
K Y BE R NE T IK A — VO L UM E 4 6 (2 0 1 0) , NU MB E R 2 , P AGE S 2 9 4 – 3 1 5

GENERIC IMPLEMENTATION OF FINITE ELEMENT
METHODS IN THE DISTRIBUTED AND UNIFIED
NUMERICS ENVIRONMENT (DUNE)

Peter Bastian, Felix Heimann and Sven Marnach

In this paper we describe PDELab, an extensible C++ template library for finite
element methods based on the Distributed and Unified Numerics Environment (Dune).
PDELab considerably simplifies the implementation of discretization schemes for systems
of partial differential equations by setting up global functions and operators from a sim-
ple element-local description. A general concept for incorporation of constraints eases the
implementation of essential boundary conditions, hanging nodes and varying polynomial
degree. The underlying Dune software framework provides parallelization and dimension-
independence.

Keywords: finite elements, generic programming

Classification: 65M02, 65N02, 65Y02

1. INTRODUCTION

Dune [2, 3, 9] is a set of C++ libraries for the grid-based numerical solution of
partial differential equations (PDEs). Its main design principles are: (i) separation
of data structures and algorithms through abstract interfaces, (ii) use of generic pro-
gramming techniques for achieving performance and (iii) enabling reuse of existing
finite element software through appropriate interface design. Dune provides support
for many different kinds of grids, a flexible linear solver package [4, 1], is parallel as
well as dimension-independent and offers a full simulation workflow using free soft-
ware. Salome [16] can be used to work interactively with CAD models through the
OpenCascade [13] CAD kernel. Meshes are generated with Gmsh [10] which incorpo-
rates several mesh generators and can access CAD models through the OpenCascade
kernel. Gmsh meshes are then read by Dune into the various mesh implementa-
tions and subsequently simulation results are visualized using Paraview/VTK [14]
supporting parallel visualization.

The implementation of real world application problems using the Dune grid and
solver modules only is a tedious task. Several attempts have been undertaken to
support the implementation of discretization schemes in Dune, most notably the
Dune-Fem [8] module. In this paper we describe PDELab, a C++ template library

Generic Finite Elements in DUNE 295

based on the Dune framework that considerably simplifies the implementation of
discretization schemes. It has been designed with the following goals in mind:

• Substantially reduce time to implement discretization schemes for systems of
PDEs based on Dune (rapid prototyping).

• Simple things should be simple – suitable for teaching. By this we mean that
we mean that a simple discretization scheme for a simple equation should be
implementable with a few pages of code in a few hours (provided the student
has the required background in numerical methods and programming).

• Support of general finite element spaces including non-conforming spaces, hp-
spaces and vector-valued spaces.

• General approach to constraints such as essential boundary conditions and
hanging nodes.

• Generic approach to systems of PDEs.

• Exchangeable linear algebra backend that allows use of external solver libraries
such as PetSc [15] or Trilinos [17] in addition to the Dune solvers.

This paper is structured as follows. In Section 2 we give an abstract formulation
of PDE discretization methods based on a weighted residual formulation. In Section
3 we describe how finite element spaces are realized in PDELab while Section 4 is
devoted to a description of the generic assembly process. Then in Section 5 some
numerical results are presented to evaluate the flexibility and performance of the
approach. Finally, Section 6 draws some conclusions.

2. WEIGHTED RESIDUAL FORMULATION

2.1. Stationary problems

Let us first consider stationary, possibly nonlinear systems of partial differential
equations (PDEs). For a general PDE discretization framework we need an abstract
problem formulation.

Definition 2.1 (Weighted residual formulation). We claim that a large class of
discretization schemes for partial differential equations can formally be written as

Find uh ∈ wh + Ũh : rh(uh, v) = 0 ∀ v ∈ Ṽh. (1)

Here Ũh ⊆ Uh and Ṽh ⊆ Vh are subspaces of finite dimensional function spaces
Uh (trial space) and Vh (test space). wh ∈ Uh is a function that incorporates the
essential boundary conditions and the solution uh is sought in the affine subspace
wh + Ũh = {yh = wh + ũh : ũh ∈ Ũh}. rh : Uh × Vh → R is the residual form which
may be nonlinear in its first argument and is always linear in its second argument.
Finally, we assume that problem (1) has a unique solution.

296 P. BASTIAN, F. HEIMANN AND S. MARNACH

This abstract formulation encompasses many well-known discretization methods
such as conforming and non-conforming finite element methods, finite volume meth-
ods or finite difference methods. In contrast to many text book presentations of these
methods, we want to emphasize the importance of how to treat essential boundary
conditions as this is often a complication in the implementation of these methods.

In order to proceed we introduce basis representations of the spaces involved

Uh = spanΦh, Φh = {φi : i ∈ IUh
}, FEΦh

(u) =
∑

i∈IU
h

uiφi,

Vh = spanΨh, Ψh = {ψi : i ∈ IVh
}, FEΨh

(v) =
∑

i∈IV
h

viψi.

IUh
, IVh

are index sets and FEΦh
: U = R

IU
h → Uh, FEΨh

: V = R
IV

h → Uh

are finite element isomorphisms. Inserting the basis representation into (1) yields a
nonlinear algebraic system which reads in the unconstrained case Ũh = Uh, Ṽh = Vh

(the constrained case will be treated below):

u ∈ U : R(u) = 0 (2)

where we introduced the nonlinear residual map R given by

(R(u))i = rh(FEUh
(u), ψi). (3)

2.2. Some examples

In order to illustrate the generality of the weighted residual formulation we formulate
several different schemes for a linear second order elliptic PDE. Let Ω be a domain
in R

d with boundary ∂Ω. We consider

∇ · σ = f in Ω, (4a)

σ = −K(x)∇u in Ω, (4b)

u = g on ΓD ⊆ ∂Ω, (4c)

σ · ν = j on ΓN = ∂Ω \ ΓD. (4d)

This equation describes e. g. stationary groundwater flow in a fully saturated porous
medium. Then u is the hydraulic head and K is the tensor-valued hydraulic con-
ductivity.

Let Th be a shape regular family of triangulations of Ω (assumed to be poly-
hedral) with a generic element denoted by T . Depending on the type of scheme
non-conforming triangulations (hanging nodes) may be allowed.

Example 2.2 (Conforming finite elements). The conforming spaces are

Uk
h = {u ∈ C0(Ω) : u|T ∈ Pk}, Ũk

h = {u ∈ Uk
h : u(x) = 0 for x ∈ ΓD},

Generic Finite Elements in DUNE 297

with Pk the space of polynomials of total degree less than or equal to k if Th consists
of simplicial elements. The residual form reads

rFE
h (uh, v) =

∑

T∈Th

∫

T

(K∇uh) · ∇v dx+
∑

F∈FN

h

∫

F

jv ds−
∑

T∈Th

∫

T

fv dx.

Since this is a Galerkin method we have Vh = Uk
h and Ṽh = Ũk

h . F∂Ω
h = FD

h ∪ FN
h

is the set of element faces covering the domain boundary which is partitioned into
Dirichlet and Neumann boundary faces. The affine shift wh is any function with
wh = g at vertices on ΓD.

Example 2.3 (Cell centered finite volumes). For this method we require that Th is
an axi-parallel, structured mesh. Moreover the conductivity coefficient is assumed
to be scalar, i. e. K(x) = k(x)I. The cell-centered method is based on the space of
piecewise constant functions

W 0
h = {u ∈ L2(Ω) : u|T = const} = Uh = Vh.

A face F is an interior face if we can find two elements T−(F), T+(F) ∈ Th such that
F = T−(F) ∩ T+(F). By x−(F) and x+(F) we denote the centers of the elements
T−(F) and T+(F) and by xF we denote the center of the face F . The unit normal
vector νF is chosen to point from element T−(F) to element T+(F) and by F i

h we
denote the set of all interior faces F . For boundary faces F ∈ F∂Ω

h the normal
direction νF is always the exterior normal and the element T−

F denotes the element
which has F as its face. For a point x on an interior face F , we define the jump of
a function u ∈ W 0

h as:

[u](x) = lim
ǫ→0+

u(x− ǫνF) − lim
ǫ→0+

u(x+ ǫνF).

Using the two-point flux approximation the residual form for this method reads

rCC
h (uh, v) =

∑

F∈Fi

h

∫

F

k(F)
uh(x−F) − uh(x+

F)

‖x+
F − x−F ‖

[v] ds−
∑

T∈Th

∫

T

fv dx

+
∑

F∈FD

h

∫

F

k(F)
uh(x−F) − g(xF)

‖x+
F − x−F ‖

v ds+
∑

F∈FN

h

∫

F

jv ds.

(5)

The conductivity k(F) is typically computed as a harmonic average of the conduc-
tivity of the adjacent elements. Note that here we use W 0

h as trial and test space as
the constraints are already built into the residual form.

Example 2.4 (Discontinuous Galerkin method). For this method the discrete func-
tion space is

W k
h = {u ∈ L2(Ω) : u|T ∈ Pk(T)} = Uh = Vh,

where k : Th → N, k(T) ≥ 2 assigns a polynomial degree to each element. For a
point x on an interior face F , we define the average of a function u ∈W k

h as:

〈u〉(x) =
1

2

(

lim
ǫ→0+

u(x− ǫνF) + lim
ǫ→0+

u(x+ ǫνF)

)

.

298 P. BASTIAN, F. HEIMANN AND S. MARNACH

The residual form defining the Oden–Babuška–Baumann method [12] is given by

rOBB
h (uh, v) =

∑

T∈Th

∫

T

((K∇uh) · ∇v − fv) dx+
∑

F∈FN

h

∫

F

jv ds

+
∑

F∈Fi

h

∫

F

(〈(K∇v) · νF 〉[u] − [v]〈(K∇u) · νF 〉) ds

+
∑

F∈FD

h

∫

F

(((K∇v) · νF)(u − g) − v((K∇u) · νF)) ds.

Example 2.5 (Mixed finite element method). In this method we use (4) directly in
its first order (mixed) form. For the velocity σ we might use the Raviart–Thomas
space of lowest order on triangles:

Sh =

{

σ ∈ (L2(Ω))2 : σ|T =

(

aT

bT

)

+ cT

(

x
y

)

∀T ∈ Th

}

.

and its subspace

S̃h = {σ ∈ Sh : “σ · ν = 0” on ΓN}.

Then the discrete problem in residual form reads:

Find (σh, uh) ∈ (wh + S̃h) ×W 0
h : rMFE

h ((σh, uh), (v, q)) = 0 ∀ (v, q) ∈ S̃h ×W 0
h

with

rMFE
h ((σh, uh), (v, q)) =

∑

T∈Th

∫

T

(

(K−1σh) · v − uh ∇ · v −∇ · σh q + fq
)

dx

+
∑

F∈FD

h

∫

F

gv · ν ds

and wh some function with wh · ν = j on ΓN .

Observation 2.6. From the examples given in this section we make the following
observations that hold also for more complicated problems:

• The residual form can be split into contributions coming from integrals over
elements T ∈ Th, integrals over interior faces F ∈ F i

h and integrals over bound-
ary faces F ∈ F∂Ω

h .

• Even for nonlinear problems, the residual form is always linear in its second
argument.

• In case of systems of PDEs trial and test spaces are products of function spaces.

Generic Finite Elements in DUNE 299

2.3. Instationary problems

In case of instationary problems we assume that discretization in space and time
reduces the problem to a sequence of steps having the form postulated in Defini-
tion 2.1.

Example 2.7 (Heat equation). Consider the time-dependent PDE

∂tu−∇ · {K∇u} = f in Ω × Σ

with Σ = (a, b) a time interval and initial condition u(x, a) = ua(x) (boundary con-
ditions are the same as in (4)). Using one of the spatial discretizations from above,
e. g. conforming finite elements, we can write this in a method of lines approach as:
Find uh(t) ∈ Ũk

h such that

d

dt

∫

Ω

uh(t)v dx+ rFE
h (uh(t), v; t) = 0 ∀ v ∈ Vh, t ∈ Σ

and uh(a) = ua
h. Discretizing the time interval a = t0 < t1 < . . . < tN = b,

∆tk = tk+1 − tk, and using the implicit Euler method we arrive at

rIEFE
h (uh, v) =

∫

Ω

(

uk+1
h − uk

h

)

v dx+ ∆tkrFE
h (uk+1

h , v; t) = 0 ∀ v ∈ Vh, 0 < k ≤ N.

Other discretizations such as Runge–Kutta methods, multi-step methods or space-
time Galerkin methods can be treated in the same way. Formally, explicit and
implicit methods can be treated with the only difference that explicit methods lead
to a linear system that is trivial to solve.

3. GRID FUNCTIONS

In order to construct finite-dimensional function spaces in a generic way we rely on
affine families of finite elements [7].

Definition 3.1. A finite dimensional function space Uh defined on a triangulation
T is defined by

Uh(Th) =

{

uh(x) :
⋃

T∈Th

T → R
m :

uh(x) =
∑

T∈Th

n(T)−1
∑

i=0

(u)g(T,i) πT (φ̂T,i(x̂), x̂)χT (x); x̂ = µ−1
T (x)

}

,

(6)

where φ̂T,i is a local basis function defined on the reference element of element T ,
n(T) is the number of local basis functions on element T , the local-to-global map
g(T, i) associates this local basis function with a global degree of freedom, χT is the
characteristic function of element T and µ : T̂ → T maps the reference element of T
to T . Finally, πT transforms the local basis function values to global coordinates (an
example would be the Piola transformation for H(div)-conforming finite elements).

300 P. BASTIAN, F. HEIMANN AND S. MARNACH

3.1. Local Finite Elements

The global finite element space is build up from a local description element by
element. In this subsection we give an overview of the classes giving this local
description. By giving some code fragments we want to give an impression of the use
of these classes. They are collected in the separate module dune-local functions

as they might be reused by other finite element implementations.
First ingredient is the basis on the reference element which is given by a class

implementing C0LocalBasisInterface. E.g. getting the Lagrange basis of order 4
on the tetrahedron is done by

typedef Pk3DLocalBasis<float,double,4>

LocalBasis; LocalBasis localbasis;

The class is parametrized by the type to represent coordinates (float here), the type
to represent basis function values (double here) and the polynomial order (4 here).
Evaluating all basis functions at a given position is done by the following code
fragment:

LocalBasis::Traits::DomainType xlocal(1.0/3.0);

std::vector<LocalBasis::Traits::RangeType>

phi(localbasis.size());

localbasis.evaluateFunction(x,phi);

The Traits class within LocalBasis holds all relevant types. The vector phi con-
tains the values of all basis function at the point xlocal in coordinates of the refer-
ence element. Extensions of that class allow also the evaluation of first and higher
order derivatives.

The second ingredient is a class implementing LocalInterpolationInterface

which allows to get the basis representation of a given function f. If f cannot be
represented exactly then this function returns an approximation (pointwise evalua-
tion, L2-projection). To this end we first define a class with an evaluate method
that defines the function (f(x) = x2

0 in this example) to interpolate:

template<class Traits> class F { public:

void evaluate (typename Traits::DomainType x,

typename Traits::RangeType\& rv) const {

rv = x[0]*x[0];

}

};

Evaluating the coefficients with respect to the basis is then done by

typedef Pk3DLocalInterpolation<LocalBasis>

LocalInterpolation;

LocalInterpolation localinterpolation;

F<LocalBasis::Traits> f;

std::vector<LocalBasis::Traits::RangeType>

u(localbasis.size());

localinterpolation.interpolate(f,u);

Generic Finite Elements in DUNE 301

(0, 2, 0) (0, 1, 0) (0, 1, 1) (0, 1, 2) (1, 2, 0)

(1, 1, 0) (0, 0, 0) (0, 0, 1) (2, 1, 0)

(1, 1, 1) (0, 0, 2) (2, 1, 1)

(1, 1, 2) (2, 1, 2)

(2, 2, 0)

Fig. 1. Assignment of degrees of freedom to entities in the Lagrange basis of P4.

Finally, the third ingredient of the local description of finite element spaces is a
class implementing LocalCoefficientsInterfacewhich assigns degrees of freedom
to geometrical entities on the reference element. This allows a generic construction
of the local-to-global map g(T, i) in Definition 3.1. Consider as an example the
Lagrange basis of P4 on a triangle as shown in Figure 1 (we consider the two-
dimensional case for ease of presentation). It has 15 degrees of freedom, three
located in the element (codimension 0), three located in each edge (codimension 1)
and one in each vertex (codimension 2). The assignment of each degree of freedom
is encoded as a triple (s, c, i) where s is the number of the geometrical entity (the
numbering is defined in the Dune grid interface) with codimension c and i is an
index within the entity. Listing all the triples for the P4 Lagrange basis is performed
by the following code:

typedef Pk3DLocalCoefficients<4> LocalCoefficients;

LocalCoefficients localcoefficients; for (int i=0;

i<localcoefficients.size(); i++)

std::cout << "degree of freedom " << i << " in "

<< localcoefficients.localKey(i).subEntity() << ","

<< localcoefficients.localKey(i).codim() << ","

<< localcoefficients.localKey(i).index() << ","

<< std::endl;

LocalBasis, LocalInterpolation and LocalCoefficients together make up the
local description of a finite element and are accessible from a class implementing
LocalFiniteElementInterface. In Definition 3.1 every element T ∈ Th can have
a different local basis. All local descriptions are collected in a container providing
access to the local description for a given element T . These containers are called local
finite element maps and implement LocalFiniteElementMapInterface. Generic
setup of the local finite element map for our P4 example for a given gridview object
of type GridView (a part of a Dune grid) is shown here:

typedef GridView::ctype D; // coordinate type typedef double R;

302 P. BASTIAN, F. HEIMANN AND S. MARNACH

// value type typedef Pk3DLocalFiniteElementMap<GridView,D,R,4>

LFEM; LFEM lfem(gridview);

In an hp-version of the finite element method the local finite element map would store
the polynomial degree per element and deliver the appropriate local description.

Table 1. Finite element spaces currently implemented in PDELab

Source lines of code for their implementation gives at least

a relative measure of the amount of work involved

(Note: the edge element code is documented in more detail than the others).

Local finite element Source lines of code
Lagrange, order 1, simplex, d = 1, 2, 3 708
Lagrange, order 1, cube, d = 1, 2, 3 495
Lagrange, order 2, cube, d = 2 262
Lagrange, order k, simplex, d = 2, 3 1075
Monomial, order k, any d 520
Rannacher–Turek, quadrilateral 209
Raviart–Thomas, order 1, simplex 323
Nedelec (edge) elements, simplex 1688

The finite element spaces currently available in PDELab are listed in Table 1.
We also list the number of lines of code needed for their implementation.

3.2. Grid function space

From the local description of the finite element spaces introduced in the previous
subsection, the global finite element space introduced in Definition 3.1 is constructed
generically with the class template GridFunctionSpace. It is parametrized by a
GridView and the local description of the finite element space:

typedef GridFunctionSpace<GridView,LFEM> GFS;

GFS gfs(gridview,lfem);

std::cout << "NDOFS=" << gfs.globalSize() << std::endl;

Moreover, a grid function space provides a means to set up a container holding the
degrees of freedom (here of type double) of the global finite element space:

typedef GFS::VectorContainer<double>::Type U;

U u(gfs,0.0);

In the default implementation degrees of freedom are stored in a std::vector.
Other implementations can be used by providing alternative backends as in:

typedef GridFunctionSpace<GridView,LFEM,

NoConstraints, ISTLVectorBackend<1> > GFS;

GFS gfs(gridview,lfem);

typedef GFS::VectorContainer<double>::Type U;

U u(gfs,0.0);

Generic Finite Elements in DUNE 303

0 0

10

0 0

01

0 1

00

1
1
2

01
2

1
2 0

00

1
2 0

00

0 0

00

vj

vk

vi

vm

vn

Fig. 2. Conforming Lagrange basis function for vi on a mesh with hanging nodes.

Here, the backend using vectors from the iterative solver template library (ISTL)
[4], which is part of Dune, is used. ISTL supports recursively block-structured
vectors and matrices with block sizes known at compile time. The integer template
parameter indicates the first level block size. Through the backends other solver
libraries such as PetSc [15] or Trilinos [17] could be integrated as well. The additional
class parameter NoConstraints is introduced in the next subsection.

3.3. Constraints

Solving in a subspace Ũh ⊆ Uh is a fundamental complication in the implementation
of finite element methods. Here we will call Ũh the constrained space. Constraints
occur in several circumstances in a finite element code:

• Essential boundary conditions.

• “Hanging” node degrees of freedom due to non-conforming refinement.

• Periodic boundary conditions.

• Artificial essential boundary conditions due to parallelization (e. g. in overlap-
ping Schwarz methods).

• Constants or rigid body modes preventing uniqueness of the solution.

• Combinations of the above.

In PDELab all these different types of constraints are handled in a uniform way. The
subspace Ũh has a corresponding index set ĨUh

⊆ IUh
and we define ĪUh

:= IUh
\ĨUh

.
As the next step we introduce a basis for the subspace Ũh

Ũh = span Φ̃Uh
⊆ Uh, Φ̃Uh

= {φ̃i : i ∈ ĨUh
}

304 P. BASTIAN, F. HEIMANN AND S. MARNACH

and assume that it is related to the original basis ΦUh
of Uh in the following way:

φ̃i = φi +
∑

j∈ĪU
h

(

TŨh

)

i,j
φj , i ∈ ĨUh

. (7)

The matrix TŨh
is sparse and can be assembled locally element by element (with

rigid body modes and periodic boundary conditions as exceptions). For a particular
function space a class providing the local constraints needs to be given as a template
parameter to the GridFunctionSpace. If no constraints are to be put on the function
space then NoConstraints is given as a parameter.

Example 3.2 (Hanging nodes). Consider the case of nonconforming refinement
and bilinear conforming Lagrange basis functions on the mesh shown in Figure 2.
Assume that vm is the only vertex where a Dirichlet boundary condition is applied.
Then ĪUh

= {k, j,m}, ĨUh
= IUh

\ ĪUh
and

φ̃i = φi +
1

2
φk +

1

2
φj , φ̃n = φn +

1

2
φk, φ̃l = φl l 6= i, n.

Using the basis we can now represent functions in the subspace as FEΦ̃h
(ũ) =

∑

i∈ĨU
h

ũiφ̃i with ũ ∈ Ũ = R
ĨU

h . Due to the basis transformation (7) we have the

relation
FEΦ̃h

(ũ) = FEΦh
(ST

Uh
ũ) (8)

with the rectangular block matrix

SUh
=

(

I TŨh

)

. (9)

Here we have assumed that the indices in IUh
are ordered such that all indices in

ĨUh
are smaller than those in ĪUh

. Note that the test space Vh is decomposed in a
similar way in case it is different from the trial space.

3.4. Systems of PDEs

For systems of PDEs we need products of function spaces, as has been illustrated in

Example 2.5. Formally, given m > 1 function spaces U
(0)
h , . . . , U

(m−1)
h we define the

composite function space

Uh = U
(0)
h × U

(1)
h × . . .× U

(m−1)
h . (10)

If all component spaces are the same, we can also write

Uh = V m
h . (11)

This can be done recursively leading to a tree structure of discrete function spaces.
As an example consider the Taylor-Hood element for solving the Stokes equations

which we can write in d space dimensions as

UTH
h =

(

U2
h

)d
× U1

h ,

Generic Finite Elements in DUNE 305

meaning that each velocity component is piecewise quadratic and the pressure is
piecewise linear. To construct such a function space in PDELab we first make two
grid function spaces for velocity components and pressure:

typedef GridView::ctype D; // coordinate type

typedef double R; // value type

typedef Pk3DLocalFiniteElementMap<GridView,D,R,1> P1LFEM;

typedef Pk3DLocalFiniteElementMap<GridView,D,R,2> P2LFEM;

P1LFEM p1lfem(gridview);

P2LFEM p2lfem(gridview);

typedef GridFunctionSpace<GridView,P1LFEM> P1GFS;

typedef GridFunctionSpace<GridView,P2LFEM> P2GFS;

P1GFS p1gfs(gridview,p1lfem);

P2GFS p2gfs(gridview,p2lfem);

Now the class template PowerGridFunctionSpace produces a new grid function
space out of a compile-time given number of grid function spaces of the same type:

const int dim=GridView::Grid::dimension;

typedef PowerGridFunctionSpace<P2GFS,dim> VGFS;

VGFS vgfs(p2gfs);

Using class template CompositeGridFunctionSpace one can make a new grid func-
tion space from given grid function spaces of different types:

typedef CompositeGridFunctionSpace<

GridFunctionSpaceLexicographicMapper,

VGFS,P1GFS> THGFS;

THGFS thgfs(vgfs,p1gfs); // the Taylor--Hood space

The template parameter GridFunctionSpaceLexicographicMapper indicates that
the degrees of freedom are concatenated in the order given. This is also the default
in the power version. If all component spaces have the same size, a cyclic numbering
can be selected as well. The new grid function space can be used as before. E.g. the
following code instantiates a random access container holding all degrees of freedom:

typedef THGFS::VectorContainer<R>::Type X;

X x(thgfs,0.0);

The tree structure of the grid function space is encoded in its recursive type. Using
template metaprogramming [18] one can iterate over the constituents of the grid
function space.

3.5. Parallelization support

The Dune grid interface provides support for two parallelization models: nonover-
lapping and overlapping. The grid function space provides means for the exchange
of degrees of freedom stored in more than one process. The exchange mechanism

306 P. BASTIAN, F. HEIMANN AND S. MARNACH

can be parametrized in a flexible way with respect to which data is exchanged, what
data is sent and what is done when data is received.

When the iterative solver template library is used as a solver, certain types of
solvers such as overlapping Schwarz methods or Krylov subspace methods (CG,
BiCGStab, GMRES) can be used without any additional programming effort. Pre-
conditioners on nonoverlapping grids are not yet available in a generic way.

4. GRID OPERATORS

4.1. Algebraic form of the constrained problem

We now come back to the solution of the weighted residual problem introduced in
(1) which reads:

find uh ∈ wh + Ũh : rh(uh, v) = 0 ∀ v ∈ Ṽh.

To solve it, we introduce the basis representation of the subspaces from Section 3.3
and the equivalent problem in terms of coefficients:

find ũ ∈ Ũ : rh(FEΦh
(w) + FEΦ̃h

(ũ), ψ̃i) = 0 ∀ i ∈ ĨVh
. (12)

Employing the residual map introduced in (3) and the matrices SUh
, SVh

from (9)
this is then equivalent to the solution of the nonlinear algebraic system

find ũ ∈ Ũ : SVh
R(w + ST

Uh
ũ) = 0. (13)

It is important to note that the residual map R, in part to be provided by the user,
is evaluated with respect to the original basis Φh, Ψh which does not involve the
constraints!

4.2. Newton’s method

The nonlinear algebraic system (13) is now solved with Newton’s method. To that
end assume that some approximate solution ũk is available. We seek an update z̃k

such that the next iterate ũk+1 = ũk + z̃k is an improved approximation. Lineariza-
tion of the equation SVh

R(w + ST
Uh

ũk+1) = 0 yields an equation for the update:

SVh
R(w + ST

Uh
ũk) + SVh

∇R(w + ST
Uh

ũk)ST
Uh

z̃k = 0

where we introduced the Jacobian ∇R of the nonlinear map R. Together this results
in the iteration

ũk+1 = ũk −
(

SVh
∇R(w + ST

Uh
ũk)ST

Uh

)−1
SVh

R(w + ST
Uh

ũk). (14)

In this iteration scheme the solution vector ũ contains coefficients with respect to
the transformed basis Φ̃h. Multiplication of (14) with ST

Uh
from the left and addition

of w on both sides yields

w + ST
Uh

ũk+1 = w + ST
Uh

ũk − ST
Uh

(

SVh
∇R(w + ST

Uh
ũk)ST

Uh

)−1
SVh

R(w + ST
Uh

ũk)

Generic Finite Elements in DUNE 307

where we can now set uk := w + ST
Uh

ũk to get the final form of the nonlinear
iteration:

uk+1 = uk − ST
Uh

(

SVh
∇R(uk)ST

Uh

)−1
SVh

R(uk). (15)

Note that (15) is now an iteration where the solution u is computed with respect
to the original basis Φh. The residual evaluation R(uk) and the evaluation of the
Jacobian ∇R(uk) are also with respect to the original basis and are identical to
the unconstrained case. Thus the incorporation of the constraints can be done in a
completely generic way by the PDELab framework. The algorithmic formulation
of the Newton scheme is given as follows:

Algorithm 4.1 (Newton’s method for constrained problem). Let the initial guess
u0 with FEΦU

h
(u0) ∈ wh + Ũh be given. Iterate until convergence

1. Compute residual: rk = R
(

uk
)

.

2. Transform residual: r̃k = SVh
rk.

3. Solve the update equation in the transformed basis:

(

SVh
∇R(uk)ST

Uh

)

z̃k = r̃k.

4. Transform update to original basis: zk = ST
Uh

z̃k. (This is where e. g. interpo-
lation to hanging nodes is done).

5. Update solution: uk+1 = uk − zk.

4.3. Generic assembler

As has been stated in Observation 2.6 the residual form can be split into contribu-
tions from elements, interior faces and boundary faces. Moreover, we can split the
residual form into rh(u, v) = α(u, v) + λ(v) where λ is only allowed to depend on
the test function. The splitting of the residual form rh results into a corresponding
splitting of the nonlinear residual map R and its Jacobian ∇R. The splitting of the
nonlinear residual map e. g. reads

R(u) =
∑

e∈E0

h

RT
e α

vol
h,e(Reu) +

∑

e∈E0

h

RT
e λ

vol
h,e

+
∑

f∈E1

h

RT
l(f),r(f)α

skel
h,f (Rl(f),r(f)u) +

∑

f∈E1

h

RT
l(f),r(f)λ

skel
h,f

+
∑

b∈B1

h

RT
l(b)α

bnd
h,b (Rl(b)u) +

∑

b∈B1

h

RT
l(b)λ

bnd
h,b ,

where the restriction matrices Rx extract all degrees of freedom related to an ele-
ment, interior face or boundary face which can be easily determined from the local-
to-global map computed in the grid function space.

The implementor of a discretization scheme only has to provide at most the six
methods α

vol, α
skel, α

bnd, λ
vol, λ

skel and λ
bnd providing element, interior face and

308 P. BASTIAN, F. HEIMANN AND S. MARNACH

boundary face contributions depending on solution and test functions (α-terms) or
only on the test functions (λ-terms). Contributions to the Jacobian can be generated
through numerical differentiation for rapid prototyping. If an analytical Jacobian
is required or a modified Newton method is desired additional methods have to be
provided.

From these user given methods assembling of the residual and the Jacobian (stiff-
ness matrix) as well as the complete Newton iteration with consideration of all types
of constraints is provided in a completely generic way including parallel computa-
tions, with the exception of the preconditioner.

In order to give a code example for the implementation of a discretization scheme
we consider the cell-centered finite volume method from example 2.3. The following
class Laplace implements this method for the pure Neumann problem on axiparallel
cube meshes in any dimension:

template<typename Real> class Laplace : public

NumericalJacobianApplySkeleton<Laplace<Real> >,

public NumericalJacobianSkeleton<Laplace<Real> >,

public FullSkeletonPattern, public FullVolumePattern,

public LocalOperatorDefaultFlags

{ public:

// pattern assembly flags

enum { doPatternVolume = true }; enum { doPatternSkeleton = true };

// residual assembly flags

enum { doAlphaSkeleton = true };

template<typename IG, typename LFSU, typename X, typename LFSV, typename R>

void alpha_skeleton (const IG& ig,

const LFSU& lfsu_s, const X& x_s, const LFSV& lfsv_s,

const LFSU& lfsu_n, const X& x_n, const LFSV& lfsv_n,

R& r_s, R& r_n) const

{

// face volume for integration

Real face_volume = ig.geometry().volume();

// cell centers in global coordinates

Dune::FieldVector<Real,IG::dimension>

inside_global = ig.inside()->geometry().center();

Dune::FieldVector<Real,IG::dimension>

outside_global = ig.outside()->geometry().center();

// distance between the two cell centers

inside_global -= outside_global;

Real distance = inside_global.two_norm();

// contribution to residual on inside element

r_s[0] += (x_s[0]-x_n[0])*face_volume/distance;

r_n[0] -= (x_s[0]-x_n[0])*face_volume/distance;

}

};

Generic Finite Elements in DUNE 309

Table 2. Coding effort required to implement various

discretization schemes for an elliptic model problem.

Method Source lines of code
Conforming finite elements 298
Discontinuous Galerkin 914
Cell-centered finite volumes 222
Mixed finite elements 288
Mimetic finite differences 395

In that case only one term in (5), the interior skeleton term α
skel is needed which

is implemented in the method alpha skeleton. This also illustrates the fact that
simple methods can be implemented with very few lines of code which makes the
system usable for teaching.

5. NUMERICAL RESULTS

In this Section we present some applications of the PDELab framework in order to
demonstrate its flexibility and performance.

5.1. Six easy pieces

The elliptic problem (4) with tensor diffusion coefficient and Dirichlet as well as
Neumann boundary conditions can be solved with the following methods:

• Conforming finite elements (arbitrary order for simplices and d = 2, 3, order 1
and 2 for hexahedral elements in d = 2, 3, hanging nodes for order 1).

• Discontinuous Galerkin finite elements (Oden–Babuška–Baumann, symmetric
interior penalty method, nonsymmetric interior penalty method).

• Nonconforming Rannacher–Turek element in d = 2.

• Lowest order Raviart–Thomas (mixed) elements on triangles (non-hybrid ver-
sion).

• Cell-centered finite volumes with harmonic permeability averaging (scalar dif-
fusion coefficient only) in any dimension on axi-parallel hexahedral meshes.

• Mimetic finite difference method [6] on any mesh in any dimension.

Table 2 lists the number of lines of code required to implement the various dis-
cretization schemes in PDELab. It should be noted that all schemes, except the
cell-centered finite volumes and lowest-order mixed method, implement also the an-
alytical Jacobian. The table shows that all schemes can be implemented with a very
low effort. Note also that this table does not include the source lines required to
implement the function spaces. These are given in Table 1.

310 P. BASTIAN, F. HEIMANN AND S. MARNACH

Fig. 3. Solution of problem (4) with checkerboard diffusion coefficient using various

methods implemented in PDELab. From top left to bottom right: CG order 4, DG OBB

order 4, Rannacher Turek, lowest order Raviart–Thomas (RT0) mixed elements, RT0

velocity field detail, mimetic finite difference method on mesh with hanging node

refinement.

Generic Finite Elements in DUNE 311

Figure 3 shows visualizations of the results obtained with the different schemes
applied to a model problem with a checker-board coefficient distribution in two space
dimensions.

5.2. Multiphase flow in porous media

In order to demonstrate the suitability of PDELab for a more complicated problem,
we solve the problem of two-phase immiscible flow in porous media, see e. g. [11]
for an introduction. The phases considered are liquid (l) and gas (g) and the model
consists of conservation of mass for each phase α ∈ {l, g}:

∂t(φsανα) + ∇ · {ναuα} = qα,

where sα is the phase saturation, να is the molar density, uα is the phase velocity
and qα is the source/sink term. The phase velocity depends on the pressure via the
extended Darcy law

uα = −
krα(sα)

µα

K (∇pα − ραg) ,

where the relative permeability krα depends nonlinearly on saturation, K is the
absolute permeability, µα is the dynamic viscosity of the fluid, ρα is the mass density
of the fluid and g is the gravity vector. In addition there are the following algebraic
constraints for saturations and pressures:

sl + sg = 1 pl + pg = pc(sl),

where pc(sl) is the strongly nonlinear capillary pressure saturation relation. Finally,
for the gas phase we have the ideal gas law νg = pg/RT and for the liquid phase
νl = const.

This system is solved in a so-called pressure-pressure formulation which amounts
to a time-dependent, strongly nonlinear system of two coupled PDEs which is dis-
cretized using a cell-centered finite-volume scheme with harmonic averaging of per-
meabilities and upwinding of mobilities. In time, a fully-implicit Euler scheme is
used. The resulting nonlinear algebraic system per time step is solved using New-
ton’s method with line search globalization and the arising linear systems are solved
with a BiCGStab Krylov subspace method with an overlapping inexact Schwarz
preconditioner using a few steps of Block-SSOR as subdomain solver.

The code is fully parallelized and dimension-independent. The implementation
of the model in PDELab (i. e. the cell-centered finite volume discretization for the
above-mentioned set of equations including an interface for the parameter functions)
required 587 lines of code (including comments). The driver code defining the pa-
rameter functions, setting up the grid, selecting the solvers and making the time
loop and nonlinear iteration took another 755 lines of code. In total, such a model
can be implemented in a few days by an experienced programmer. Figure 4 shows a
result of a simulation where an initially dry porous medium was put in contact with
a liquid at the lower boundary and subsequently the water infiltrates from below.

312 P. BASTIAN, F. HEIMANN AND S. MARNACH

Fig. 4. Capillary rise of a fluid in a hele-shaw cell containing a coarse sand. Left image

shows liquid phase pressure, right image shows contours of liquid phase saturation.

Nowadays multi-core CPUs are standard for various technical reasons. A major
problem in using such CPUs for scientific computing is the limited memory band-
width when all cores access main memory. Table 3 gives some performance numbers
of Dune and PDELab on such architectures. We use a system with four quad-core
AMD Opteron 8380 processors (2.5 GHz). Each core has 512KB L2 cache and all
four cores in a CPU share a 6MB L3 cache. We solve one time step of the two-
phase flow problem on a 160 × 160 × 96 grid resulting in roughly 5 million degrees
of freedom. The first two columns give the maximum number of iterations and the
corresponding computation time of the overlapping Schwarz preconditioner (3 cells
overlap) in any Newton step. Iteration numbers are robust with respect to num-
ber of processors and the speedup for one iteration (time in fourth column) on 16
processors is 9. The time for assembly of the Jacobian (next column) scales slightly
better. Finally the speedup in total computation time is 8 on 16 processors.

5.3. Parallel solver example

Figure 5 shows results for the scalability of an additive geometric multigrid pre-
conditioner, the so-called BPX method [5], implemented in Dune. All multigrid
components are implemented with sparse linear algebra classes from the iterative
solver template library [1, 4] such that no access to the grid is necessary during
multigrid cycles. The YaspGrid (a structured, parallel grid) implementation from
dune-grid is used in two space dimensions. Strong scaling means that a 2048×2048
problem is solved on one up to 256 processors. The speedup attained on 256 proces-
sors is 124, i. e. almost 50% efficiency. In the weak scaling test each processor has a
1024× 1024 grid and the problem size is increased proportional with the number of

Generic Finite Elements in DUNE 313

Table 3. Strong scaling for two-phase flow problem of size 160 × 160 × 96

on a 4×quad-core AMD Opteron 8380 system (2.5 GHz).

P #IT(max) Tlin(max) Tit Tass Ttotal Speedup
1 40.5 264.5 6.5 39.2 1347.3 -
2 44.5 138.5 3.2 31.1 810.5 1.7
4 44.5 71.2 1.6 16.1 407.8 3.3
8 42.5 53.3 1.3 7.7 279.5 4.8

16 50.0 34.4 0.7 3.8 163.1 8.2

 1

 10

 100

 1 10 100

Sp
ee

du
p

Processors

ideal
strong scaling
weak scaling

Fig. 5. Strong and weak scalability of an additive geometric multigrid preconditioner

using YaspGrid on a Linux cluster (dual processor dual core AMD Opteron 2.8 GHz,

Myrinet 10GBit interconnect).

processors. In this mode a speedup of 163 is achieved on 256 processors.

6. CONCLUSIONS

In this paper we presented software abstractions for the generic implementation
of finite element methods. The system allows a very general definition of finite
element spaces including higher order, continuous and discontinuous as well as scalar
and vector-valued. Moreover, a general way for the incorporation of constraints is
provided. In the examples it is shown that many schemes can be implemented with
a low programming effort with the underlying Dune framework providing dimension
independence and parallelization. Learning how to use a system like PDELab takes
a certain amount of time which strongly depends on the background and experience
of the user. However, as soon as features like higher-order or parallelism are required
this initial investment should pay off.

The current state of implementation of PDELab encompasses the global finite

314 P. BASTIAN, F. HEIMANN AND S. MARNACH

element spaces described in Section 3, including constraints and generic parallelism.
The generic assembler for stationary problems and the Newton scheme are imple-
mented as well. As the next steps generic support for adaptivity and time dependent
problems will be integrated into PDELab.

ACKNOWLEDGEMENT

We wish to thank all Dune developers for their effort and support, Christoph Grüninger
for the provision of the DG code, Jö Fahlke for the implementation of several finite element
spaces. The support of StatoilHydro for the Dune project is also greatly acknowledged.

(Received March 3, 2010)

R EF ERENC ES

[1] P. Bastian and M. Blatt: On the generic parallelisation of iterative solvers for the
finite element method. Internat. J. Comput. Sci. Engrg. 4 (2008), 1, 56–69.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
O. Sander: A generic grid interface for parallel and adaptive scientific computing.
Part I: Abstract framework. Computing 82 (2008), 2-3, 103–119.

[3] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, and O. Sander: A generic grid interface for parallel and adaptive
scientific computing. Part II: Implementation and tests in DUNE. Computing 82

(2008), 2-3, 121–138.

[4] M. Blatt and P. Bastian: The iterative solver template library. In: Applied Parallel
Computing. State of the Art in Scientific Computing (B. Kagstrüm, E. Elmroth,
J. Dongarra, and J. Wasniewski, eds.) (Lecture Notes in Sci. Comput. 4699.) Spinger,
Berlin 2007, pp. 666–675.

[5] J.H. Bramble, J. E. Pasciak, and J. Xu: Parallel multilevel preconditioners. Math.
Comput. 55 (1990), 1–22.

[6] F. Brezzi, K. Lipnikov, and V. Simoncini: A family of mimetic finite difference
methods on polygonal and polyhedral meshes. Math. Models and Methods in Applied
Sciences 15 (2005), 10, 1533–1551.

[7] P.G. Ciarlet: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia
2002.

[8] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger: A generic interface for parallel
and adaptive scientific computing: Abstraction principles and the Dune-Fem mod-
ule. Preprint No. 3, Mathematisches Institut, Universität Freiburg, 2009. Submitted
to Transactions on Mathematical Software.

[9] http://www.dune-project.org/, Dune Homepage, link visited August 3, 2009.

[10] C. Geuzaine and J.-F. Remacle: Gmsh: A 3-d finite element mesh generator with
built-in pre- and post-processing facilities. Internat. J. Num. Methods in Eng., 2009.
http://www.geuz.org/gmsh/, link visited August 3, 2009.

[11] R. Helmig: Multiphase Flow and Transport Processes in the Subsurface – A Contri-
bution to the Modeling of Hydrosystems. Springer–Verlag, 1997.

http://www.dune-project.org/
http://www.geuz.org/gmsh/

Generic Finite Elements in DUNE 315

[12] J. T. Oden, I. Babuška, and C. E. Baumann: A discontinuous hp finite element
method for diffusion problems. J. Comput. Phys. 146 (1998), 491–519.

[13] http://www.opencascade.com/, link visited August 3, 2009.

[14] http://www.paraview.org/, link visited August 3, 2009.

[15] http://www.mcs.anl.gov/petsc/petsc-as/ , link visited August 5, 2009.

[16] http://www.salome-platform.org/, link visited August 3, 2009.

[17] http://trilinos.sandia.gov/, link visited August 5, 2009.

[18] D. Vandevoorde and N.M. Josuttis: C++ Templates – The Complete Guide.
Addison-Wesley, 2003.

Peter Bastian, IWR, Im Neuenheimer Feld 368, D-69120 Heidelberg. Germany.

e-mail: peter.bastian@iwr.uni-heidelberg.de

Felix Heimann, IWR, Im Neuenheimer Feld 368, D-69120 Heidelberg. Germany.

e-mail: felix.heimann@iwr.uni-heidelberg.de

Sven Marnach, IWR, Im Neuenheimer Feld 368, D-69120 Heidelberg. Germany.

e-mail: sven.marnach@iwr.uni-heidelberg.de

http://www.opencascade.com/
http://www.paraview.org/
http://www.mcs.anl.gov/petsc/petsc-as/
http://www.salome-platform.org/
http://trilinos.sandia.gov/

	INTRODUCTION
	WEIGHTED RESIDUAL FORMULATION
	Stationary problems
	Some examples
	Instationary problems

	GRID FUNCTIONS
	Local Finite Elements
	Grid function space
	Constraints
	Systems of PDEs
	Parallelization support

	GRID OPERATORS
	Algebraic form of the constrained problem
	Newton's method
	Generic assembler

	NUMERICAL RESULTS
	Six easy pieces
	Multiphase flow in porous media
	Parallel solver example

	CONCLUSIONS

