Kybernetika 47 no. 1, 38-49, 2011

Binary segmentation and Bonferroni--type bounds

Michal Černý

Abstract:

We introduce the function $Z(x; \xi, \nu) := \int_{-\infty}^x \varphi(t-\xi)\cdot \Phi(\nu t) \text{d}t$, where $\varphi$ and $\Phi$ are the pdf and cdf of $N(0,1)$, respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables of a certain type. We show three applications of the method -- (a) calculation of critical values of the segmentation statistic, (b) evaluation of its efficiency and (c) evaluation of an estimator of a point of change in the mean of time series.

Keywords:

Bonferroni inequality, segmentation statistic, Z-function

Classification:

62E17, 05A20

References:

  1. J. Antoch and M. Hu\v{s}kov\'{a}: Permutation tests in change point analysis. Statist. Probab. Lett. 53 (2001), 37-46.   CrossRef
  2. J. Antoch, M. Hu\v{s}kov\'{a} and D. Jaru\v{s}kov\'{a}: Off-line statistical process control. In: Multivariate Total Quality Control, Physica-Verlag, Heidelberg 2002, 1-86.   CrossRef
  3. J. Antoch, M. Hu\v{s}kov\'{a} and Z. Pr\'{a}\v{s}kov\'{a}: Effect of dependence on statistics for determination of change. J. Statist. Plan. Infer. 60 (1997), 291-310.   CrossRef
  4. J. Antoch and D. Jaru\v{s}kov\'{a}: Testing a homogeneity of stochastic processes. Kybernetika 43 (2007), 415-430.   CrossRef
  5. M. \v{C}ern\'{y} and M. Hlad\'{i}k: The regression tolerance quotient in data analysis. In: Proc. 28th Internat. Conf. on Mathematical Methods in Economics 2010 (M. Houda and J. Friebelov\'{a}, eds.), University of South Bohemia, \v{C}esk\'{e} Bud\v{e}jovice 1 (2010), 98-104.   CrossRef
  6. X. Chen: Inference in a simple change-point problem. Scientia Sinica 31 (1988), 654-667.   CrossRef
  7. K. Dohmen: Improved inclusion-exclusion identities and Bonferroni inequalities with applications to reliability analysis of coherent systems. Internet: \texttt{citeseer.ist.psu.edu/550566.html}.   CrossRef
  8. K. Dohmen and P. Tittman: Inequalities of Bonferroni-Galambos type with applications to the Tutte polynomial and the chromatic polynomial. J.~Inequal. in Pure and Appl. Math. 5 (2004), art. 64.   CrossRef
  9. E. Gombay and L. Horv\'{a}th: Approximations for the time of change and the power function in change-point models. J. Statist. Plan. Infer. 52 (1996), 43-66.   CrossRef
  10. J. Galambos: Bonferroni inequalities. Ann. Prob. 5 (1997), 577-581.   CrossRef
  11. J. Galambos and I. Simonelli: Bonferroni-type Inequalities with Applications. Springer Verlag, Berlin 1996.   CrossRef
  12. M. Hlad\'{i}k and M. \v{C}ern\'{y}: New approach to interval linear regression. In: 24th Mini-EURO Conference On Continuous Optimization and Information-Based Technologies in The Financial Sector MEC EurOPT 2010, Selected Papers (R. Kas\i mbeyli et al., eds.), Technika, Vilnius (2010), 167-171.   CrossRef
  13. A. Sen and M. Srivastava: On tests for detecting change in mean. Ann. Statist. 3 (1975), 98-108.   CrossRef
  14. K. Worsley: Testing for a two-phase multiple regression. Technometrics 25 (1983), 35-42.   CrossRef