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THE CHOQUET INTEGRAL AS LEBESGUE INTEGRAL

AND RELATED INEQUALITIES

Radko Mesiar, Jun Li, and Endre Pap

The integral inequalities known for the Lebesgue integral are discussed in the framework
of the Choquet integral. While the Jensen inequality was known to be valid for the Cho-
quet integral without any additional constraints, this is not more true for the Cauchy,
Minkowski, Hölder and other inequalities. For a fixed monotone measure, constraints on
the involved functions sufficient to guarantee the validity of the discussed inequalities are
given. Moreover, the comonotonicity of the considered functions is shown to be a suffi-
cient constraint ensuring the validity of all discussed inequalities for the Choquet integral,
independently of the underlying monotone measure.
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1. INTRODUCTION

The Lebesgue integral, supposing the σ-additivity of the underlying measure, is one
of the most powerful tools in measure theory. As a typical example, recall proba-
bility theory, where the Lebesgue integral is just the expected value. The integral
inequalities play an important role in applications of the Lebesgue integral. For
example, the Minkowski inequality is essentially linked to Lp-norms. However, in
several real situations, the additivity constraint of a measure does not allow to ap-
ply the Lebesgue integral, because of the non–additivity of involved measures. For
example, in multicriteria problems, additivity means the non–interactivity of the
involved criteria, which does not correspond to the majority of economical, socio-
logical, etc. problems. A similar situation occurs in the case of search machines,
e. g., in Google, where documents are listed based on their relevance to the given
key words. To overcome the possible non–additivity defect problems, Choquet [3]
has introduced an integral well defined for any monotone measure, and which – in
the case when the underlying measure is σ–additive – coincides with the Lebesgue
integral. The Choquet integral shares several properties with the Lebesgue integral,
including some inequalities. For example, monotonicity and Jensen’s inequality are
common for both these integrals [7, 15]. However, there are some properties, in-
cluding equalities and inequalities, which are valid for the Lebesgue integral, while



The Choquet integral as Lebesgue integral 1099

in the case of the Choquet integral some additional constraints are needed. As a
typical example in the case of equalities let us recall additivity, which is a genuine
property of the Lebesgue integral, while for the Choquet integral it holds (for given
functions f and g and any monotone measure m) only if the considered functions
are comonotone [2, 10, 12, 13]. In the framework of inequalities, the subadditivity of
the Choquet integral (for a given monotone measure m and any functions f and g)
was shown to be equivalent to the submodularity of the involved monotone measure
[2]. Similarly, the submodularity of the involved monotone measure is sufficient to
guarantee the Hölder inequality [15]. However, the claim that the Hölder inequality
holds for the Choquet integral in general [7] is not valid, see Example 4.3. The aim
of this paper is the discussion of integral inequalities valid for the Lebesgue integral
on any measure space (the Jensen, Cauchy, Hölder, Minkowski inequalities), in the
framework of the Choquet integral. Having in mind the majority of applications,
and because of the transparency reasons, we will deal with finite spaces and with
non–negative functions only. Note that any simple function on an abstract space can
be considered as a function on a finite space. Moreover, in the case of lower semi–
continuous monotone measures, the Choquet integral on an abstract space can be
introduced by means of simple functions [1]. Thus our results can easily be general-
ized to a general case, supposing the lower semi–continuity of the involved monotone
measures. The paper is organized as follows. In the next section, the preliminary
notions and definitions concerning monotone measures and the Choquet integral are
given. In Section 3, the equality of the Lebesque and the Choquet integral for aggre-
gated functions is studied. Based on the results from Section 3, in Section 4 several
integral inequalities for the Choquet integral are proved. Finally, some concluding
remarks are added.

2. THE CHOQUET INTEGRAL

Let (X,A) be a measurable space (if X is finite, we put A = 2X by convention). A set
function m : A → [0,∞] is called a monotone measure whenever m(∅) = 0, m(X) > 0
and for any A, B ∈ A, A ⊆ B it holds m(A) ≤ m(B). If limn→∞ m(An) = m(A)
whenever (An) ∈ AN, A1 ⊆ A2 ⊆ . . . ⊆ An . . . and A =

⋃

n∈N
An, the monotone

measure m is called lower semi–continuous.

The Choquet integral was introduced in [3], see also [2, 10, 16].

Definition 2.1. Let (X,A) be a measurable space, m : A → [0,∞] a monotone
measure and f : X → [0,∞] an A-measurable function. The Choquet integral of f
with respect to m is given by

(C)

∫

X

f dm =

∫ ∞

0

m(f > t) dt, (1)

where the integral on the right-hand side is the (improper) Riemann integral.

Note that (1) can be rewritten as

(C)

∫

X

f dm =

∫ ∞

0

m(f > t) dt.
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Moreover, if m is σ–additive, the Choquet and Lebesgue integrals coincide,

(C)

∫

X

f dm =

∫

X

f dm.

Evidently, the Choquet integral satisfies the following property:
(P) for any two monotone measures m1, m2 : A→ [0,∞] coinciding on F ={{f > t}}∞t=0

(or on {{f >t}}∞t=0), the Choquet integrals with respect to them also coincide, i. e.,

(C)

∫

X

f dm1 = (C)

∫

X

f dm2.

Compare with the integral pair equivalence of (m1, f) and (m2, f) introduced in [5].
The next result can be straightforwardly derived from [1], compare also Theorem

4.4 in [14]. However, for the transparency of the paper, we add here an alternative
proof.

Proposition 2.2. Let (X,A) be a measurable space, m : A → [0,∞] a monotone
measure and f : X → [0,∞] an A-measurable function. If X is a finite set or
f : X → [0,∞] is a simple function, i. e., Ran f is finite, then there exists a σ–
additive measure µf : σ(F) → [0,∞] such that µ|F = m|F , where σ(F) is the
smallest σ–algebra containing F = {{f > t}}∞t=0, such that

(C)

∫

X

f dm = (C)

∫

X

f dµf =

∫

X

f dµf . (2)

P r o o f . Suppose that X is finite (or f : X → [0,∞] is simple, i. e., Ran f is finite).
Therefore the set system F is a finite chain. Let σ(F) be the smallest σ–algebra
containing F . Let Ran f = {a1, . . . , ak}, 0 6 a1 < · · · < ak. Then

(C)

∫

X

f dm =

k
∑

i=1

ai (m (f > ai−1) − m (f > ai))

with convention {f > a0} = X . Note that then σ(F) is an atomic algebra with
atoms

Ai = {f > ai−1} \ {f > ai} , i = 1, . . . , k

and the corresponding σ–additive measure µf : σ(F) → [0,∞] is determined by the
values

µf (Ai) = m (f > ai−1) − m (f > ai) .

Therefore there exists a σ–additive measure µf : σ(F) → [0,∞] such that µf |F =
m|F , and by the property (P) it holds (2). �

Remark 2.3. In the general case, when (X,A) is a measurable space, m : A →
[0,∞] a monotone lower continuous measure and f : X → [0,∞] an A-measurable
function then the set system F is a chain and thus closed under finite intersections
and finite unions. Therefore, if m is lower semi–continuous, there is a σ–additive
measure µf : σ(F) → [0,∞] such that µf |F = m|F , where σ(F) is the smallest
σ–algebra containing F and by the property (P) it holds (2).
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Due to [1] we also have the next result.

Proposition 2.4. Let (X,A) be a measurable space and m : A → [0,∞] a lower
semi–continuous monotone measure. Then for each A-measurable function f : X →
[0,∞] it holds

(C)

∫

X

f dm = sup

{

(C)

∫

X

s dm | s is a simple function, s 6 f

}

.

Finally, we recall a result related to submodular monotone measures, see Propo-
sition 10.3 in [2]. Note that m : A → [0,∞] is submodular whenever for all A, B ∈ A
it holds

m(A ∩ B) + m(A ∪ B) 6 m(A) + m(B). (3)

If the inequality in (3) is replaced by equality, the measure is called modular.

Proposition 2.5. Let (X,A) be a measurable space and m : A → [0,∞] a submod-
ular monotone measure. Then the set

M = {µ |µ : A → [0,∞], µ 6 m, µ is additive}

is non–empty and for each A-measurable function f : X → [0,∞] it holds

(C)

∫

X

f dm = sup

{

(C)

∫

X

f dµ |µ ∈ M

}

.

Moreover, for each A ∈ A, m(A) = sup {µ(A) |µ ∈ M} .

Clearly, if X is finite (or f simple) then (C)
∫

X f dµ =
∫

X f dµ is the Lebesgue
integral for each µ ∈ M .

3. THE CHOQUET INTEGRAL = THE LEBESGUE INTEGRAL?

As already observed, see Proposition 2.2 and Remark 2.3, if a monotone measure
m is lower semi-continuous, then for any function f there is a σ-additive measure
µf such that (C)

∫

X
f dm =

∫

X
f dµf . Evidently, for any set system S ⊆ A and

any monotone measure m and σ-additive measure µ (defined on σ(S)), if f : X →
[0,∞] is S–measurable, i. e., if F ⊆ S, and m|F = µ|F , then the Choquet integral
(C)

∫

X f dm and the Lebesgue integral
∫

X f dµ coincide.

Lemma 3.1. Let X be a finite space and f, g : X → [0,∞] two functions. Denote
by

Tf,g =

{

p
⋃

i=1

Ai ∩ Bi | p ∈ N, Ai ∈ F , Bi ∈ G

}

the smallest set system in 2X containing both F = {{f > t}}∞t=0 and G = {{g > t}}∞t=0,
which is closed under unions and intersections. Then evidently both f and g are
script Tf,g - measurable, and moreover for any mapping T : [0,∞]2 → [0,∞] non-
decreasing in both coordinates also the function T (f, g) : X → [0,∞] given by
T (f, g)(x) = T (f(x), g(x)) is Tf,g-measurable.
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P r o o f . Recall that T (f, g) = h is H-measurable, where H = {{T (f, g) ≥ t}}max h
t=0 .

Let Ran f = {a1, . . . , ak}, with 0 6 a1 < . . . < ak, Ran g = {b1, . . . , bn}, with
0 6 b1 < . . . < bn and Ran h = {c1, . . . , cr}, with 0 6 c1 < . . . < cr. Then
H = {{h > ci}}

r
i=1 and there is a partition {C1, . . . , Cr} of {a1, . . . , ak}×{b1, . . . , bn}

such that for each i ∈ {1, . . . , r},

Ci =
{(

a
(i)
j1

, b
(i)
j1

)

, . . . ,
(

a
(i)
jki

, b
(i)
jki

)}

and
T

(

a
(i)
jk1

, b
(i)
jk1

)

= . . . = T
(

a
(i)
jki

, b
(i)
jki

)

= ci.

However, then

{h > ci} =

ki
⋃

q=1

({

f > a
(i)
jq

}

∩
{

g > b
(i)
jq

})

∈ Tf,g.

�

Observe that supposing the continuity of T , a similar result can be shown for
an arbitrary space, modifying the finite unions in Tf,g by countable unions. The
proof of this statement is related to the proof of Theorem 4.4 in [2] concerning the
measurability of the sum f + g.

Theorem 3.2. Let X be a finite space and m : 2X → [0,∞] a monotone measure.
Let functions f, g : X → [0,∞] be given, such that using the notation from Lemma
3.1, m is modular on Tf,g. Then there is an additive measure µ : 2X → [0,∞] such
that for any mapping T : [0,∞]2 → [0,∞] non–decreasing in both coordinates, it
holds

(C)

∫

X

T (f, g) dm =

∫

X

T (f, g) dµ. (4)

P r o o f . By Lemma 3.1, it is enough to show that there is an additive measure µ on
X such that µ|T = m|T . Under the notation of Lemma 3.1, denote Fi = {f > ai},
i = 1, . . . , k, Gj = {g > bj}, j = 1, . . . , n. Then X = F1 % . . . % Fk 6= ∅, X =
G1 % . . . % Gn 6= ∅, and thus {D1, . . . , Dk} where Di = Fi \ Fi+1 (with convention
Fk+1 = ∅) and {E1, . . . , En} where Ej = Gj \Gj+1 (with convention Gn+1 = ∅) are
the partitions of X . It is easy to check that {Di∩Ej | i ∈ {1, . . . , k}, j ∈ {1, . . . , n}}
is the atomic partition of σ(Tf,g), the smallest σ–algebra containing Tf,g. Note that
because of the finitness of X it is enough to consider algebras. Now, it is enough to
define a set function µ on non–empty atoms Di ∩ Ej by

µ(Di ∩ Ej) = m(Fi ∩ Gj) − m(Fi ∩ Gj+1) − m(Fi+1 ∩ Gj) + m(Fi+1 ∩ Gj+1),

and to extend it to σ(Tf,g), supposing the additivity of µ. Evidently, from the
modularity of m, it follows that µ|Tf,g

= m|Tf,g
. If the atoms of σ(Tf,g) are not

singletons only, i. e., 2X 6= σ(T ), there are several possible extensions of µ to 2X

preserving the additivity of µ. �
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As already mentioned in Introduction, the Choquet integral is not additive, in
general.

Corollary 3.3. Let X be a finite space and m : 2X → [0,∞] a monotone measure.
Let functions f, g : X → [0,∞] be given, such that using the notation from Lemma
3.1, m is modular on Tf,g. Then

(C)

∫

X

(f + g) dm = (C)

∫

X

f dm + (C)

∫

X

g dm.

P r o o f . Since the requirements of Theorem 3.2 are satisfied, then obviously the
additivity of the Choquet integral follows from the additivity of the Lebesgue inte-
gral. Indeed, it is enough to put T1(u, v) = u + v, T2(u, v) = u and T3(u, v) = v.
Then

(C)

∫

X

(f + g) dm =

∫

X

(f + g) dµ =

∫

X

f dµ +

∫

X

g dµ

= (C)

∫

X

f dm + (C)

∫

X

g dm.

�

Obviously, if f and g are comonotone, then Tf,g = F ∪ G is a chain, and thus
any monotone measure on X is modular on Tf,g, which gives an alternative proof of
the comonotone additivity of the Choquet integral. Of course, it holds in general,
without any restriction of the cardinality of the space X , see [2, 10, 16].

4. INTEGRAL INEQUALITIES FOR THE CHOQUET INTEGRAL

Based on Theorem 3.2, several integral inequalities valid for the Lebesgue inte-
gral can also be proved for the Choquet integral. Observe again that if functions
f, g : X → [0,∞] are comonotone, the modularity of m over Tf,g is guaranteed for
any monotone measure m on X . Recall that functions f, g : X → [0,∞] are said to
be comonotone whenever for all x, y ∈ X it holds

(f(x) − f(y))(g(x) − g(y)) > 0.

Note that in this section we always suppose the finiteness of X .

Corollary 4.1. Let ϕ : [0,∞] → [0,∞] be a non-decreasing convex function. Then
the Jensen inequality holds for the Choquet integral.

P r o o f . It is enough to consider f = g and T1(u, v) = u, T2(u, v) = ϕ(u), where
ϕ : [0,∞] → [0,∞] is a convex non–decreasing function. Supposing m(X) = 1, we
obtain

ϕ

(

(C)

∫

X

f dm

)

= ϕ

(
∫

X

f dµ

)

6

∫

X

ϕ(f) dµ = (C)

∫

X

ϕ(f) dm.

�
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Note that we cannot omit the non-decreasingness of ϕ in the above Corollary.
Take, for example, X = {x1, x2}, f : X → [0,∞] given by f(x1) = 1, f(x2) =
0.5, µ : 2X → [0, 1] given by µ(∅) = 0, µ({1}) = µ({2}) = 1/4, µ(X) = 1, and
consider a convex function ϕ : [0,∞] → [0,∞] given by ϕ(x) = max(0, 1 − x). Then
(C)

∫

f dm = 5/8, and ϕ(5/8) = 3/8 > (C)
∫

ϕ(f) dm = 1/8, violating the Jensen
inequality. For the discussion of Jensen’s inequality for the Choquet integral on an
abstract space we recommend [15].

Note that the Jensen inequality for the Choquet integral also holds in a general
case, see [15].

Corollary 4.2. Under the requirements of Theorem 3.2, the Cauchy, Hölder and
Minkowski inequalities hold for the Choquet integral.

P r o o f . Recall that the Hölder inequality for the Lebesgue integral is of the form

∫

X

fg dµ 6

(
∫

X

fp dµ

)1/p

·

(
∫

X

gq dµ

)1/q

(5)

where p and q ∈ ]1,∞[, 1
p + 1

q = 1. Observe that if p = q = 2, then (5) turns

to the Cauchy inequality. Now, it is enough to put T1(u, v) = uv, T2(u, v) = up,
T3(u, v) = vq, and then

(C)

∫

X

fg dm =

∫

X

fg dµ

6

(
∫

X

fp dµ

)1/p

·

(
∫

X

gq dµ

)1/q

=

(

(C)

∫

X

fp dm

)1/p

·

(

(C)

∫

X

gq dm

)1/q

. (6)

Similarly, one can prove the Minkowski inequality, i. e., that for any p ∈ [1,∞[ it
holds

(

(C)

∫

X

(f + g)p dm

)1/p

6

(
∫

X

fp dm

)1/p

+

(
∫

X

gp dm

)1/p

. (7)

�

Note that the above inequalities do not hold in general, if the modularity of m
on Tf,g is violated.

Example 4.3. Let m = m∗ be the weakest normed monotone measure m on X , i.e,
m∗(X) = 1 and if A 6= X , then m∗(A) = 0. It holds (C)

∫

X
f dm∗ = min{f(x) |x ∈

X} (= min f , for short) and then the Hölder inequality (6) turns into

min(fg) ≤ (min f) · (min g), (8)

while the Minkowski inequality (7) turns into

min(f + g) ≤ (min f) + (min g). (9)
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Obviously, the inequalities opposite to (8) and (9) are always satisfied, and thus
inequalities (8) and (9) can be changed into equalities

min(fg) = (min f) · (min g), (10)

and
min(f + g) = (min f) + (min g), (11)

respectively. For ∅ 6= A, B ⊆ X , let f = 2−1A, g = 2−1B. Then min f = min g = 1.
However, if A ∩ B = ∅, then min(fg) = 2 and min(f + g) = 3, i. e., both equalities
(10) and (11) are violated. Note that in this case

F = {∅, Ac, X}, G = {∅, Bc, X} and Tf,g = {∅, (A ∪ B)c, Ac, Bc, X}.

However, then
m∗(A

c) = m∗(B
c) = m∗(A

c ∩ Bc) = 0,

while
m∗(A

c ∪ Bc) = m∗(X) = 1,

i. e. m∗ is not modular on Tf,g.

Remark 4.4.

(i) All discussed inequalities hold for any monotone measure m on X whenever f
and g are comonotone. This is a consequence of already mentioned fact that
the comonotonicity of f and g ensures the validity of Theorem 3.2 for any
monotone measure m on X .

(ii) Proposition 2.5 allows to show all considered inequalities to be valid whenever
the considered monotone measure m is submodular, compare also [15].

(iii) If (X,A) is an abstract measurable space (not necessarily finite) and m is a
monotone measure on (X,A) which is lower semi–continuous, one can apply
Proposition 2.4 to show the validity of all discussed inequalities. Here the
modularity of m on Tf,g - the smallest set system in A containing F and G,
and closed under unions and intersections – is again considered.

5. CONCLUDING REMARKS

We have introduced a framework in which the Choquet integral with respect to
a monotone measure m coincides with the Lebesgue integral with respect to a
σ–additive measure µ. Consequently, several integral inequalities known for the
Lebesgue integral are also valid for the Choquet integral in this framework. The
comonotonicity of the involved functions was shown to be sufficient to ensure the
validity of all discussed integral inequalities for the Choquet integral with respect
to any monotone measure. Note that similar attempts in the framework of the
Sugeno integral and also some other kinds of integrals have recently been done in
several works, e. g., in [4, 6, 8, 9, 11]. Though the nature of the Sugeno integral is
rather different from the nature of the Lebesgue and Choquet integrals – the Sugeno
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integral is related to the lattice operations ∨ and ∧, while the Lebesgue and Cho-
quet integrals are based on the arithmetic operations + and · on R – also there the
comonotonicity of the involved functions was shown to be essential for proving some
integral inequalities.
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