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ANALYTICAL DERIVATION OF TIME SPECTRAL

RIGIDITY FOR THERMODYNAMIC TRAFFIC GAS

Milan Krbálek

We introduce an one-dimensional thermodynamical particle model which is efficient in
predictions about a microscopical structure of animal/human groups. For such a model we
present analytical calculations leading to formulae for time clearance distribution as well
as for time spectral rigidity. Furthermore, the results obtained are reformulated in terms
of vehicular traffic theory and consecutively compared to experimental traffic data.

Keywords: thermodynamic traffic gas, clearance distribution, spectral rigidity

Classification: 82B21, 70F45, 37L99

1. INTRODUCTION

Movements of an arbitrary group of humans or animals show many common features
originated from group dynamics ([3, 15], and [14]). For purposes of this article the
animal/human groups are understood as a self-organized systems whose individual
agents are influenced by other agents in the group (see for example [13]). It means
that the agent adapts its behavior to the behavior of the rest of group. Such a
influence is naturally restricted to the interactions with agents occurring in the close
neighborhood (short-ranged interactions). Moreover, the decision-making process
of the moving agent is influenced by the various factors (individuality of the agent,
actual mental strain, control signals, information inflow, random factors and so
on). Typically, the mediated collective decision-making of a group leads to effects
of crowding, i. e. to the formation of congested states when the movement of one
agent is strongly restricted by other agents. One of these effects is visualized in the
Figure 1.

It is obvious that mutual interactions among the agents cause the changes in the
system dynamics, which finally results in relevant changes of macroscopic quanti-
ties for the system investigated (see [6] and [4]). Furthermore, macroscopic relations
describing the global behavior of transport systems influence significantly the micro-
scopic structure of the system. Such a structure is, as understandable, of statistical
nature, which is caused by the individuality of each agent. Whereas for free flow
states one can detect the random distribution of the system elements, for congested
states the strong psychological repulsion among crowding agents leads to the strong
systemization of the ensemble (see [5, 7]). Recently, these microscopic phenomenons
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Fig. 1. Fundamental Diagram of Traffic Flow. Traffic flux J as a function of traffic
density ̺. The diagram is divided into three regions:

1. The free flow region (up to ̺ ≈ 30) where cars move without any restrictions.
2. The region of metastable traffic (30 / ̺ / 45) where the heightened density

causes the reinforcement of mutual interactions among vehicles.

3. The congested flow region (̺ ' 45) where the traffic is fully saturated and the

movement of cars is therefore significantly restricted.

are measurable ([1, 11, 10]), which opens new possibilities to inspect a local behavior
in animal/human groups.

The main goal of this article is to obtain meaningful predictions for the mi-
crostructure of traffic sample (similarly to [2] or [8]) and compare the results obtained
to freeway measurements.

2. FORMULATION OF SOCIO-PHYSICAL TRANSPORT MODEL

Consider N identical particles (agents) on the unit sphere (see Figure 2)

S =
{

~ξ ∈ R
3 : ‖~ξ‖e = 1

}

,

where the symbol ‖.‖e corresponds to the standard (euclidean) norm, i. e. ‖~ξ‖e =
√

ξ2
1 + ξ2

2 + ξ2
3 . Let ~xi = (θi, ϕi) (i = 1 . . .N) denote the position of the ith particle,

where θi and ϕi represent the spherical angles (latitude and longitude) of standard
spherical coordinates. Let ~vi stand for the actual velocity of ith particle and pa-
rameter ~vd is the desired velocity (the same for all agents). Denoting the general
metric in the system as ‖~x − ~y‖ one can define the ε−neighborhood of the particle
i according to

O⋆
ε(~xi) =

{

~ξ ∈ R
3 : ξ2

1 + ξ2
2 + ξ2

3 = 1 ∧ 0 < ‖~ξ − ~xi‖ < ε
}

.

Thus, the indexing set

Ii =
{

k : ~xk ∈ O⋆
ε(~xi)

}
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cumulates all the particles being inside the ε−neighborhood of the ith particle. We
remark that the general metric ‖~x − ~y‖ can be chosen arbitrary (with reference to
the systems observed), but the most usual choice is the euclidean metric.

Fig. 2. Agents on the Unit Sphere. The selected agent (light) and his/her

ε−neighborhood. The agent reacts only to the agents occurring in his/her

ε−neighborhood O⋆
ε .

Aiming to quantify the mutual interactions among the agents we introduce the
short-ranged potential energy

U ∝
N
∑

i=1

∑

k∈Ii

V (rik) ,

where V (ri) corresponds to the repulsive two-body potential depending on the gen-
eral distance rik = ‖~xi − ~xk‖ between the ε−neighboring particles only. The in-
teraction of such a kind is chosen with the respect to the realistic behavior of
animals/humans (see [7]). Besides, the potential V (r) has to be defined so that
limr→0+ V (r) = ∞, which prevents particles from passing through each other. The
socio-physical hamiltonian of the described ensemble reads as

Hε =
m

2

N
∑

i=1

‖~vi − ~vd‖2
e
+ c

N
∑

i=1

∑

k∈Ii

V (rik) ,

where m represents a mass of particles and c is a calibrating coefficient. Whereas the
second summand in the previous formula describes the particle attraction/repulsion
the former takes into account the fact that driver moving with the desired velocity
does not accelerate/decelerate (if not fettered by the other cars).

The above-mentioned description is strictly deterministic and does not reflect the
statistical features of realistic human/animal communities. Therefore we introduce
a thermodynamical alternative of the model (see [5] or [18]) where the entire system
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is exposed (if using the thermodynamical terminology) to a “heat bath” of a given
temperature T , i.e. to random influences of a certain variance and statistics. Denote

β = (kT )−1

where k is the Boltzmann constant. The thermal parameter β can be interpreted as
a psychological coefficient describing a level of the mental pressure under the driver
is while driving his/her car. Hence, in the next part of this article we call β as a
mental strain coefficient.

Implementing this thermal component into the originally deterministic system we
have obtained the statistical ensemble whose thermal equilibrium is described statis-
tically. It means that the microscopical quantities (gaps among the cars, velocities
of single vehicles, time intervals among the subsequent cars and so on) measured in
thermal equilibrium are determined by means of corresponding probability densities.
This fact fully corresponds to the ascertainments observed by the traffic experiments
(see [19] and [16]).

3. CIRCULAR VARIANT OF THE MODEL

Restricting the particle movement to the circular curve

C =
{

~ξ ∈ R
2 : ‖~ξ‖e = 1

}

the previous thermal scheme converts to the simple model of one-lane traffic. In
this case the location of each particle is unambiguously described by its angular
coordinate ϕi. Then the hamiltonian of this one-dimensional system reads as

H =
m

2

N
∑

i=1

(vi − vd)2 + c

N
∑

i=1

V (ri) ,

where

ri := |ϕi+1 − ϕi|
N

2π

corresponds to the re-scaled circular distance between (i + 1)th and ith particles.
Denoting ϕN+1 = ϕ1 for convenience the following equality holds true

N
∑

i=1

ri = N. (1)

As published in [9] the suitable choice for two-body traffic potential is the power-law
function V (r) = r−1. Under these conditions the corresponding partition function is
of a form

Z =

∫

R2N

δ

(

N −
N
∑

i=1

ri

)

N
∏

i=1

e
−m

2 β(vi−vd)2
e
− β

ri dr1 . . . drNdv1 . . . dvN . (2)
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Here δ(x) stands for the Dirac δ−function. After 2N − 1 integrations we find out
that individual velocity v of particles is Gaussian distributed, i. e.

q(v) =
1√
2πσ

e
− (v−vd)2

2σ2 (3)

is the corresponding probability density, where σ−1 =
√

mβ. Similarly, denoting by
Θ(x) the Heaviside’s step function

Θ(x) =

{

1, x > 0
0, x 6 0

and by Kλ(x) the modified Bessel’s function of the second kind (the Mac-Donald’s
function) there has been derived in the article [9] that probability density for gap
among the succeeding cars (clearance distribution) reads as

℘(r) = A Θ(r) e−
β

r e
−Br, (4)

where

B = β +
3 − e

−
√

β

2
, (5)

A−1 = 2

√

β

B
K1

(

2
√

Bβ
)

. (6)

We remark that ℘(r) fulfils two normalization conditions

∫

R

℘(r) dr = 1 (7)

and
∫

R

r ℘(r) dr = 1. (8)

The latter represents a scaling to a mean clearance equal to one. The distribution
(4) is in a good agreement with the clearance distribution observed in the real-road
data (see [7, 9, 10], and [17]). We add that the inverse temperature β of the real
traffic ensemble is related to the traffic density ̺.

4. DERIVATION OF TIME CLEARANCE DISTRIBUTION

Although the distance clearance distribution of traffic sample can be actually very
well estimated by the formula (4) the direct measurement of traffic clearances is less
usual. Since the majority of experimental data is measured by the induction-loop
detectors the clearances are calculated vicariously by means of velocities and time
clearances. Such a method brings an additional vagueness into a distance clearance
statistics (predominantly in the congested traffic area).

A natural way how to eliminate such a drawback can be found in analytical
derivation of suitable estimations for time clearance. i. e. for probability density of
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Fig. 3. Vehicles on the Unit Circle. The interaction among the agents (drivers) is strictly

short-ranged, which means that the particle (light) interacts with two neighbors only.

netto time gaps among all pairs of subsequent cars. The intended analytical calcula-
tions will be introduced in the following text. Knowing the velocity distribution q(v)
and distance clearance distribution ℘(r) one can trivially deduce that time headway
distribution reads as

τ(t) =

∫

R

vq(v)℘(vt) dv.

After denoting f(v) = v℘(vt) we expand such a function into the Taylor’s series
about the optimal velocity vd. Thus

f(v) = f(vd) +

∞
∑

ℓ=1

d
ℓf

dvℓ
(vd)

(v − vd)ℓ

ℓ!
,

where
d

ℓf

dvℓ
=

∂ℓ℘

∂(vt)ℓ
tℓv + ℓ

∂ℓ−1℘

∂(vt)ℓ−1
tℓ−1 (ℓ ∈ N).

Hence

τ(t) = vd℘(vdt) +

∞
∑

ℓ=1

1

ℓ!

∂ℓ℘

∂(vt)ℓ
(vdt)tℓvd

∫

R

(v − vd)ℓq(v) dv

+

∞
∑

ℓ=1

1

ℓ!

∂ℓ−1℘

∂(vt)ℓ−1
(vdt)tℓ−1

∫

R

(v − vd)ℓq(v) dv

= vd℘(vdt) +

∞
∑

ℓ=1

µℓ

ℓ!

(

∂ℓ℘

∂(vt)ℓ
(vdt)tℓvd +

∂ℓ−1℘

∂(vt)ℓ−1
(vdt)tℓ−1

)

,

where µℓ =
∫

R
(v − vd)ℓq(v) dv is ℓ−th statistical moment with three prerogatived

cases µ0 = 1, µ1 = 0, and µ2 = σ2. The latter represents a statistical variance (see
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also (3)). Using this knowledge one can effortlessly find a following approximation
for time clearance distribution

τ(t) ≈ vd℘(vdt) +
σ2

2

(

∂2℘

∂(vt)2
(vdt)t2vd + 2

∂℘

∂(vt)
(vdt)t

)

. (9)

Owing to the facts that

∫

R

(

∂2℘

∂(vt)2
(vdt)t2vd + 2

∂℘

∂(vt)
(vdt)t

)

dt = 0

and the variance is decreasing function of inverse temperature β we operate (in the
next part of the text) with the approximation formula

τ(t) = A Θ(t) e−
β
t e

−Bt =: τβ(t), (10)

where the relations (5), (6) hold true. Again, we use the normalization and re-scaling
conditions like

∫

R

τ(t) dt =

∫

R

t τ(t) dt = 1.

5. DERIVATION OF TIME SPECTRAL RIGIDITY

Description of traffic microstructure by means of inter-vehicle time gap distribution
τ(t) is, as discussed above, more appropriate than inter-vehicle distance gap distri-
bution. However, both of them depict the time/distance gaps between two successive
vehicles only. Aiming to investigate the middle-ranged interactions among the cars
it is necessary to find a mathematical quantity suitable for quantifying the level of
synchronization for larger clusters of particles. This desired quantity can be found
in Random Matrix Theory (see [12]) where it provides the insight into the struc-
ture of eigenvalues of random matrix ensembles. It is called a spectral rigidity. If
reformulated within the bounds of traffic theory the time spectral rigidity has the
following interpretation.

Consider a set {ti : i = 1 . . .Q} of netto time gaps between each pair of the
subsequent cars moving in the same lane. We suppose that the mean time gap
taken over the complete set is re-scaled to one, i. e.

Q
∑

i=1

ti = Q.

Dividing the time interval [0, Q) into subintervals
[

(k − 1)T, kT
)

of a length T and
denoting by nk(T ) the number of cars in the k−th subinterval, the average value
n(T ) taken over all possible subintervals is

n(T ) =
1

⌊Q/T ⌋

⌊Q/T⌋
∑

k=1

nk(T ) = T,
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where the integer part ⌊Q/T ⌋ stands for the number of all subintervals
[

(k−1)T, kT
)

included in the entire interval [0, Q). We suppose, for convenience, that Q/T is
integer, i. e. ⌊Q/T ⌋ = Q/T. The time spectral rigidity ∆(T ) is then defined as

∆(T ) =
T

Q

Q/T
∑

k=1

(

nk(T ) − T
)2

and represents the statistical variance of the number of vehicles passing a given fixed
point of the road during the time interval T.

Knowing the one parameter family of the probability densities (10) we can derive
an analytical prediction for the rigidity ∆(T ) of the related thermodynamical traffic
gas. Let τn(t) represent the nth nearest-neighbor probability density, i.e. the prob-
ability density for the time gap t between the n + 2 neighboring particles. Using
this notation we find that the probability density for the gap between two succeed-
ing particles (cars) is ℘(t) = ℘0(t). Regarding the spacings as independent the nth
probability density τn(t) can be calculated via recurrent formula

τn(t) = τn−1(t) ⋆ τ0(t),

where symbol ⋆ represents a convolution of the two probabilities, i.e.

τn(t) =

∫

R

τn−1(s)τ0(t − s) ds.

Using the method of mathematical induction and an approximation of the function

gn(t, s) = e
−β
(

n2

s
+ 1

t−s

)

≈ e
−β

t
(n+1)2

in the saddle point one can obtain

τn(t) = Θ(t)

∫ t

0

Nn−1N0s
n−1

e
−β n2

s e
−Bs

e
− β

t−s e
−B(t−s)

ds =

= Θ(t)Nn−1N0e
−Bt

∫ t

0

sn−1gn(t, s) ds ≈

≈ Θ(t)Nn−1N0e
−β

t
(n+1)2

e
−Bt

∫ t

0

sn−1
ds ≈ Θ(t)Nn−1N0n

−1tne−
β

t
(n+1)2

e
−Bt.

Hence

τn(t) ≈ Θ(t)Nntne−
β

t
(n+1)2

e
−Bt

where (after applying the re-normalization procedure)

N−1
n = 2

(

√

β

B
(n + 1)

)n+1

Kn+1

(

2(n + 1)
√

Bβ
)

.
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This fixes the proper normalization
∫

R
τn(t) dt = 1. In addition to that the mean

spacing equals to
∫

R

tτn(t) dt = n + 1.

According to [12] the variance ∆(T ) could be evaluated by the formula

∆(T ) = T − 2

∫ T

0

(T − t)
(

1 − R(t)
)

dt, (11)

where

R(t) =

∞
∑

n=0

τn(t)

is the two-point cluster function. A convenient way to calculate the asymptotic
behavior of the variance ∆(T ) for large T is the application of the Laplace transfor-
mation to the two-point cluster function, i. e. y(η) =

∫

R
R(t) e

−ηt
dt. It leads to a

partial result

y(η) =

∞
∑

n=0

(

B

B + η

)

n+1
2 Kn+1

(

2(n + 1)
√

(B + η)β
)

Kn+1

(

2(n + 1)
√

Bβ
) .

The asymptotic behavior of the Mac-Donald’s function

Kn(x) ≈ 2n−1Γ(n)

xn
e
−x (x ≪ 1)

(where Γ(x) represents the gamma-function) provides the approximation

y(η) ≈
(

B + η

B

e
2
√

(B+η)β

e2
√

Bβ
− 1

)−1

.

Applying the Maclaurin’s expansion (Taylor’s expansion about the point zero) of
the function h(η) = η · y(η) to order η2 we obtain

y(η) ≈ 1

η
+ α0 + α1η + O(η2),

where

α0 = −2Bβ + 3
√

Bβ

4
(

1 +
√

Bβ
)2 ,

α1 =
6
√

Bβ + Bβ
(

21 + 4Bβ + 16
√

Bβ
)

48B
(

1 + 2
√

Bβ
)3 .

With the help of the equation (11) and the inverse Laplace transform

R(t) =
1

2πi
lim

ϕ→∞

∫ c+iϕ

c−iϕ

y(η)eηt
dη
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then we get finally
∆(T ) = χT + γ + O(T−1), (12)

where

χ = χ(β) =
2 +

√
Bβ

2B(1 +
√

Bβ)
(13)

and

γ = γ(β) =
6
√

Bβ + Bβ
(

21 + 4Bβ + 16
√

Bβ
)

24
(

1 +
√

Bβ
)4 . (14)

We finalize these mathematical calculations by the assertion that the time spectral
rigidity displays a linear dependence (12) for large time intervals T .
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Fig. 4. Time Spectral Rigidity. Gray curves correspond to the time rigidity ∆(T )

analyzed separately in 85 density regions. The chosen results of relevant statistical

analysis are picked out. Concretely, blue plus signs, red squares, green triangles, magenta

stars, black circles, and turquoise diamonds represent the rigidities obtained for traffic

data from the following density regions: [2,3); [6,7); [16,17); [26,27); [40,41); and [85,86)

vehicles/km/lane respectively.

6. STATISTICAL ANALYSIS OF TRAFFIC DATA

Single-vehicle data investigated for purposes of this article were measured continu-
ously during three months on the Netherlands two-lane freeway A9. Macroscopic
traffic density ̺ was calculated for samples of N = 50 subsequent cars passing
a double-induction-loop detector. For the intentions outlined above we divide the
region of the measured densities ̺ ∈ [0, 85 veh/km/lane] into 85 equidistant subinter-
vals and separately analyze the data from each one of them. The sketched procedure
prevents the undesired mixing of the states with the different inverse temperature β,
i. e. with the different psychological strain of drivers. Netto time distances ti among
the succeeding cars (ith and (i − 1)th) were calculated directly from the data after
eliminating car-truck, truck-car, and truck-truck gaps.
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Fig. 5. Slope of Spectral Rigidity and Inverse Temperature. The circles in the upper

subplot display the slope of the spectral rigidity ∆(T ) (see Figure 4), separately evaluated

for the various traffic densities. The lower subplot visualizes the corresponding values of

the inverse temperature β. The continuous curves represent a polynomial approximations

of the relevant data.

As unambiguously followed from the robust statistical analysis the time clearance
distribution of freeway traffic data corresponds to the theoretical prediction τβ(t)
very well. The chosen representative of the relevant analysis are displayed in the
Figure 6. Here one can detect the basic probabilistic trends of time gaps among
succeeding cars. Whereas in the region of small densities (free traffic regime) the
relevant probability density is exponential essentially (which fully corresponds to the
fact that cars interactions are negligible) the distribution τ(t) is rapidly changing
if congested data are observed. In this case the strong mutual interactions among
vehicles lead to the hardcore repulsions in the system which results in fact that

lim
t→0+

τ(t) = 0.

Furthermore, the time spectral rigidity of traffic samples has been investigated.
As shown in the Figure 4 the theoretical properties of the function ∆(T ) agree
with the behavior of the rigidity evaluated from the traffic data. The comparison
with formula (12) allows us to determine the empirical dependence of the inverse
temperature β on the traffic density ̺. The results of such a analysis are visualized
in the Figure 5. Such a dependence (plotted at the bottom of the Figure 5) shows a
virtually linear increase in the region of free traffic (up to ̺ ≈ 20 veh/km/lane) with
a visible plato for densities around 12 veh/km/lane. For saturated traffic states,
where ̺ ' 50 veh/km/lane, one can similarly observe almost linear increase of
temperature β with density ̺. The intermediate region of metastable traffic states
shows a substantial growth of temperature. This is influenced by the fact that
driver, moving quite fast in relatively dense traffic flow, is under a considerable
psychological pressure. After the transition from free to congested regime (between
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Fig. 6. Time Headway Distribution. The bars represent the inter-particle time gaps

measured among the subsequent vehicles moving on the freeway. The entire data file has

been divided into small density regions (see legend for details) to separate the different

traffic regimes. The blue curves display the predictions of our theory for fitted value of

inverse temperature β. Optimal value of βfit was obtained by minimizing the

χ2
−statistics.

40 and 50 veh/km/lane), the pressure continues to decline because of decrease in
mean velocity. Finally, if the traffic flow become denser and denser the mental strain
coefficient β is increasing further. It finally culminates by the creation of stop-and-go
traffic waves. It is evident that the empirical relation β = β(̺) between the strain
coefficient β and traffic density ̺ fully corresponds to intuitive substance of traffic
reality.
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7. CONCLUSION

We have presented calculations leading to the analytical formula for netto time
gap among the subsequent particle of thermodynamic traffic gas. The calculated
prediction has been successfully compared to the vehicular traffic data measured
by loop detectors. Furthermore, we have introduced the mathematical procedure
leading to the formula for time spectral rigidity describing mutual interaction of
the more extensive clusters of succeeding cars. Analytical predictions obtained by
means of such a procedure has been confronted to the results of relevant statistical
analyzes. Beyond all doubt it has been ascertained that time spectral rigidity shows
a predicted linear dependence on the length of time interval. Such a correspondence
leads to the vicarious detection of the thermal parameter β quantifying the mental
strain of cars drivers during their driving manoeuvres.
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