τ , ranging from
0.001 to 0.05 (note that due to the wrapper setting both considered criteria yield
values from [0, 1]). Tables 1 and 2 show the impact of changing equality threshold
to classifier accuracy on independent data. The first row (τ = 0) equals standard FS
algorithm operation without the extension proposed in this paper. The black bullet
points emphasize cases where the proposed mechanism has led to an improvement,
i. e., the selected subset size has been reduced with better or equal accuracy on
independent test data. Underlining emphasizes those cases where the difference from
the (τ = 0) case has been confirmed by statistical significance t-test at significance
level 0.05. Note that the positive effect of nonzero τ can be observed in a notable
number of cases. Note in particular that in many cases the number of features
could be reduced to less than one half of what would be the standard FS method’s
result (cf. in Table 1 the dermatology–3NN case and in Table 2 the gisette–SVM,
xpxinsar–SVM and madelon–3NN cases). However, it can be also seen that the effect
is strongly case dependent. It is hardly possible to give a general recommendation
about the suitable τ value, except that improvements in some of our experiments
have been observed for various τ values up to roughly 0.1.

Remark 2.4. Let us note that the reported statistical significance test results in
this paper are of complementary value only as our primary aim is to illustrate general
methodological aspects of feature selection and not to study concrete tasks in detail.

3. CRITERIA ENSEMBLES IN FEATURE SELECTION

It has been shown repeatedly in literature that classification system performance may
be considerably improved in some cases by means of a classifier combination [19].
In multiple-classifier systems FS is often applied separately to yield different subsets
for each classifier in the system [7, 11]. Another approach is to select one feature
subset to be used in all co-operating classifiers [6, 32].
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In contrary to such approaches, we propose to utilize the idea of combination
to eventually produce one feature subset to be used with one classifier [39]. We
propose to combine FS criteria with the aim of obtaining a feature subset that has
better generalization properties than subsets obtained using a single criterion. In
the course of the FS process we evaluate several criteria simultaneously and, at any
selection step, the best features are identified by combining the criteria output. In
the following we show that subsets obtained by combining selection criteria output
using voting and weighted voting are more stable and improve the classifier perfor-
mance on independent data in many cases. Note that this technique follows a similar
goal as the one presented in Section 2.

3.1. Combining Multiple Criteria

Different criterion functions may reflect different properties of the evaluated feature
subsets. Incorrectly chosen criterion may easily lead to the wrong subset (cf. feature
over-evaluation, see Section 2.1). Combining multiple criteria is justifiable from the
same reasons as traditional multiple classifier systems. It should reduce the tendency
to over-fit by preferring features that perform well with respect to several various
criteria instead of just one and consequently enable to improve the generalization
properties of the selected subset of features. The idea is to reduce the possibility of
a single criterion to exploit too strongly the specific properties of training data, that
may not be present in independent test data.

In the following we discuss several straight-forward approaches to criteria combi-
nation by means of re-defining J + and J− in expression (7) for use in Definitions 1.1
and 1.2. We will consider ensembles of arbitrary feature selection criteria J (k),
k = 1, . . . ,K. In Section 3.2 concrete example will be given for ensemble consisting
of criteria J (k), k = 1, . . . , 4, standing for the estimated accuracy of (2k−1)-Nearest
Neighbor classifier.

3.1.1. Multiple Criterion Voting

The most universal way to realize the idea of criterion ensemble is to implement a
form of voting. The intention is to reveal stability in feature (or feature c-tuple Tc)
preferences, with no restriction on the principle or behavior of the combined criteria
J (k), k = 1, . . . ,K. Accordingly, we will redefine J + and J− to express averaged
feature c-tuple ordering preferences instead of directly combining criterion values.

In the following we define J +
order as replacement of J + in Definition 1.1. The

following steps are to be taken separately for each criterion J (k), k = 1, . . . ,K in
the considered ensemble of criteria. First, evaluate all values J (k)(Xd ∪ Tc,i) for
fixed k and i = 1, . . . , T , where T =

(
D−d

c

)
, and Tc,i ⊆ Y \ Xd. Next, order these

values descending with possible ties resolved arbitrarily at this stage and encode the
ordering using indexes ij , j = 1, . . . , T, ij ∈ [1, T ] where im 6= in for m 6= n:

J (k)(Xd ∪ Tc,i1) ≥ J (k)(Xd ∪ Tc,i2) ≥ · · · ≥ J (k)(Xd ∪ Tc,iT
) . (15)

Next, express feature c-tuple preferences using coefficient α
(k)
j , j = 1, . . . , T , defined
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to take into account possible feature c-tuple preference ties as follows:

α
(k)
i1

= 1 (16)

α
(k)
ij

=

{
α

(k)
ij−1

if J (k)(Xd ∪ Tc,i(j−1)) = J (k)(Xd ∪ Tc,ij )
α

(k)
ij−1

+ 1 if J (k)(Xd ∪ Tc,i(j−1)) > J (k)(Xd ∪ Tc,ij )
for j ≥ 2 .

Coefficient α
(k)
j can be viewed as a feature c-tuple index in a list ordered according

to criterion J (k) values, where c-tuples with equal criterion value all share the same
position in the list.

Now, having collected the values α
(k)
j for all k = 1, . . . ,K and j = 1, . . . , D − d

we can transform the criteria votes to a form usable in Definition 1.1 by defining:

J +
order(Xd, Tc,i) = − 1

K

K∑
k=1

α
(k)
i . (17)

The definition of J−
order is analogous.

Remark 3.1. Note that alternative schemes of combining the information on or-
dering coming from various criteria can be considered. Note, e. g., that in the expres-
sion (16) all subsets that yield equal criterion value get the the same lowest available
index. If such ties occur frequently, it might be better to assign an index median
within each group of equal subsets so as to prevent disproportionate influence of
criteria that tend to yield less distinct values.

3.1.2. Multiple Criterion Weighted Voting

Suppose we introduce an additional restriction ono the values yielded by criteria
J (k), k = 1, . . . ,K in the considered ensemble. Suppose each J (k) yields values
from the same interval. This is easily fulfilled, e. g., in wrapper FS methods [20]
where the estimated correct classification rate is usually normalized to [0, 1]. Now
the differences between J (k) values (for fixed k) can be treated as weights expressing
relative feature c-tuple preferences of criterion k. In the following we define J +

weight as
replacement of J + in Definition 1.1. The following steps are to be taken separately
for each criterion J (k), k = 1, . . . ,K in the considered ensemble of criteria. First,
evaluate all values J (k)(Xd∪Tc,i) for fixed k and i = 1, . . . , T , where T =

(
D−d

c

)
, and

Tc,i ⊆ Y \Xd. Next, order the values descending with possible ties resolved arbitrarily
at this stage and encode the ordering using indexes ij , j = 1, . . . , T, ij ∈ [1, T ] in the
same way as shown in (15). Now, express feature c-tuple preferences using coefficient
β

(k)
j , j = 1, . . . , T defined to take into account the differences between the impact

the various feature c-tuples from Y \Xd have on the criterion value:

β
(k)
ij

= J (k)(Xd ∪ Tc,i1)− J (k)(Xd ∪ Tc,ij ) for j = 1, . . . , T . (18)

Now, having collected the values β
(k)
j for all k = 1, . . . ,K and j = 1, . . . , T we can
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transform the criteria votes to a form usable in Definition 1.1 by defining:

J +
weight(Xd, Tc,i) = − 1

K

K∑
k=1

β
(k)
i . (19)

The definition of J−
weight is analogous.

3.1.3. Resolving Voting Ties

Especially in small sample data where the discussed techniques are of particular
importance it may easily happen that

J +
order(Xd, Tc,i) = J +

order(Xd, Tc,j) for i 6= j . (20)

(The same can happen for J−
order, J

+
weight, J

−
weight.) To resolve such ties we employ

an additional mechanism. To resolve J + ties we collect in the course of FS process
for each feature c-tuple Tc,i, i = 1, . . . ,

(
D
c

)
the information about all values (17)

or (19), respectively, evaluated so far. In case of J + ties this collected information
is used in that the c-tuple with the highest average value of (17) or (19), respectively,
is preferred. (Tie resolution for J−order, J+

weight, J−weight is analogous.)

3.2. Experimental Results

We performed a series of FS experiments on various data-sets from UCI repository [8]
and one data-set (xpxinsar satellite) from Salzburg University. Many of the data-sets
have small sample size with respect to dimensionality. In this type of problem any
improvement of generalization properties plays a crucial role. To put the robustness
of the proposed criterion voting schemes to the test we used the Dynamic Oscillating
Search algorithm [43] in all experiments as one of the strongest available subset
optimizers, with high risk of over-fitting. For simplification we consider only single
feature adding/removal steps (c-tuples with c = 1).

To illustrate the concept we have resorted to combining classification accuracy of
four simple wrappers in all experiments – k-Nearest Neighbor (k-NN) classifiers for
k = 1, 3, 5, 7, as the effects of increasing k are well understandable. With increasing
k the k-NN class-separating hyperplane gets smoother – less affected by outliers but
also less sensitive to possibly important detail.

Each experiment was run using 2-tier cross-validation. In the “outer” 10-fold
cross-validation the data was repeatedly split to 90 % training part and 10 % testing
part. FS was done on the training part. Because we used the wrapper FS setup,
each criterion evaluation involved classifier accuracy estimation on the training data
part. To utilize the information in training data better, the estimation was realized
by means of “inner” 10-fold cross-validation, i. e., the training data was repeatedly
split to 90% sub-part used for classifier training and 10% sub-part used for classifier
validation. The averaged classifier accuracy then served as single FS criterion output.
Each selected feature subset was eventually evaluated on the 3-NN classifier, trained
on the training part and tested on the testing part of the “outer” data split. The
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Table 3. ORDER VOTING. Comparing single-criterion and

multiple-criterion FS (first and second row for each data-set). All

reported classification rates obtained using 3-NN classifier on

independent test data. Improvement emphasized in bold (the higher

the classification rate and/or stability measures’ value the better).

D
im

.

C
la

ss
es Rel. Classsif. Subset FS Stability Time

samp. k-NN rate size d CW ATI
Data size (k) Mean S.Dv. Mean S.Dv.

rel

derm 36 6 1.66 3 .970 .023 9.6 0.917 .597 .510 3m
1,3,5,7 .978 .027 10.7 1.676 .534 .486 16m

house 14 5 7.23 3 .707 .088 4.9 1.513 .456 .478 1m
1,3,5,7 .689 .101 5.4 1.744 .497 .509 5m

iono 34 2 5.16 3 .871 .078 5.6 1.500 .303 .216 2m
1,3,5,7 .882 .066 4.7 1.269 .441 .325 6m

mam 65 2 0.66 3 .821 .124 4.2 1.833 .497 .343 30s
mo 1,3,5,7 .846 .153 3 1.483 .519 .420 80s
opt38 64 2 8.77 3 .987 .012 9 1.414 .412 .297 2m

1,3,5,7 .987 .012 9.5 1.360 .490 .362 6m
sati 36 6 20.53 3 .854 .031 14.2 3.156 .347 .392 33h

1,3,5,7 .856 .037 14.5 3.801 .357 .399 116h
segm 19 7 17.37 3 .953 .026 4.7 1.735 .610 .550 35m

1,3,5,7 .959 .019 4.6 2.245 .625 .601 2h
sonar 60 2 1.73 3 .651 .173 12.8 4.895 .327 .260 7m

1,3,5,7 .676 .130 8.8 4.020 .350 .260 16m
specf 44 2 3.03 3 .719 .081 9.5 4.522 .174 .157 4m

1,3,5,7 .780 .111 9.8 3.092 .255 .237 15m
wave 40 3 41.67 3 .814 .014 17.2 2.561 .680 .657 62h

1,3,5,7 .817 .011 16.4 1.356 .753 .709 170h
wdbc 30 2 9.48 3 .965 .023 10.3 1.676 .327 .345 12m

1,3,5,7 .967 .020 10.1 3.176 .360 .375 41m
wine 13 3 4.56 3 .966 .039 5.9 0.831 .568 .594 15s

1,3,5,7 .960 .037 6 1.000 .575 .606 54s
wpbc 31 2 3.19 3 .727 .068 9.1 3.048 .168 .211 2m

1,3,5,7 .727 .056 7.2 2.600 .189 .188 5m
xpxi 57 7 4.31 3 .895 .067 10.8 1.939 .618 .489 5h

1,3,5,7 .894 .069 11.5 3.233 .630 .495 21h

resulting classification accuracy, averaged over “outer” data splits, is reported in
Tables 3 and 4.

In both Tables 3 and 4 for each data-set the multiple-criterion results (second row)
are compared to the single-criterion result (first row) obtained using 3-NN as wrap-
per. For each data-set its basic parameters are reported, including its class-averaged
dimensionality-to-class-size ratio. Note that in each of the “outer” runs possibly
different feature subset can be selected. The stability of feature preferences across
the “outer” cross-validation runs has been evaluated using the stability measures:
relative weighted consistency CWrel and averaged Tanimoto distance ATI [18, 42],
both yielding values from [0, 1]. In CWrel 0 marks the maximum relative randomness
and 1 marks the least relative randomness among the feature subsets (see [42] for
details), in ATI 0 marks disjunct subsets and 1 marks identical subsets. We also
report the total time needed to complete each 2-tier cross-validation single-threaded
experiment on an up-to-date AMD Opteron CPU.

Table 3 illustrates the impact of multiple criterion voting (17) as described in Sec-
tion 3.1.1. Table 4 illustrates the impact of multiple criterion weighted voting (19)
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Table 4. WEIGHTED VOTING. Comparing single-criterion and

multiple-criterion FS (first and second row for each data-set). All

reported classification rates obtained using 3-NN classifier on

independent test data. Improvement emphasized in bold (the higher

the classification rate and/or stability measures’ value the better).

D
im

.

C
la

ss
es Rel. Classsif. Subset FS Stability FS time

samp. k-NN rate size d CW ATI
Data size (k) Mean S.Dv. Mean S.Dv.

rel h:m:s

derm 36 6 1.66 3 .970 .023 9.6 0.917 .597 .510 3m
1,3,5,7 .978 .017 10.3 1.552 .658 .573 17m

house 14 5 7.23 3 .707 .088 4.9 1.513 .456 .478 1m
1,3,5,7 .716 .099 5.6 2.29 .459 .495 3m

iono 34 2 5.16 3 .871 .078 5.6 1.500 .303 .216 2m
1,3,5,7 .897 .059 4.9 1.758 .393 .345 7m

mam 65 2 0.66 3 .821 .124 4.2 1.833 .497 .343 30s
mo 1,3,5,7 .813 .153 2.6. 1.428 .542 .390 43s
opt38 64 2 8.77 3 .987 .012 9 1.414 .412 .297 90m

1,3,5,7 .988 .011 8.6 1.020 .569 .423 08h
sati 36 6 20.53 3 .854 .031 14.2 3.156 .347 .392 33h

1,3,5,7 .856 .038 13.8 2.182 .448 .456 99h
segm 19 7 17.37 3 .953 .026 4.7 1.735 .610 .550 35m

1,3,5,7 .959 .019 4.6 2.245 .644 .610 02h
sonar 60 2 1.73 3 .651 .173 12.8 4.895 .327 .260 7m

1,3,5,7 .614 .131 10.1 3.015 .301 .224 20m
specf 44 2 3.03 3 .719 .081 9.5 4.522 .174 .157 4m

1,3,5,7 .787 .121 9.1 3.590 .285 .229 18m
wave 40 3 41.67 3 .814 .014 17.2 2.561 .680 .657 62h

1,3,5,7 .814 .016 16.9 1.700 .727 .700 287h
wdbc 30 2 9.48 3 .965 .023 10.3 1.676 .327 .345 12m

1,3,5,7 .967 .020 10.3 4.267 .352 .346 55m
wine 13 3 4.56 3 .966 .039 5.9 0.831 .568 .594 15s

1,3,5,7 .960 .037 6.6 1.200 .567 .606 28s
wpbc 31 2 3.19 3 .727 .068 9.1 3.048 .168 .211 2m

1,3,5,7 .686 .126 6.9 2.508 .211 .192 4m
xpxi 57 7 4.31 3 .895 .067 10.8 1.939 .618 .489 5h

1,3,5,7 .895 .071 11 2.683 .595 .475 38h

as described in Section 3.1.2. Improvements are emphasized in bold. Underlining
emphasizes those cases where the difference from the single-criterion case has been
confirmed by statistical significance t-test at significance level 0.05. The results pre-
sented in both Tables 3 and 4 clearly show that the concept of criteria ensemble has
the potential to improve both the generalization ability (as illustrated by improved
classification accuracy on independent test data) and FS stability (sensitivity to
perturbations in training data). Note that the positive effect of either (17) or (19)
is not present in all cases (in some cases the performance degraded as with house
dataset in Table 3 and sonar and wpbc datasets in Table 4) but it is clearly prevalent
among the tested datasets. It can be also seen that none of the presented schemes
can be identified as the universally better choice.

4. FEATURE SELECTION HYBRIDIZATION

In the following we will finally investigate the hybrid approach to FS that aims to
combine the advantages of filter and wrapper algorithms [20]. The main advantage
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of filter methods is their speed, ability to scale to large data sets, and better re-
sitance to over-fitting. A good argument for wrapper methods is that they tend
to give a superior performance for specific classifiers. FS hybridization has been
originally defined to achieve best possible (wrapper-like) performance with the time
complexity comparable to that of the filter algorithms [25, 41, 44]. In the following
we show that apart from reduced search complexity this approach can also improve
the generalization ability of the final classification system.

Hybrid FS algorithms can be easily defined in the context of sequential search
(see Section 1.2.1). Throughout the course of sequential feature selection process,
in each step the filter criterion is used to reduce the number of candidates to be
eventually evaluated by the wrapper criterion. The scheme can be applied in any
sequential FS algorithms (see Section 1.2) by replacing Definitions 1.1 and 1.2 by
Definitions 4.1 and 4.2 given below. For the sake of simplicity let JF (.) denote
the faster but for the given problem less specific filter criterion, JW (.) denote the
slower but more problem-specific wrapper criterion. The hybridization coefficient,
defining the proportion of feature subset candidate evaluations to be accomplished
by wrapper means, is denoted by λ ∈ [0, 1]. Note that choosing λ < 1 reduces the
number of JW computations but the number of JF computations remains unchanged.
In the following b·e denotes value rounding.

Definition 4.1. For a given current feature set Xd and given λ ∈ [0, 1], denote
T+ =

(
D−d

c

)
, and let Z+ be the set of candidate feature c-tuples

Z+ = {Tc,i : Tc,i ⊆ Y \Xd; i = 1, . . . ,max{1, bλ · T+e}} (21)

such that

∀T
′

c , T
′′

c ⊆ Y \Xd, T
′

c ∈ Z+, T
′′

c /∈ Z+ (22)

J+
F (Xd, T

′

c ) ≥ J+
F (Xd, T

′′

c ) ,

where J+
F (Xd, Tc) denotes the pre-filtering criterion function used to evaluate the

subset obtained by adding c-tuple Tc (Tc ⊆ Y \ Xd) to Xd. Let T +
c be the feature

c-tuple such that
T +

c = arg max
Tc∈Z+

J+
W (Xd, Tc) , (23)

where J+
W (Xd, Tc) denotes the main criterion function used to evaluate the subset

obtained by adding c-tuple Tc (Tc ∈ Z+) to Xd. Then we shall say that hADDc(Xd)
is an operation of adding feature c-tuple T +

c to the current set Xd to obtain set Xd+c

if
hADDc(Xd) ≡ Xd ∪ T +

c = Xd+c, Xd,Xd+c ⊆ Y. (24)

Definition 4.2. For a given current feature set Xd and given λ ∈ [0, 1], denote
T− =

(
d
c

)
− 1, and let Z− be the set of candidate feature c-tuples

Z− = {Tc,i : Tc,i ⊂ Xd; i = 1, . . . ,max{1, bλ · T−e}} (25)

such that

∀T
′

c , T
′′

c ⊂ Xd, T
′

c ∈ Z−, T
′′

c /∈ Z− J−F (Xd, T
′

c ) ≥ J−F (Xd, T
′′

c ) , (26)
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where J−F (Xd, Tc) denotes the pre-filtering criterion function used to evaluate the
subset obtained by removing c-tuple Tc (Tc ⊂ Xd) from Xd. Let T −c be the feature
c-tuple such that

T −c = arg max
Tc∈Z−

J−W (Xd, Tc), (27)

where J−W (Xd, Tc) denotes the main criterion function used to evaluate the sub-
set obtained by removing c-tuple Tc (Tc ∈ Z−) from Xd. Then we shall say that
hRMVc(Xd) is an operation of removing feature c-tuple T −c from the current set Xd

to obtain set Xd−c if

hRMVc(Xd) ≡ Xd \ T −c = Xd−c, Xd,Xd−c ⊆ Y. (28)

Note that in standard sequential FS methods J+
F (·), J−F (·), J+

W (·) and J−W (·) stand
for

J+
F (Xd, Tc) = JF (Xd ∪ Tc) , (29)

J−F (Xd, Tc) = JF (Xd \ Tc) ,

J+
W (Xd, Tc) = JW (Xd ∪ Tc) ,

J−W (Xd, Tc) = JW (Xd \ Tc) .

The idea behind the proposed hybridization scheme is applicable in any sequential
feature selection method (see Section 1.2.1).

When applied in sequential FS methods the described hybridization mechanism
has several implications: 1. it makes possible to use wrapper based FS in consider-
ably higher dimensional problems as well as with larger sample sizes due to reduced
number of wrapper computations and consequent computational time savings, 2. it
improves resistance to over-fitting when the used wrapper criterion tends to over-fit
and the filter does not, and 3 for λ = 0 it reduces the number of wrapper criterion
evaluations to the absolute minimum of one evaluation in each algorithm step. In
this way it is possible to enable monotonic filter criteria to be used in d-optimizing
setting, which would otherwise be impossible.

Table 5. Performance of hybridized FS methods with Bhattacharyya

distance used as pre-filtering criterion and 5-NN performance as main

criterion. Madelon data, 500-dim., 2 classes of 1000 and 1000 samples.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d-opt. Dynamic Oscillating Search (∆ = 15)
train .795 .889 .903 .873 .897 .891 .892 .894 .884 .884 .886
test .811 .865 .868 .825 .854 .877 .871 .849 .873 .873 .875
features 8 27 19 19 19 18 23 13 13 13 16
time 1s 6m 14m 8m 18m 18m 14m 5m 3m 3m 9m

d-par. Oscillating Search (BIF initialized, ∆ = 10), subset size set in all cases to d = 20
train .812 .874 .887 .891 .879 .902 .891 .899 .889 .891 .884
test .806 .859 .869 .853 .855 .864 .856 .853 .857 .86 .858
time 9s 6m 1m 2m 4m 7m 9m 14m 10m 10m 13m
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Table 6. Performance of hybridized FS methods with Bhattacharyya

distance used as pre-filtering criterion and 5-NN wrapper as main

criterion. Musk data, 166-dim., 2 classes of 1017 and 5581 samples.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d-opt. Dynamic Oscillating Search (∆ = 15)
train .968 .984 .985 .985 .985 .985 .986 .985 .986 .985 .985
test .858 .869 .862 .872 .863 .866 .809 .870 .861 .853 .816
features 7 7 9 14 16 17 18 7 16 12 12
time 5s 2m 6m 16m 22m 25m 38m 12m 48m 29m 41m

d-par. Oscillating Search (BIF initialized, ∆ = 10), subset size set in all cases to d = 20
train .958 .978 .984 .983 .985 .985 .984 .985 .986 .986 .986
test .872 .873 .864 .855 .858 .875 .868 .864 .853 .846 .841
time 1m 4m 33m 11m 62m 32m 47m 70m 63m 65m 31m

Table 7. Performance of hybridized FS methods with Bhattacharyya

distance used as pre-filtering criterion and 5-NN performance as main

criterion. Wdbc data, 30-dim., 2 classes of 357 and 212 samples.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d-opt. Dynamic Oscillating Search (∆ = 15)
train .919 .919 .926 .926 .961 .961 .961 .961 .961 .961 .961
test .930 .930 .933 .933 .944 .944 .944 .944 .944 .944 .944
features 3 2 3 3 5 5 3 3 3 3 3
time 1s 1s 1s 2s 7s 10s 11s 19s 26s 28s 26s

d-par. Oscillating Search (BIF initialized, ∆ = 10), subset size set in all cases to d = 8
train .919 .919 .919 .919 .919 .919 .919 .919 .919 .919 .919
test .933 .933 .933 .933 .933 .933 .933 .933 .933 .933 .933
time 1s 2s 2s 3s 4s 5s 6s 6s 7s 8s 8s

4.1. Experimental Results

We have conducted a series of experiments on data of various characteristics. These
include: low-dimensional low sample size speech data from British Telecom, 15-dim.,
2 classes of 212 and 55 samples, and wdbc data from UCI Repository [8], 30-dim.,
2 classes of 357 and 212 samples, moderate-dimensional high sample size waveform
data [8], 40-dim., first 2 classes of 1692 and 1653 samples, as well as high-dimensional,
high sample size data: madelon 500-dim., 2 classes of 1000 samples and musk data,
166-dim., 2 classes of 1017 and 5581 samples, each form UCI Repository [8].

For each data set we compare FS results of the d-optimizing Dynamic Oscillat-
ing Search (DOS) and its d-parametrized counterpart, the Oscillating Search (OS).
The two methods represent some of the most effective subset search tools available.
For simplification we consider only single feature adding/removal steps (c-tuples
with c = 1). For OS the target subset size d is set manually to a constant value
to be comparable to the d as yielded by DOS. In both cases the experiment has
been performed for various values of the hybridization coefficient λ ranging from
0 to 1. In each hybrid algorithm the following feature selection criteria have been
combined: (normal) Bhattacharyya distance for pre-filtering (filter criterion) and
5-Nearest Neighbor (5-NN) 10-fold cross-validated classification rate on validation
data for final feature selection (wrapper criterion). Each resulting feature subset has



Improving feature selection resistance to failures caused by curse-of-dimensionality 421

been eventually tested using 5-NN on independent test data (50% of each dataset).
The results are demonstrated in Tables 5 to 7. Note the following phenomena

observable across all tables: 1. hybridization coefficient λ closer to 0 leads generally
to lower computational time while λ closer to 1 leads to higher computational time,
although there is no guarantee that lowering λ reduces search time (for counter-
example see, e. g., Table 5 for λ = 0.7 or Table 6 for λ = 0.4), 2. low λ values often
lead to results performing equally or better than pure wrapper results (λ = 1) on
independent test data (see esp. Table 6), 3. d-optimizing DOS tends to yield higher
criterion values than d-parametrized OS; in terms of the resulting performance on
independent data the difference between DOS and OS shows much less notable and
consistent, although DOS still shows to be better performing (compare the best
achieved accuracy on independent data over all λ values in each Table), 4. it is
impossible to predict the λ value for which the resulting classifier performance on
independent data will be maximum (note in Table 5 λ = 0.5 for DOS and 0.2 for
OS, etc.). The same holds for the maximum found criterion value (note in Table 5
λ = 0.2 for DOS and 0.5 for OS). Note that underlining emphasizes those cases
where the difference from the pure wrapper case (λ = 1) has been confirmed by
statistical significance t-test at significance level 0.05.

5. CONCLUSION

We have pointed out that curse of dimensionality effects can seriously hinder the out-
come of feature selection process, resulting in poor performance of devised decision
rules on unknown data. We have presented three different approaches to tackling
this problem.

First, we have pointed out the problem of feature subset preference fragility (over-
emphasized importance of negligible criterion value increase) as one of the factors
that make many FS methods more prone to over-fitting. We propose an algorithmic
workaround applicable with many standard FS methods. Moreover, the proposed
algorithmic extension enables improved ways of standard FS algorithms’ operation,
e. g., taking into account feature acquisition cost. We show just one of the possible
applications of the proposed mechanism on a series of examples where two sequential
FS methods are modified to put more preference on smaller subsets in the course
of a search. Although the main course of search is aimed at criterion maximization,
smaller subsets are permitted to be eventually selected if their respective criterion
value is negligibly lower than the known maximum. The examples show that this
mechanism is well capable of improving classification accuracy on independent data.

Second, it has been shown that combining multiple critera by voting in FS process
has the potential to improve both the generalization properties of the selected feature
subsets as well as the stability of feature preferences. The actual gain is problem
dependent and can not be guaranteed, although the improvement on some datasets
is substantial.

The idea of combining FS criteria by voting can be applied not only in sequential
selection methods but generally in any FS method where a choice is made among
several candidate subsets (generated, e. g., randomly as in genetic algorithms). Ad-
ditional means of improving robustness can be considered, e. g. ignoring the best
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and worst result among all criteria etc.
Third, we introduced the general scheme of defining hybridized versions of se-

quential feature selection algorithms. We show experimentally that in the particular
case of combining faster but weaker filter FS criteria with slow but possibly more
appropriate wrapper FS criteria it is not only possible to achieve results comparable
to that of wrapper-based FS but in filter-like time, but in some cases hybridization
leads to better classifier accuracy on independent test data.

All of the presented approaches have been experimentally shown to be capable
of reducing the risk of over-fitting in feature selection. Their application is to be
recommended especially in cases of high dimensionality and/or small sample size,
where the risk of over-fitting should be of particular concern.

Remark 5.1. Related source codes can be found at http://fst.utia.cz as well
as at http://ro.utia.cas.cz/dem.html.
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[31] Š. J. Raudys: Feature over-selection. In: Proc. S+SSPR, Lecture Notes in Comput.
Sci. 4109, Springer 2006, pp. 622–631.

[32] V. C. Raykar et al.: Bayesian multiple instance learning: automatic feature selection
and inductive transfer. In: Proc. ICML ’08, ACM 2008, pp. 808–815.

[33] J. Reunanen: A pitfall in determining the optimal feature subset size. In: Proc. 4th
Internat. Workshop on Pat. Rec. in Inf. Systs (PRIS 2004), pp. 176–185.

[34] J. Reunanen: Less biased measurement of feature selection benefits. In: Stat. and Op-
timiz. Perspectives Workshop, SLSFS, Lecture Notes in Comput. Sci. 3940, Springer
2006, pp. 198–208.
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[43] P. Somol, J. Novovičová, J. Grim, and P. Pudil: Dynamic oscillating search algorithms
for feature selection. In: ICPR 2008. IEEE Comp. Soc. 2008.
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