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EIGENSPACE OF A CIRCULANT MAX–MIN MATRIX
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The eigenproblem of a circulant matrix in max-min algebra is investigated. Complete
characterization of the eigenspace structure of a circulant matrix is given by describing all
possible types of eigenvectors in detail.
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1. INTRODUCTION

Eigenvectors of a max-min matrix characterize stable states of the corresponding
discrete-events system. Investigation of the max-min eigenvectors of a given matrix
is therefore of a great practical importance. The eigenproblem in max-min algebra
has been studied by many authors. Interesting results were found in describing the
structure of the eigenspace, and algorithms for computing the maximal eigenvector of
a given matrix were suggested, see e.g. [1], [2], [3], [5], [7], [8], [9], [10]. The structure
of the eigenspace as a union of intervals of increasing eigenvectors is described in [4].

By max-min algebra we understand a triple (B,⊕,⊗), where B is a linearly or-
dered set, and ⊕ = max, ⊗ = min are binary operations on B. The notation B(n, n)
(B(n)) denotes the set of all square matrices (all vectors) of given dimension n over
B. Operations ⊕, ⊗ are extended to matrices and vectors in a formal way.

The eigenproblem for a given matrix A ∈ B(n, n) in max-min algebra consists of
finding a vector x ∈ B(n) (eigenvector) such that the equation A⊗x = x holds true.
By the eigenspace of a given matrix we mean the set of all its eigenvectors.

In this paper the eigenspace structure for a special case of so-called circulant
matrices is studied. Circulant matrices arise, for example, in applications involving
the discrete Fourier transform and the study of cyclic codes for error correction, see
[6]. The paper presents a detailed description of all possible types of eigenvectors of
any given circulant matrix.

2. EIGENVECTORS OF CIRCULANT MATRICES

A square matrix is called circulant, if the input values in every row are the same as
the values in the previous row, but they are cyclically shifted by one position to the
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right. Formally, matrix A ∈ B(n, n) is circulant if

aij = ai′j′

whenever
i − i′ ≡ j − j′ (mod n) .

Hence, circulant matrix A is fully determined by its inputs a0, a1, . . . , an−1 in the
first row. The input a0 is the common value of all diagonal inputs, and similarly
each ai is the common value of all inputs on a line parallel to the matrix diagonal,

A(a0, a1, . . . , an−1) =















a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3

...
...

...
. . .

...
a1 a2 a3 . . . a0















.

We shall use the notation N = {1, 2, . . . , n} and N0 = {0, 1, . . . , n − 1}. Further
we define, for a given circulant matrix A = A(a0, a1, . . . , an−1), a strictly decreasing
sequence M(A) = (m1, m2, . . . ) of length s(A) by recursion

mr =

{

max{ ai; i ∈ N0 } for r = 1
max{ ai < mr−1; i ∈ N0 } for r > 1

Clearly, we have m1 > m2 > . . . and the length s(A) of the sequence M(A) is
the first s with the property { ai; i ∈ N0 } = {mr; 1 ≤ r ≤ s }. For convenience, we
shall use the notation S(A) = {1, 2, . . . , s(A)}. For any r ∈ S(A) we denote by Pr

the set of all positions of the value mr in the first row of the matrix A, i.e.

Pr = { i ∈ N0; ai = mr }

and we define the greatest common divisors dr, er as follows

dr = gcd(Pr ∪ {n}) , er = gcd(d1, d2, . . . , dr) = gcd(er−1, dr) .

Remark 2.1. The indices of matrix inputs ai, as well as their positions, are numbers
in N0 = {0, 1, . . . , n − 1}, while the row and columns of the matrix are indexed by
numbers from 1 to n. Hence, for any k ∈ N , the kth row of A is of the form

Ak = (. . . , ak k, ak k+1, ak k+2, . . . )

and for any position p ∈ Pr, we have ak k+p = mr (as the matrix is circulant, the
value of the column index k + p is computed modulo n).

The following two lemmas will play key role in our investigations.

Lemma 2.2. Let circulant matrix A = A(a0, a1, . . . , an−1) be given, let x be eigen-
vector of A, let k ∈ N , r ∈ S(A) and p ∈ Pr(A). If xk < mr, then

xk = xk+p .
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P r o o f . Let us assume first that xk < xk+p. Then we have, in view of Remark 2.1

xk < mr ⊗ xk+p = ak k+p ⊗ xk+p ≤ Ak ⊗ x ,

which means that x cannot be eigenvector of A, a contradicton. We have proved
xk ≥ xk+p . By repeated use of this argument we get, in view of the cyclicity of A,

xk ≥ xk+p ≥ xk+2p ≥ · · · ≥ xk

hence, the equality xk = xk+p must hold true. �

Lemma 2.3. Let circulant matrix A = A(a0, a1, . . . , an−1) be given, let x be eigen-
vector of A, let k, l ∈ N and r ∈ S(A). If xk < mr, then the following implications
hold true

(i) if k ≡ l mod dr then xk = xl ,

(ii) if k ≡ l mod er then xk = xl .

P r o o f . (i) The value dr is defined as the greatest common divisor of all positions
in Pr and the dimension n. Hence, by the well-known theorem of the number theory,
any sufficiently large integer multiple of dr can be expressed as a linear combination
of values in Pr∪{n} with non-negative coefficients. The assertion (i) is then obtained
by repeated use of Lemma 2.2.

(ii) The assertion (ii) follows analogously from the definition of er and from the
assertion (i). �

Theorem 2.4. Let circulant matrix A = A(a0, a1, . . . , an−1) be given, let x be an
eigenvector of A. Then xk ≤ m1 holds true for every k ∈ N .

P r o o f . Let us assume, by contradiction, that xk > m1 for some k ∈ N . Then, by
definition of m1, the inequality xk > ai holds for every i ∈ N0, which gives xk > akj

for every j ∈ N . Hence

xk >
⊕

j∈N

(akj ⊗ xj) = Ak ⊗ x ,

i.e. xk 6= Ak ⊗ x and, therefore, x is not eigenvector of A. �

Theorem 2.5. Let circulant matrix A = A(a0, a1, . . . , an−1) be given, in which the
diagonal input a0 is greater than all the remaining inputs of the matrix. If a vector
x ∈ B(n) has inputs fulfilling the inequalities m2 ≤ xk ≤ m1 for every k ∈ N , then
x is eigenvector of A.

P r o o f . By definition of the sets Pr, the assumptions of the theorem give P1 = {0}
and we have

Ak ⊗ x =
⊕

j∈N

(akj ⊗ xj) = (akk ⊗ xk) ⊕
⊕

j∈N\{k}

(akj ⊗ xj) .
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Further we have
akk ⊗ xk = m1 ⊗ xk = xk ,

⊕

j∈N\{k}

(akj ⊗ xj) ≤
⊕

j∈N\{k}

(m2 ⊗ xj) = m2 ,

hence
xk = akk ⊗ xk ≤ Ak ⊗ x ≤ xk ⊕ m2 = xk .

for every k ∈ N , i.e. A ⊗ x = x. �

Remark 2.6. In fact, Theorem 2.5 is a special case of the ‘if’ implication in The-
orem 2.8. In Theorem 2.5 we have P1 = {0} and d1 = e1 = n, hence the assertions
of Lemma 2.3 are fulfilled, in view of the fact that the equivalence relation modulo
n is the identity relation on N0.

Remark 2.7. On the other hand, if the maximal input of the circulant matrix is
not unique, or if it is placed on other position than the diagonal one, then 0 < e1 < n
and the equivalence modulo e1 differs from the identity relation on N0. Hence, the
inputs of any eigenvector cannot be arbitrary values in the interval 〈m2, m1〉 but
according to Lemma 2.3, some repetitions must occur, see Example 3.3.

Theorem 2.8. Let A = A(a0, a1, . . . , an−1) be a circulant matrix. A vector x ∈
B(n) is eigenvector of A if and only if there is a partition T , on N , such that for
every class T ∈ T there exist x(T ) ∈ B and r(T ) ∈ S(A), satisfying the following
conditions

(i) xk = x(T ) ≤ m1 for every k ∈ T ,

(ii) r(T ) = max { r ∈ S(A); x(T ) < mr } ,

(iii) T is an equivalence class in N modulo er(T ) .

P r o o f . (⇒) If x is eigenvector of A, then the conditions (i)–(iii) follow from
Lemma 2.3 and Theorem 2.4.

(⇐) Let (i)–(iii) be satisfied. We remark that if x(T ) = m1, then, according
to (ii), r(T ) is the maximum of the empty subset, which is the minimal element in
S(A), i.e. r(T ) = 1 in this case.

Let k ∈ N be arbitrary, but fixed. Then there is T ∈ T with k ∈ T . The position
set P1 is non-empty by definition, hence there is p ∈ P1, and ap = m1. Therefore,
k ≡ k + p mod er(T ) and, as a consequence of conditions (i), (iii), we have

xk = xk+p = m1 ⊗ xk+p = ak k+p ⊗ xk+p ≤
⊕

j∈N

(akj ⊗ xj) = Ak ⊗ x .

To prove the converse inequality, let us consider any index j ∈ N . If j ∈ T , then
xj = xk, by (i). Thus,

⊕

j∈T

(akj ⊗ xj) =
⊕

j∈T

(akj ⊗ xk) ≤ xk .
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On the other hand, if j /∈ T , then j, k are not equivalent modulo er(T ). Therefore,
the difference p = j−k is not a multiple of the greatest common divisor er(T ), and by
the well-known theorem of the number theory, the difference p cannot be expressed as
a linear combination with integer coefficients, of the values in P1∪P2∪· · ·∪Pr(T )∪{n},
in view of the definition of er(T ). As a consequence we then have ap = mq for some
q > r(T ), which implies mq ≤ x(T ), by assumption (ii). Therefore, akj = ak k+p =
mq ≤ xk. Thus, we have

⊕

j∈N\T

(akj ⊗ xj) ≤
⊕

j∈N\T

akj ≤ xk .

Summarizing we get

xk ≤ Ak ⊗ x =
⊕

j∈T

(akj ⊗ xj) ⊕
⊕

j∈N\T

(akj ⊗ xj) ≤ xk .

The fixed index k ∈ N is arbitrary, hence we have proved A ⊗ x = x. �

3. EXAMPLES OF EIGENVECTORS

This section contains several examples of eigenvectors of a circulant matrix. The
examples illustrate Theorem 2.5, Theorem 2.8 and Remark 2.7.

Example 3.1. Let n = 12 and let A = A(15, 1, 3, 4, 3, 0, 7, 1, 1, 4, 2, 2) be a circulant
matrix generated by inputs on positions (0, 1, 2, . . . , 10, 11) in the first row. Then
the strictly decreasing sequence of inputs has the form M(A) = (m1, m2, . . . , m7) =
(15, 7, 4, 3, 2, 1, 0). The maximal input m1 = 15 is on the diagonal, i.e. on position
0 and nowhere else, the second largest input has the value m2 = 7. Hence, in
view of Theorem 2.5, any vector with arbitrary inputs from interval 〈7, 15〉, e.g.
x = (11, 9, 8, 14, 11, 12, 15, 7, 8, 8, 10, 7)T, is an eigenvector of A.









































15 1 3 4 3 0 7 1 1 4 2 2
2 15 1 3 4 3 0 7 1 1 4 2
2 2 15 1 3 4 3 0 7 1 1 4
4 2 2 15 1 3 4 3 0 7 1 1
1 4 2 2 15 1 3 4 3 0 7 1
1 1 4 2 2 15 1 3 4 3 0 7
7 1 1 4 2 2 15 1 3 4 3 0
0 7 1 1 4 2 2 15 1 3 4 3
3 0 7 1 1 4 2 2 15 1 3 4
4 3 0 7 1 1 4 2 2 15 1 3
3 4 3 0 7 1 1 4 2 2 15 1
1 3 4 3 0 7 1 1 4 2 2 15









































⊗
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14
11
12
15
7
8
8
10
7
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9
8
14
11
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15
7
8
8
10
7









































Example 3.2. In this example we show further eigenvectors of the matrix A =
A(15, 1, 3, 4, 3, 0, 7, 1, 1, 4, 2, 2) from the previous example. If an eigenvector should
contain inputs not belonging to the interval 〈m2, m1〉 = 〈7, 15〉, then in view of
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Theorem 2.2, such inputs cannot be larger than m1 = 15. Hence such inputs must
be less than the value m2 = 7, and some repetitions must occur, by Lemma 2.3.

The position sets for particular inputs are P1 = {0} for m1 = 15, P2 = {6} for
m2 = 7, P3 = {3, 9} for m3 = 4, P4 = {2, 4} for m4 = 3, P5 = {10, 11} for m5 = 2,
P6 = {1, 7, 8} for m6 = 1 and P7 = {5} for m7 = 0. By definition of the greatest
common divisors dr, er we get

d1 = gcd(P1 ∪ {n}) = gcd(0, 12) = 12 e1 = 12

d2 = gcd(P2 ∪ {n}) = gcd(6, 12) = 6 e2 = gcd(d1, d2) = gcd(12, 6) = 6

d3 = gcd(P3 ∪ {n}) = gcd(3, 9, 12) = 3 e3 = gcd(e2, d3) = gcd(6, 3) = 3

d4 = gcd(P4 ∪ {n}) = gcd(2, 4, 12) = 2 e4 = gcd(e3, d4) = gcd(3, 2) = 1

Clearly, the further computation gives e5 = e6 = e7 = 1. By Lemma 2.3, any
input xk < mr must be repeated in x after er positions. In particular, inputs less
than value m2 = 7 must be repeated after 6 positions, inputs less than m3 = 4
must be repeated on every third position. However, inputs which are not less than
m2 = 7 can be arbitrary. The above conditions are satisfied e.g. by vector x =
(3, 6, 5, 3, 11, 11, 3, 6, 5, 3, 10, 7)T , which is therefore an eigenvector of A, in view of
Theorem 2.8.









































15 1 3 4 3 0 7 1 1 4 2 2
2 15 1 3 4 3 0 7 1 1 4 2
2 2 15 1 3 4 3 0 7 1 1 4
4 2 2 15 1 3 4 3 0 7 1 1
1 4 2 2 15 1 3 4 3 0 7 1
1 1 4 2 2 15 1 3 4 3 0 7
7 1 1 4 2 2 15 1 3 4 3 0
0 7 1 1 4 2 2 15 1 3 4 3
3 0 7 1 1 4 2 2 15 1 3 4
4 3 0 7 1 1 4 2 2 15 1 3
3 4 3 0 7 1 1 4 2 2 15 1
1 3 4 3 0 7 1 1 4 2 2 15
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We may note that if an eigenvector x of A should contain an input xk < m4 = 3,
then such an input would be repeated after every e4 = 1 position, in other words,
the eigenvector would have only that single input, i.e. it would be a constant vector.

Example 3.3. Last example illustrates Remark 2.7 by analyzing eigenvectors of
the matrix B = B(15, 1, 3, 15, 3, 0, 7, 1, 1, 4, 2, 2), which differs from matrix A in a
single input, namely b3 = 15. Thus, the maximal input of the matrix B is placed on
the diagonal position 0 and also on a non-diagonal position 3. We have P1 = {0, 3}
for m1 = 15 and e1 = d1 = gcd(0, 3, 12) = 3. Therefore, Theorem 2.5 cannot be
applied, and the input values belonging to the interval 〈m2, m1〉 = 〈7, 15〉 must be
repeated after e1 = 3 positions. In fact, the same is true for all input values in the
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interval 〈m4, m1〉 = 〈3, 15〉, because it can be easily computed that e2 = e3 = 3.









































15 1 3 15 3 0 7 1 1 4 2 2
2 15 1 3 15 3 0 7 1 1 4 2
2 2 15 1 3 15 3 0 7 1 1 4
4 2 2 15 1 3 15 3 0 7 1 1
1 4 2 2 15 1 3 15 3 0 7 1
1 1 4 2 2 15 1 3 15 3 0 7
7 1 1 4 2 2 15 1 3 15 3 0
0 7 1 1 4 2 2 15 1 3 15 3
3 0 7 1 1 4 2 2 15 1 3 15
15 3 0 7 1 1 4 2 2 15 1 3
3 15 3 0 7 1 1 4 2 2 15 1
1 3 15 3 0 7 1 1 4 2 2 15
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