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Differential evolution algorithm combined with chaotic pattern search(DE-CPS) for
global optimization is introduced to improve the performance of simple DE algorithm.
Pattern search algorithm using chaotic variables instead of random variables is used to
accelerate the convergence of solving the objective value. Experiments on 6 benchmark
problems, including morbid Rosenbrock function, show that the novel hybrid algorithm is
effective for nonlinear optimization problems in high dimensional space. The comparisons
with the standard particle swarm optimization (PSO), differential evolution (DE) and other
hybrid algorithms verify DE-CPS algorithm has great superiority.
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1. INTRODUCTION

As a relatively new branch of system sciences and mathematics, chaos has provided
us important tools for viewing the world we live in and been intensively applied
in different fields of sciences, such as chaos control [19], synchronization [20], opti-
mization research [14, 16] and so on. In general, chaos has three important dynamic
properties [14]:

1. the sensitive dependence on initial conditions;

2. the quasi-stochastic property;

3. ergodicity.

In recent years, the applications of chaos in various disciplines including opti-
mization research have attracted more and more attention. One way of application
with chaos is chaotic optimization algorithm(COA) [14], which utilizes the nature
of chaos sequence including the quasi-stochastic property and ergodicity. The ex-
perimental studies assert that the benefits by chaotic variables instead of random
variables are more obvious although the mathematical theory can’t be formulated.
However, all of COAs exist two defects for global search. Firstly, it is necessary
to choose appropriate initial value due to their sensitivity to the initial conditions.
Secondly, simple COA is effective only in lower dimensional space. Owing to the
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quasi-stochastic property of chaotic motion, the difference of computing results be-
tween two successive iterations is always big, which may result in the failure of
global optimization in high dimensional space. Thus, several scholars try to com-
bine other algorithms with chaos to enhance the performance of COA. The hybrid
algorithms, such as chaotic genetic algorithm(CGA) [17], chaotic simulated anneal-
ing(CSA) [8], chaotic ant swarm optimization(CASO) [2], chaotic particle swarm
optimization(CPSO) [5, 6, 15], and chaotic pattern search(CPS) [18] have been ap-
plied in different domains, respectively.

In this context, the literature proposes a novel hybrid algorithm for global opti-
mization problem. The new method(DE-CPS) tried to combine differential evolu-
tion(DE) algorithm with chaotic pattern search(CPS) so as to achieve global opti-
mum in high dimensional space. DE is employed for local search to optimize the
objective function as the current optimum and CPS is used to enhance the opti-
mization effect near the frontal optimal solution with a little chaotic perturbation.

The remainder of this paper is organized as follows. Section 2 describes the basic
DE, while Section 3 introduces the pattern search method and proposes DE-CPS
algorithm for global optimization. Numerical simulation and comparisons with PSO
and DE are provided in Section 4. Finally, we outline the conclusion in Section 5
with a brief summary of results.

2. DIFFERENTIAL EVOLUTION(DE) ALGORITHM

Many global optimization problem can be formulated as the following form:

min f(x), x = [x1, . . . , xd], s.t. xj ∈ [aj , bj ], j = 1, . . . , d. (1)

where f is the objective function, and x is a continuous variable vector in d-
dimensional space Rd. The feasible domain of variable x is defined by specifying
upper (bj) and lower (aj) limits of each component j.

Differential evolution (DE) is one of the most recent population- based stochastic
evolutionary optimization techniques. Storn and Price first proposed DE in 1995 [11]
as a heuristic method for minimizing non-linear and non-differentiable continuous
space functions. As other evolutionary algorithms, the first generation is initialized
randomly and further generations evolve through the application of certain evolu-
tionary operator until a stopping criterion is reached [12]. The theoretical framework
of DE and its modified form [7, 9] are very simple to solve nonlinear continuous op-
timization problems, and have been applied to various scientific fields [3, 13]. The
basic DE algorithm [11] can be depicted in more detail below with reference of
following 5 steps.

Algorithm DE

Step 1: Let a population size N , crossover probability Pc, evolution generation T ,
scaling factor F , and initial evolution generation t = 0 in the d-dimensional
space. Initialize the population with random vector X(0) = (x1(0), . . . , xN (0)),
in which the ith individual xi(0) = (xi1(0), . . . , xid(0)). The initial objective
value is f(xb(0)) in the optimal position xb(0) = (xb1(0), . . . , xbd(0)).
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Step 2: Choose three distinct random integer r1, r2, r3 from the set {1, . . . , N} and
random integer jra = 1, . . . , d. The new point is found from nearby the best
position using the following crossover rule:

x′
ij(t) =

{

xr1,j(t) + F (xr2,j(t) − xr3,j(t)), if rij < Pc or j = jra

xij(t) else
(2)

where rij are random numbers from (0,1) with the uniform distribution.

Step 3: Select each trial vector x′
ij(t) for the t + 1 iteration using the acceptance

criterion:

xij(t + 1) =

{

x′
ij(t), if f(x′

ij(t)) < f(xij(t))
xij(t) else.

(3)

Step 4: Evaluate the objective function value f(xi(t)) of each individual xi(t),in
which the optimal individual of optimal value fbest is xb(t) = (xb1(t), . . . , xbd(t)).

Step 5: Update the current evolution generation t = t + 1. If t = T is satisfied then
stop, else go back to step 2.

In conventional DE, the fitness of an offspring competes one-to-one with its parent
that gives rise to a faster convergence rate. However, this faster convergence also
leads to a higher probability of obtaining a local optimum because the diversity of
the population descends faster during the solution progress. Hence, the attempt
that mixes other global optimal technique is a considerable field.

3. DE-CPS

3.1. Pattern search algorithm(PSA)

For a direct search method, pattern search algorithm(PSA) do not need the deriva-
tives of objective functions [1, 4, 18]. Alternatively, only the function values are
compared to choose the new iteration. Hence, we only need the order of function
values. According to the nonlinear unconstrained global optimization problem, the
steps of Hooke–Jeeves PSA [18] may be described as follows:

Algorithm PSA

Step 1: Set the initial evolution generation t = 0, initial vector x(0) = (x1(0), . . . ,
xd(0)), axis direction vector e = (e1, . . . , ed), step size δ, acceleration factor
α ≥ 1, compression factors β ∈ (0, 1) and let y = (y1, . . . , yd) = x(t), j = 1.

Step 2: If f(y + δej) < f(y), let y = y + δej and go to step 4; else go to step 3.

Step 3: If f(y − δej) < f(y), let y = y − δej else let y = y.

Step 4: If j < d, then j = j + 1 and go to step 2.

Step 5: Set x(t+1) = y, If f(x(t+1)) < f(x(t)), let y = x(t+1)+α(x(t+1)−x(t)),
then δ = δ, t = t + 1, j = 1 and go to step 2; else go to step 6.
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Step 6: If δ ≤ ε, then stop; else let δ = δ, when x(t + 1) 6= x(t); let δ = βδ when
x(t+1) = x(t), where the ε is a predefined constant according to the precision
requirement.

Step 7: Let y = x(t + 1), t = t + 1, j = 1, and go to step 2.

Hooke–Jeeves PSA directly explores in feasible region along the potent direction.
Although simplicity, the implementation of this algorithm is easy to trap in local
optimization because of the influences of initial values and step size. In order to
overcome this limitation, many researchers modified the PSA by adopting some
techniques [4, 18].

3.2. Improved logistic chaotic map

The simple logistic map is a well-known chaotic map [14, 16, 17]. It is often cited as
an example of how complex behavior can arise from a simple deterministic dynamic
system without any stochastic disturbance. This map is written as:

y(k + 1) = c · y(k)(1 − y(k)) for 0 < c ≤ 4, y(k) ∈ (0, 1). (4)

in which c is a control parameter and determines whether chaotic variable y stabilizes
at a constant value. Setting y(k) = (z(k) + 1)/2 when c = 4, the equation (6) is
changed to z(k + 1) = 1 − 2(z(k))2. Suppose a control parameter r, then we can
define improved logistic map as follows:

z(k + 1) = 1 − r(z(k))2 for 0 < r ≤ 2, z(k) ∈ (−1, 1). (5)

where the distribution of z(k) with different r are depicted in Figure 1.
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Fig. 1. The distribution of improved logistic map (a)0 ≤ r ≤ 2 (b) r = 2.

From Figure 1 (b), we can find improved logistic map can distribute in the region
of (−1, 1) except several unstable cycle points. According to this property, chaotic
variables can be applied in PSA as axis direction vector. Hence, we will propose a
DE based on PS using chaotic variable(DE-CPS) in the next subsection.
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3.3. DE-CPS

In this subsection, DE and PS using chaotic variable, these two kinds of techniques,
are both applied to numerical optimization as a way to accelerate convergence and
improve the efficiency of the novel hybrid algorithms. In allusion to the problem
of trapping in local optimization in the simple evolution method, we combine DE
with CPS, and establish a new frame-based DE-CPS algorithm for comparison with
conventional PSO [10] and DE as mentioned above. DE can propose a approximate
global optimal point for PS using chaotic variable. After this, the process of CPS
includes two major steps. The first one is chaotic exploration motion nearby the
current optimal value with a little chaotic perturbation. The other one is the sec-
ond order pattern motion includes coarse search and fine search. The procedure of
DE-CPS is described by the following steps.

Algorithm DE-CPS

Step 1: Set the initial evolution generation t = 0, and initial all parameters of DE-
CPS as the step 1 of basic DE in the Section 2.

Step 2: Execute the basic DE algorithm as a subprogram of the DE-CPS algorithm.

Step 2.1: Choose three distinct random integer r1, r2, r3 from the set {1, . . . , N}
and random integer jra = 1, . . . , d. The new point is found from nearby
the best position using the following crossover rule:

x′
ij(t) =

{

xr1,j(t) + F (xr2,j(t) − xr3,j(t)), if rij < Pc or j = jra

xij(t) else
(6)

where rij are random numbers from (0,1) with the uniform distribution.

Step 2.2: Select each trial vector x′
ij(t) for the t + 1 iteration using the accep-

tance criterion:

xij(t + 1) =

{

x′
ij(t), if f(x′

ij(t)) < f(xij(t))
xij(t) else.

(7)

Step 2.3: Evaluate the objective function value f(xi(t)) of each individual
xi(t),in which the current optimal individual of optimal value fbest is
xb(t).

Step 3: Chaotic exploration motion. Initial the chaotic iteration counter k = 0
and d-dimensional chaotic variable z(0) = (z1(0), . . . , zd(0)), in which each
zj(0) = rand(0, 1), (j = 1, . . . , d). The maximum number of chaotic iteration
is Cmax. Let y(0) = (y1(0), . . . , yd(0)) = xb(t) and x∗ = y(0) for chaotic
exploration motion.

Step 3.1: Run chaotic exploration motion using improved logistic map by means
of equation (5).
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Step 3.2: The chaotic variables, which are proportional to contraction factor ω,
alter each component nearby the optimal position by following equation
(addition and subtraction are operated, respectively.)

yj(k + 1) = yj(k) ± ωδ · zj(k) (8)

where contraction factor ω = e
−γ·t

T is a monotone decreasing function
with the increase of evolution generation. γ is a predefined constant
according to the precision requirement.

Step 3.3: Evaluate the value of f(y(k + 1)) with twice. If the new result
f(y(k+1)) < f(y(k)), then let x∗(t) = y(k+1) and f(x∗(t)) = f(y(k+1)),
else the values of x∗(t) and f(x∗(t)) keep invariant.

Step 3.4: If k = cmax then go to step 4, else increase k by 1 and go to step 3.1.

Step 4: Second order pattern motion. The coarse/fine search strategy presented here
is a parallel two-stage acquisition technique [18]. For improving the computing
precision, a litter constant ε1 is set to choose one of search strategy according
to the effect of chaotic exploration. If ‖x∗(t) − xb(t)‖ ≥ ε1, then adopt coarse
search and go to step 5; otherwise, adopt fine search and go to step 6.

Step 5: (coarse search) Let x′(t) = x∗(t)+α1(x
∗(t)−xb(t)), (α1 > 1), and evaluate

the fitness value f(x′(t)). If min
(

f(x′(t))
)

< f(x∗(t)), then replace the value
of x∗(t) with x′(t).

Step 6: (fine search) Let x′(t) = x∗(t) + α2(x
∗(t) − xb(t)), (0 < α2 ≤ 1), and

evaluate the fitness value f(x′(t)). If min
(

f(x′(t))
)

< f(x∗(t)), then replace
the value of x∗(t) with x′(t).

Step 7: To prevent the fitness value from trapping in local optima, a estimation
criteria is adopted for identifying it, which is described as follows.

△f(x∗) =

{

(f(x∗(t − 1)) − f(x∗(t)))/f(x∗(t)), if f(x∗(t)) 6= 0
f(x∗(t − 1)) − f(x∗(t)) else.

(9)

If △f(x∗) < ε2 is satisfied for K times in succession, then reset the initial
value of population and return to step 1 (namely population have trapped in
local optima, and need to substitute it using new initial value), else directly go
to step 8, where ε2 is a little constant according to the precision requirement
and K is a count constant.

Step 8: Let t = t + 1 and go back to step 2 until t = T is satisfied. The value of
x∗(T ) is the global solution that we need.

The process of DE-CPS algorithm includes three major steps, namely basic DE,
chaotic exploration and second order pattern motion, in which DE is used to perform
global exploration and CPS is employed to perform locally oriented search. The
preliminary optimum xb(t) is obtained by basic DE, and it is viewed as the center
with a little chaotic perturbation. Repeat the chaotic exploration until the maximum
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chaotic iterative number cmax is satisfied, then the current optimum x∗(t) is gained.
Second order pattern motion is applied to decide to adopt a coarse search strategy
or a fine search strategy according to the difference of xb(t) and x∗(t). In fact, coarse
search strategy is adopted more frequently in the early phase of hybrid algorithm
due to keeping away from the global optimum; fine search strategy is adopted more
frequently in the later stage for coming near to the global optimum. In order to
avoid being trapped into local optimum, a estimation criteria is used to reset the
initial population based on the required precision(namely chooses suitable ε2).

4. NUMERICAL EXPERIMENT

4.1. Test functions and experimental setup

For evaluating the efficiency and effectiveness of the algorithm, six prevalent bench-
mark functions that are commonly employed in the natural computation literature
[15],are used. f1 and f2 are unimodal functions (i. e., they have a unique local
optimum that is also the global optimum) and the remaining four functions are
multimodal (i. e., they have several local optima).

The function f1 is the Sphere function:

f1(x) =
30
∑

i=1

x2
i

−100 ≤ xi ≤ 100, min(f(0, 0, . . . , 0)) = 0.
(10)

The function f2 is the Rosenbrock function:

f2(x) =
29
∑

i=1

[100(xi+1 − x2
i )

2 + (1 − xi)
2]

−30 ≤ xi ≤ 30, min(f(1, 1, . . . , 1)) = 0.
(11)

The function f3 is the Ackley function:

f3(x) = −20 exp
(

− 0.2
√

1
n

∑30
i=1 x2

i

)

− exp
(

1
n

30
∑

i=1

cos(2πxi)
)

+ 20 + e

−32 ≤ xi ≤ 32, min(f(0, 0, . . . , 0)) = 0.
(12)

The function f4 is the Griewank function:

f4(x) = 1 +
30
∑

i=1

x2

i

4000 −
30
∏

i=1

cos( xi√
i
)

−400 ≤ xi ≤ 400, min(f(0, 0, . . . , 0)) = 0.
(13)

The function f5 is the Rastrigrin function:

f5(x) =
30
∑

i=1

(x2
i − 10 cos(2πxi) + 10)

−5.12 ≤ xi ≤ 5.12, min(f(0, 0, . . . , 0)) = 0.
(14)
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The function f6 is the Schaffer function:

f6(x) = 0.5 +
(sin

√
x2

1
+x2

2
)2−0.5

(1+0.001(x2

1
+x2

2
))2

−100 ≤ x1, x2 ≤ 100, min(f(0, 0)) = 0.
(15)

In our simulation, we first compared the DE-CPS with the stand PSO [10] and DE
[11]. Each algorithm was implemented in Matlab 7.7.0(R2008b). All the programs
were run on the Intel pentium T2370 processor with 1GB of random access momory.
To PSO, the acceleration constant c1, c2 are set to 2.0, and the velocity is clamped
to be 30% of search space, and the inertia weight decreases linearly from 0.9 to 0.4.
In both DE and DE-CPS, the parameters were defined with crossover probability
Pc = 0.5 and scaling factor F = 0.5. All the parameters of DE-CPS were set to
Cmax = 800, δ = 0.01, γ = 20, ε1 = e−10, ε2 = e−5, and K = 5.

4.2. Computational results

4.2.1. Fixed iterative number of evaluating results

Table 1. Computational results in 1000 iterations.

alg min max aver std CPU
PSO 7.1019e-008 2.1371e-005 3.6402e-006 4.7810e-006 4.1846

f1 DE 6.1231e-013 4.4680e-012 1.9459e-012 9.5136e-013 2.4853
DE-CPS 3.1614e-021 5.1220e-021 4.1984e-021 5.0914e-022 10.037

PSO 15.856 256.66 70.901 51.896 3.6712
f2 DE 24.0997 25.3366 24.6876 0.3017 2.4694

DE-CPS 2.3217e-015 3.1329e-015 2.8477e-015 1.5065e-016 10.32
PSO 5.5932e-005 1.9709e-003 6.6965e-004 5.0071e-004 5.165

f3 DE 2.4048e-007 5.4664e-007 3.7811e-007 7.2372e-008 4.1238
DE-CPS 4.0576e-011 5.2087e-011 4.6711e-011 2.7963e-012 29.633

PSO 1.8794e-006 5.8951e-002 1.1465e-002 1.2884e-002 5.4563
f4 DE 1.4240e-012 7.7782e-011 9.5855e-012 1.1455e-011 4.7128

DE-CPS 0 0 0 0 31.587
PSO 11.293 55.846 30.351 7.1162 3.9432

f5 DE 48.7046 80.2083 65.0621 7.3930 2.6632
DE-CPS 8.0637 37.0862 17.2017 5.7842 17.543

PSO 0 0 0 0 2.8107
f6 DE 0 0.0097 0.0020 0.0039 1.5923

DE-CPS 0 0 0 0 20.152

The Table 1 shows the simulation results of 50 independent runs including 6
benchmark functions. The population size of PSO and DE is 100, but DE-CPS’s
population size is 30 so as to reduce CPU time. The evolution generation of each
algorithm is 1000. ‘min’, ‘max’, ‘aver’, ‘std’ and ‘CPU’ represent the minimum,
maximum, average values, standard deviation of the proposed methods and the
average CPU processing time of each independent run, respectively. It can be easily
observed that the precision of DE-CPS outperforms PSO and DE to all problems,
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and DE-CPS can be close to or achieve the global optima except function f5. The
std of DE is better than PSO except function f6. Especially, It can also identify
that DE-CPS has more obvious optimal performance in Rosenbrock function (f2),
simultaneously. So, the effect of hybrid algorithm is perfect for DE-CPS can search
nearby the optimal value based on the results of simple DE. However, DE-CPS
increases the CPU time for chaotic motion improves the of precision of algorithm,
but reduces the evaluation speed of programs.

Fig. 2. The best results trend lines of PSO, DE and DE-CPS on different function.
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Form Figure 2, it can be seen that the varying curves of optimal solutions using
DE-CPS descend much faster than those by PSO and DE, and DE-CPS algorithm
can gain best results compared with PSO and DE, simultaneously. Hence, it is
concluded that DE-CPS is more efficient and accurate than PSO and DE.

4.2.2. Comparison with other hybrid algorithms

For demonstrating the superiority of DE-CPS algorithm, we try to compare it with
other hybrid algorithms. In 2007, Xiang et. al proposed a particle swarm optimiza-
tion using piecewise linear chaotic map(PWLCPSO), and compared the efficiency
and robustness of five chaotic particle swarm optimization (CPSO)[15] according to
the above-mentioned six test functions. In our study, the ‘Goal’ denotes the function
value should be achieved in each run, and the success ratio γ which indicates the ro-
bustness of proposed hybrid algorithms is the ratio of times of successful run to total
runs. Table 2 shows the goals of test functions that have to be achieved by all hybrid
algorithms. In Table 3 and Table 4, it is easily identified that DE-CPS’s efficiency
and robustness outperforms other hybrid algorithms reported in the literature [15]
on six benchmark functions and even obtains 100 % success ratio.

Table 2. The goals of test functions.

Function f1 f2 f3 f4 f5 f6

Goal 0.01 100 0.1 0.1 100 10−5

Table 3. Comparison in 5000 iterations(f1 − f3).

f1 f2 f3

min γ min γ min γ
rCPSO 368.32 0 49179 0 14.57 0
wCPSO 0.0019 0.96 328.32 0.28 8.57 0.46
CPSO’04 5.25e-077 1 13.003 1 0.32 0.74
CPSO’05 0.00078 0.98 131.2 0.72 1.3 0.32

PWLCPSO 4.049e-079 1 12.455 1 0.28 0.78
DE-CPS 1.3707e-109 1 9.2938e-16 1 4.4409e-015 1

Table 4. Comparison in 5000 iterations(f4 − f6).

f4 f5 f6

min γ min γ min γ
rCPSO 4.33 0 158.03 0.02 0.0058 0
wCPSO 0.031 0.96 43.01 1 7.5e-6 0.98
CPSO’04 0.042 1 11.8 1 0.0029 0.7
CPSO’05 0.059 0.86 56.39 0.96 0.0016 0.84

PWLCPSO 0.0075 1 47.28 1 0 1
DE-CPS 0 1 3.9798 1 0 1
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4.2.3. Influence of dimension

Rosenbrock function(f2) is a morbid in the feasible region and is very hard to be
optimized for residing inside a long, narrow,and parabolic-shaped flat valley nearby
the global optimum. General algorithm can’t almost obtain a convergent result to
it. Hence, most optimal algorithms set ‘100’ as the goal of evaluation to it [15].
From the frontal context, it can be easily found that the evaluation of all algorithms
can’t be close to the minimal value ‘0’ to 30-dimensional Rosenbrock function except
DE-CPS. Thus, we try to evaluate the performance of DE-CPS in higher dimension
space.

Table 5. DE-CPS to solve high dimensional Rosenbrock function

in 1000 and 2000 iterations.

dim iteration min max aver std CPU γ
50 1000 2.6173e-014 98.0032 4.3813 15.4557 13.5839 1
50 2000 9.0875e-005 41.6975 1.7802 6.0312 27.3907 1
80 1000 7.9657e-005 215.8463 35.5503 35.3754 15.6992 0.92
80 2000 9.3009e-0014 94.0201 5.9351 19.3441 31.6717 1
100 1000 21.2744 136.3613 58.892 14.8942 18.3851 0.96
100 2000 2.1799e-006 32.6063 26.1584 7.9107 36.575 1

Table 5 illustrates the evaluation results of DE-CPS to 50, 80, 100 dimensional
Rosenbrock function in 1000 and 2000 iterations. It is easy to find that DE-CPS
shows good effect and robustness to 50 dimensional problem. DE-CPS can achieve
100 % success ratio in 2000 iterations though it has general performance to the
80-dimensional and 100-dimensional problem in 1000 iterations. So, we can con-
clude that the increase of dimension may lead to the depreciation of performance
of DE-CPS. But, we can solve this problem by means of increasing the evolution
generations.

5. CONCLUSION

This paper has presented the differential evolution algorithm based on chaotic pat-
tern search(DE-CPS). With the evolution of generations, pattern search using chaotic
variable instead of random variable is incorporated into the basic DE algorithm to
prevent local optimization. Experiment results shows that the proposed DE-CPS is
superior in term of effectiveness and robustness including morbid Rosenbrock func-
tion. In the future, we will try to apply the DE-CPS for several complex engineering
optimization problems.
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