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REJECTION OF NONHARMONIC DISTURBANCES

IN NONLINEAR SYSTEMS

Shutang Liu, Yuan Jiang and Ping Liu

This paper proposes an asymptotic rejection algorithm on the rejection of nonharmonic
periodic disturbances for general nonlinear systems. The disturbances, which are produced
by nonlinear exosystems, are nonharmonic and periodic. A new nonlinear internal model
is proposed to deal with the disturbances. Further, a state feedback controller is designed
to ensure that the system’s state variables can asymptotically converge to zero, and the
disturbances can be completely rejected. The proposed algorithm can be used in many
applications, e. g. active vibration control, and the avoidance of nonharmonic distortion in
nonlinear circuits. An example is shown that the proposed algorithm can completely reject
the nonharmonic periodic disturbances generated from a Van der Pol circuit.
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der Pol circuit, vibration control

Classification: 93E12, 62A10, 62F15

1. INTRODUCTION

Oscillatory disturbances produced by nonlinear exosystems can easily affect the per-
formance of many engineering systems, such as turbo-machines, motors/generators,
flexible structures, and communication circuits. The system’s output response of
such oscillatory input signals is referred to as nonharmoniously forced vibration
[5, 15], which may cause undesirable effects, e. g., noise, fatigue, precision and dura-
bility reduction, unreliability, and unscheduled shutdowns. Reduction/Cancellation
of the unwanted vibration is very important for the system’s stabilization, and has
been a hotspot in various research fields for many years.

Extensive research has been focused on the problem of complete rejection of
external inaccessible disturbances, especially since the raise of the internal model
principle [7, 14, 24]. The internal model principle was initially developed for linear
systems, but its applications have also been extended to some nonlinear control
problems [2, 8, 16, 19]. Huang et al. [16, 19] are the pioneering papers that give
the solvability condition for robust nonlinear output regulation problem in terms of
internal model principle. According to the principle, the outputs of a linear dynamic
system, namely exosystem, are treated as deterministic external disturbances. The
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influence on the systems’ response, which is caused by exosystem’s disturbances, can
be suitably reduplicated on the feedback path of a closed-loop system.

Asymptotic rejection of sinusoidal disturbance, which is one kind of the most
common deterministic disturbances, has been widely studied. The autonomous sys-
tem that generates the disturbance is often referred to as the exosystem. Huang
et al. [17, 20] not only handle disturbance rejection but also handle tracking. The
signals do not have to be sinusoidal, and can be anything generated by a known
exosystem. References [32, 35] also handle both disturbance rejection and tracking
with the exosystem unknown. Reference [32] gives semi-global result, while refer-
ence [35] gives global result. References [3, 11, 27] deal with disturbance rejection
with the exosystem unknown. Ding [11] proposes a disturbance rejection algorithm,
which can globally reject unknown sinusoidal disturbances in single-input nonlinear
systems. Some recent results on stabilization and output regulation of nonlinear
systems are reported in [12, 26, 30]. A related problem is formulated as output reg-
ulation, which concerns with the disturbance rejection as well as the stabilization of
dynamic systems [9, 12, 13, 17, 18, 20, 22, 26, 30, 31, 32, 35]. A common assumption
of these studies that the exosystem under consideration must be linear. Local results
for output regulation for nonlinear systems are reported in [20, 22]. Recently, global
output regulation has been addressed in the literature for nonlinear systems in the
output feedback form [9, 17, 31], and the results have been extended to deal with un-
known linear exosystems. Moreover, in both [17] and [18], global output regulation
for lower triangular systems are given. More recently, some progresses are reported
on output regulation with nonlinear exosystems [4, 6, 10, 28, 29, 34]. Ramos et al.
[29] presents a result in terms of sufficient conditions of the state feedback generalized
output regulation problem for nonlinear systems with nonautonomous exosystem.
Byrnes et al. [4] proposes an algorithm, which uses high gain internal models, to
ensure the semi-global output regulation of nonlinear exosystems. Huang et al. [6]
is the first paper to provide a framework to study the robust output regulation prob-
lem with nonlinear exosystem and is the only paper which actually addresses the
existence of the steady state generator and internal model when the exosystem is
nonlinear. Ding [10] proposes an output regulation algorithm for a class of nonlinear
systems in the output feedback form. A new nonlinear internal model is constructed
based on high gain design and the Hermite-Birkhoff interpolation. The approach
is then extended to the application of circle criterion [1] in [34]. Similarly, Chen
et al. [5] proposes an asymptotic rejection algorithm, which uses the same internal
model as in [34], to achieve the asymptotic rejection of nonharmonic disturbances
and ensure semi-global stability of the whole systems. Some recent results on output
regulation and disturbance rejection of nonlinear systems with nonlinear exosystems
are also reported in [23, 33]. Sun et al. [33] gives the global robust output regulation
result for output feedback systems which include the disturbance rejection problem
as a special case. Jiang et al. [23] proposes an asymptotic rejection algorithm to
achieve the asymptotic rejection of nonharmonic disturbances for a class of uncertain
nonlinear systems and ensure global stability of the whole systems.

In this paper, we propose an asymptotic rejection algorithm on rejection of non-
harmonic periodic disturbances for a class of nonlinear single-input systems. The
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disturbances, which are produced by nonlinear exosystems, are nonharmonic and
periodic. A new internal model is proposed to deal with the disturbances. Further,
a state feedback controller is designed to ensure that the system’s state variables
can asymptotically converge to zero, and the disturbances can be completely re-
jected. An example is performed to demonstrate that the proposed algorithm can
completely reject the nonharmonic periodic disturbances produced by nonlinear ex-
osystems. Our result is different from that in [5] in the following senses. First, in
comparison with the result in [5], our algorithm extends rejection of nonlinear dis-
turbances for nonlinear dynamic systems from systems in the strict feedback form
and output feedback form to general nonlinear systems. Second, in comparison with
the result in [5], we will guarantee that the overall system is global stability while,
in [5], the overall system can only be guaranteed semi-global stability. The main
contributions of the paper are the following: (i) nonlinear internal model for a class
of nonlinear disturbances; (ii) nonlinear regulator with complete servocompensa-
tion of the class of nonlinear disturbances; (iii) the proposed control design enlarges
the class of nonlinear systems of which nonharmonic periodic disturbances can be
asymptotically rejected.

The outline of the paper is as follows. Section 2 describes a class of uncertain non-
linear systems with a nonlinear exosystem as disturbance source. Some assumptions
are also given in Section 2. Section 3 is concerned with the nonlinear internal model
design. In section 4, the global robust stabilization analysis is given to determine
the controller. Section 5 illustrates an example to demonstrate the whole design
procedure of the proposed method. Finally, a conclusion is given in Section 6.

2. PROBLEM FORMULATION

Consider a single-input nonlinear system

ẋ = f(x) + g(x)(u − v(w)) (1)

where x ∈ Rn is the state vector, u ∈ R is the control, v(w) is a function of w,
and w ∈ Rs is nonharmonic periodic disturbance vector which generated from a
nonlinear exosystem

ẇ = s(w). (2)

Assumption 1. The flows of vector field s(w) are bounded and converge to peri-
odic solutions.

Assumption 2. There exists a function r(x) : Rn → Rs such that (∂r(x)/∂x)g(x)
= K, a nonzero constant vector in Rs.

Assumption 3. Consider the disturbance free system

ẋ = f(x) + g(x)u (3)

there exists a control law
u = α(x) (4)
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such that the closed-loop system (3) – (4) is asymptotically stable. Moreover, there
exists a Lyapunov function V (x) such that

α1(x) ≤ V (x) ≤ α2(x) (5)

∂V (x)
∂x

(f(x) + g(x)α(x)) ≤ −α3(x) (6)
∣

∣

∣

∂V (x)
∂x

g(x)
∣

∣

∣

2

≤ α3(x) (7)

where αi, i = 1, 2, 3 are class K∞ functions.

The problem considered in this brief is described by the following definition.

Definition 1. (Asymptotic Disturbance Rejection With Global Stability): for any
prescribed compact subsets Dw ⊂ Rs, find a feedback control u such that, for all
w(0) ∈ Dw, and any initial conditions of the plant and the controller, the solution
of the closed-loop system exists and is bounded for all t > 0, and limt→∞ x(t) = 0.

Remark 1. It is noted that the disturbance v(w) considered in this paper is
matched, i. e., the disturbance v(w) is injected in the input channel. However, we
can easily use of iterative design called adaptive backstepping to extend the pro-
posed method to more general disturbance-strict-feedback case. So the matching
condition is not crucial and is excepted here to avoid tedious mathematics and to
focus on the main idea.

Remark 2. Based on Assumption 1, we can know the periodic solutions of the
exosystems can include many functions, such as harmonic functions and the limit
cycles of nonlinear dynamic systems. For example, a Van der Pol circuit can be
modeled as

ẇ1 = w2 − ς(1
3w3

1 − w1)

ẇ2 = −w1

(8)

where ς > 0 can be treated as a tuning parameter for adjusting the period of
current/voltage cycle. The eigenvalues of the Jacobian matrix at the origin of (8)
are 1

2 (ς ±
√

ς2 − 4). When ς ≥ 2, the eigenvalues are positive; when 0 < ς ≤ 2, the
eigenvalues are complex conjugates with positive real parts. So origin is an unstable
equilibrium point and there exists a limit cycle.

Remark 3. Assumption 2 is a condition for observablity of the disturbances from
the system state. If the vector field g is a nonzero constant, there always exists a
solution of r(x) = Kx for a nonzero K. For a general non-constant vector field g(x),
solutions can still be found [21].

Remark 4. According to the inverse Lyapunov Theorem [25], (5) and (6) are
automatically satisfied if the closed-loop system is asymptotically stable. (7) is
always satisfied if the closed-loop system is exponentially stable. However, there
exists systems that the conditions in Assumption 3 are all satisfied, but the systems
are not exponentially stable [25].



Rejection of Nonharmonic Disturbances in Nonlinear Systems 789

3. INTERNAL MODEL DESIGN

The asymptotic rejection algorithm proposed in this paper adopts an indirect ap-
proach, i. e. the disturbance is estimated first and then the estimated disturbance is
used for control design for disturbance rejection. Thus, the crucial step for solving
the disturbance rejection problem is to design an internal model which can be used
to estimate the disturbance. For the internal model design of nonlinear exosystem,
the following assumption is needed.

Assumption 4. For the exosystem (2), there exists an immersion system

η̇ = Fη + Gγ(Jη)

v(w) = Hη
(9)

where η ∈ Rr, the known matrices F, G, H and J have appropriate dimensions, and
the pair (F, H) is observable, and there exists a positive definite matrix Pη̂ satisfying
Pη̂G + JT = 0, and the nonlinear function

γ(Jη) =















γ1(
r

∑

i=1

J1iηi)

...

γm(
r

∑

i=1

Jmiηi)















satisfies that (v1 − v2)
T (γ(v1) − γ(v2)) ≥ 0.

Remark 5. Assumption 4 bases on the assumption made on the exosystems in [5],
and we can know this is a condition for which the circle criterion [1] can be applied.
For the Van der Pol circuit, let η = w and choose the matrix parameters as follows:

F =

[

2 1
−1 0

]

, G =

[

−2 0
0 0

]

, J =

[

1 0
0 0

]

, H =
[

1 −1
]

,

γ1(s) = 1
3s3, γ2(s) = 0, Pη̂ = diag(1/2, 2).

It can be seen that Assumption 4 is satisfied.

We design the following internal model as

˙̂η = (F − KH)(η̂ − r(x)) + Gγ(J(η̂ − r(x))) + Ku + (∂r(x)/∂x)f(x) (10)

where K ∈ Rs satisfies Assumption 2, such that F0 = F − KH is Hurwitz, so there
exists positive definite matrices Pη̂ and Qη̂ satisfying

Pη̂F0 + FT
0 Pη̂ = −Qη̂. (11)

Remark 6. It is noted that there exist positive definite matrices Pη̂ and Qη̂ sat-
isfying

Pη̂F0 + FT
0 Pη̂ = −Qη̂

Pη̂G + JT = 0.
(12)
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In particular, if G and JT are two column vectors, and the pair (F0, G) is controllable,
and the pair (J, F0) is observable, and the triple (F0, G, J) satisfies the strictly
positive real condition Re[−J(jwI − F0)

−1G] > 0, ∀w ∈ R, then there exists a
solution of (12) from the well known Meyer–Kalman–Yacubovic Theorem.

Define an auxiliary error

η̃ = η − η̂ + r(x). (13)

Thus, we have

˙̃η = η̇ − ˙̂η + (∂r(x)/∂x)(f(x) + g(x)(u − v(w)))

= Fη + Gγ(Jη) − (F − KH)(η̂ − r(x))

−Gγ(J(η̂ − r(x))) − Ku − (∂r(x)/∂x)f(x)

+(∂r(x)/∂x)(f(x) + g(x)(u − Hη))

= F0η̃ + Gγ(Jη) − Gγ(J(η − η̃)). (14)

4. CONTROL DESIGN

Based on the internal model (10) and Assumption 3, the control input can be de-
signed as

u = α(x) + H(η̂ − r(x)). (15)

Define a Lyapunov function candidate

W = V (x) + η̃T Pη̂ η̃. (16)

Its derivative along the system dynamics (1) and the auxiliary error dynamic (14)
is given by

Ẇ =
∂V (x)

∂x
(f(x) + g(x)(u − v(w))) + η̃T (Pη̂F0 + FT

0 Pη̂)η̃

+2η̃T Pη̂G(γ(Jη) − γ(J(η − η̃)))

=
∂V (x)

∂x
(f(x) + g(x)α(x)) +

∂V (x)

∂x
g(x)H(η̂ − r(x))

−∂V (x)

∂x
g(x)H(η̃ + η̂ − r(x)) − η̃T Qη̂η̃

+2η̃T Pη̂G(γ(Jη) − γ(J(η − η̃)))

≤ ∂V (x)

∂x
(f(x) + g(x)α(x)) − ∂V (x)

∂x
g(x)Hη̃
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−λmin(Qη̂)‖η̃‖2 + 2η̃T Pη̂G(γ(Jη) − γ(J(η − η̃)))

≤ −α3(x) +

∣

∣

∣

∣

∂V (x)

∂x
g(x)

∣

∣

∣

∣

‖Hη̃‖ − λmin(Qη̂)‖η̃‖2

+2η̃T Pη̂G(γ(Jη) − γ(J(η − η̃))) (17)

where λmin(·) denotes the minimum eigenvalues of a matrix. It follows from As-
sumption 4 that Pη̂G = −JT , and thus we have

2η̃T Pη̂G(γ(Jη) − γ(J(η − η̃)))

= −2(Jη − J(η − η̃)))T (γ(Jη) − γ(J(η − η̃))) ≤ 0.
(18)

Then using 2ab ≤ ca2 +c−1b2 to the second term on the right hand side of (17) gives

∣

∣

∣

∂V (x)
∂x

g(x)
∣

∣

∣
‖Hη̃‖ ≤ 1

2

∣

∣

∣

∂V (x)
∂x

g(x)
∣

∣

∣

2

+ 1
2‖H‖2‖η̃‖2. (19)

Substituting (18) and (19) into (17) gives

Ẇ ≤ − 1
2α3(x) − (λmin(Qη̂) − 1

2‖H‖2)‖η̃‖2. (20)

Choose Qη̂ and H , such that

d = λmin(Qη̂) − 1
2‖H‖2 > 0 (21)

we have

Ẇ ≤ − 1
2α3(x) − d‖η̃‖2. (22)

Therefore we can conclude that all the variables are bounded. Moreover, from the
invariant set theorem, we have limt→∞ x(t) = 0 and limt→∞ η̃ = 0.

The result of this section is summarized in the following.

Theorem 1. Suppose that there exist positive definite matrices Pη̂ and Qη̂, and
a nonzero constant vector K ∈ Rs such that F0 = F −KH is Hurwitz and (12) and
(21) hold, respectively. With Assumptions 1 – 4, then the internal model (10) and
the control input (15) solve the asymptotic rejection problem for the system (1) with
the nonharmonic periodic disturbance generated from the nonlinear exosystem (2).

5. ILLUSTRATIVE EXAMPLE

To illustrate the proposed approach, concentrating on the design of the nonlinear
internal model, we consider a nonlinear system described by

ẋ1 = 2x2 + x2
1 + (u − v(w))

ẋ2 = −x2 + 1
1+x2

2

(u − v(w))
(23)
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where the nonharmonic periodic disturbance v(w) = w1 − w2 is the measurable
output of the following Van der Pol circuit

ẇ1 = w2 − ς(1
3w3

1 − w1)

ẇ2 = −w1

(24)

where 1.6 ≤ ς ≤ 2.4. The set Dw in Definition 1 is set as {w||w1| ≤ 2, |w2| ≤ 3}.
For the Van der Pol circuit, let η = w and choose the matrix parameters as in

Remark 5, then Assumption 4 is satisfied.
The disturbance-free system is stabilized by setting u = α(x) as

α(x) = −6x1 + x2 + x1x2 − 2x2
1 + x3

2 + 1
3x1x3

2. (25)

In fact, if we choose the Lyapunov function for the disturbance-free system as

V (x) = 1
2 (x2 + 1

3x3
2 − x1)

2 + 1
2x2

1 (26)

we have
∂V (x)

∂x
(f(x) + g(x)α(x)) = −3(x2 + 1

3x3
2 − x1)

2 − 3x2
1

∂V (x)
∂x

g(x) = x1.
(27)

With reference to Assumption 3, we have

3+
√

5
4 ‖x‖2 ≤ V (x) ≤ (2 + (1 + 1

3‖x‖2))‖x‖2 (28)

∂V (x)
∂x

(f(x) + g(x)α(x)) ≤ −‖x‖2 (29)

∣

∣

∣

∂V (x)
∂x

g(x)
∣

∣

∣

2

≤ ‖x‖2. (30)

Therefore the system with the disturbance-free control design satisfies Assumption 3

with α1(x) = 3+
√

5
4 ‖x‖2, α2(x) = (2 + (1 + 1

3‖x‖2))‖x‖2, α3(x) = ‖x‖2.
With

r(x) =
[

4x1 −x2 − 1
3
x3

2

]T (31)

we have

K = ∂r(x)
∂x

g(x) =
[

4 −1
]T

. (32)

Hence, Assumption 2 is also satisfied. Note that Assumption 1 is automatically
satisfied from the statement that disturbance is a nonharmonic periodic disturbance.

In addition, let Pη̂ = diag(1/2, 4), and then

F0 = F − KH =

[

−2 5
0 −1

]

(33)

Qη̂ =

[

2 −5/2
−5/2 8

]

(34)

which satisfies (12) and (21).
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Fig. 1. Time response of states x1 and x2(solid line: x1; dash-dotted line: x2).

Based on the proposed control method, the internal model and the control input
are designed as follows

˙̂η1 = −2η̂1 + 5η̂2 + 8x1 + 13x2 + 4x2
1

− 2
3 (η̂1 − 4x1)

3 + 5
3x3

2 + 4u

˙̂η2 = −η̂2 + 2
3x3

2 − u

(35)

u = α(x) + η̂1 − 4x1 − 1
3x3

2 − η̂2 − x2. (36)

In the simulation, let the initial condition be x(0) = [2, 0]T , η̂(0) = [0, 0]T and
w(0) = [1,−1]T . To make the problem more interesting, we allow the parameter ς
to be uncertain. To characterize the uncertainty, let

ς =















1.6, if 0 ≤ t ≤ 20;

2.0, if 20 < t ≤ 40;

2.4, if 40 < t ≤ 60.

(37)

The time response of system states are shown in Figure 1. It can be observed that the
disturbances are rejected completely. Figure 2 shows the phase portrait of the Van
der Pol circuit. The corresponding control input is given in Figure 3. As shown in
Figure 4 and Figure 5 the disturbances are successfully reproduced by the designed
internal model even if the parameter ς changes. It can be seen that the controller
can tolerate certain uncertain parameter and has a satisfactory performance.
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Fig. 4. The state of internal model η̂1 (dash-dotted line: η1; solid line: η̂1).
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Fig. 5. The state of internal model η̂2 (dash-dotted line: η2; solid line: η̂2).
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6. CONCLUSIONS

In this paper, a global asymptotic rejection algorithm is proposed to design a state
feedback controller for single-input systems in the presence of nonharmonic periodic
disturbances. In order to reject disturbances generated from a nonlinear exosystem,
a new internal model is constructed. It is shown that the proposed controller can
ensure the system’s state variables asymptotically converge to zero, and the distur-
bances can be completely rejected. Simulation results illustrate the effectiveness of
our algorithm.
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[29] L. E. Ramos, S. C̆elikovský, and V. Kuc̆era: Generalized output regulation prob-
lem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans.
Automat. Control 49 (2004), 1737–1742.
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