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The Shape-From-Shading (SFS) problem is a fundamental and classic problem in com-
puter vision. It amounts to compute the 3-D depth of objects in a single given 2-D image.
This is done by exploiting information about the illumination and the image brightness.
We deal with a recent model for Perspective SFS (PSFS) for Lambertian surfaces. It is
defined by a Hamilton–Jacobi equation and complemented by state constraints boundary
conditions. In this paper we investigate and compare three state-of-the-art numerical ap-
proaches. We begin with a presentation of the methods. Then we discuss the use of some
acceleration techniques, including cascading multigrid, for all the tested algorithms. The
main goal of our paper is to analyze and compare recent solvers for the PSFS problem
proposed in the literature.
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1. INTRODUCTION

The Shape-From-Shading (SFS) problem consists in the reconstruction of the 3-D
depth of depicted objects of a single given grey value image. Thereby, SFS makes
use of the image brightness as well as of information about the direction of the
light source. It is a classic inverse problem in computer vision with many potential
applications; see e. g. [8, 13, 14, 24] and references therein.

We deal with a modern model for SFS which includes perspective deformations
and that can be cast into the format of a partial differential equation (PDE), see
[18]. Three different methods have been proposed in the recent literature to tackle
the corresponding problem, see [7, 18, 23]. The question arises, which of these
methods one should use for future developments in this direction of research in SFS.
In this paper, we are addressing this question, comparing and evaluating the three
mentioned schemes. In contrast to the basic original versions of the algorithms,
we consider various numerical acceleration techniques that are relatively easy to
implement and of practical relevance for computer vision applications. Doing this,
we extend some of the methods used before in this field. Our extensive numerical
experiments show that an extended version of the algorithm proposed in [23] gives
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the best performance; however, also for the other algorithms a significant efficiency
gain can be achieved.

Perspective Shape-From-Shading. Two key issues in mathematical models of
SFS are the surface reflectance and the camera model. We will employ the classic
assumption of a Lambertian surface reflectance [10]: the light intensity at some point
M on an object surface perceived by the observer linearly depends on the cosine of
the angle between the light source direction ω and the normal to the surface at M .
Compared to other possible approaches, this surface model is relatively easy to access
for modelling purposes and theoretical analysis. The camera model is concerned with
the projection performed when mapping the 3-D real world to 2-D images. In early
SFS models, this projection is assumed to be orthographic. Concerning this type of
models, let us mention the pioneering work of Horn [12] who was also the first who
modelled SFS via a PDE. However, orthographic models were in practice not too
successful, as shown in two recent survey papers [8, 24]. As an attempt to improve
SFS results, the orthographic camera model has been substituted by employing a
more realistic perspective projection [4, 16, 22].

In this paper, we use the perspective approach (PSFS). We also consider a point
light source located at the optical center as within some of the mentioned works
concerned with PSFS, and we use the so-called light attenuation term. This model
for PSFS was shown to be well-posed in [18, 19] under some assumptions which
include the differentiability of the surface (see also [3] where discontinuous brightness
functions have been considered).

Mathematical formulation of PSFS. The PDE that arises is a static, hyper-
bolic Hamilton–Jacobi (HJ) equation. Making use of the Legendre transform, one
can formulate it equivalently as a Hamilton–Jacobi–Bellman (HJB) equation and
solve the corresponding optimal control problem. In both cases, the equations are
complemented by state constraint boundary conditions.

Algorithms. The first important developments for the PSFS model with light
attenuation are based on the control-theoretic formulation. In [18] and related works
of Prados and his co-workers, the dynamic programming principle is used in the
form of a top-down process, leading to an iterative algorithm. The pointwise arising
optimal control problem is solved analytically in this approach. Then, in [7], a
semi-Lagrangian method was developed also based on the HJB equation. In this
method, the domain of the optimal control is discretised. An artificial iteration
variable introduced into the HJB equation gives here a recursive method. The third
numerical approach of importance was proposed in [23], where it was suggested to
use the HJ equation as a basis of the discretisation without refering to the optimal
control problem. Using an artificial time variable, also this approach is iterative. In
our paper, we investigate these methods and their algorithmic extensions obtained
by acceleration techniques.
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Related work. This paper complements and extends previous conference papers
of some of the authors [2, 7, 23]. In [7, 23] basic versions of two of the investigated
algorithms were introduced. In a later conference contribution [2], the three algo-
rithms discussed in the current paper were compared and extended to some degree.
However, no experimental convergence analysis was given. The emphasis in that
work was on the influence of parameters like the stopping condition for the iterative
schemes. Also, a cascading multigrid (CM) method was only investigated for the
direct method from [23] there. The reason for this was that the multigrid approach
seems to be not popular for solving hyperbolic first-order HJB equations; the papers
one finds in the literature are mainly based on [11] dealing with multigrid schemes
for second-order elliptic HJB equations.

Our contribution. In this paper we build upon the conference contribution [2].
We use here the efficient algorithmic variants that were identified for all three ap-
proaches in that work, namely with Gauß–Seidel–type updating and fast sweeping.
For these modifications, we briefly compile the most important results from [2].
Based on the modified schemes, we extend the conference paper here in the follow-
ing directions:

(i) We study the numerical convergence properties of the schemes. This investi-
gation is particularly interesting since the algorithms differ very much in the
numbers of iterations needed for convergence as well as in the computational
effort per iteration.

(ii) We analyse experimentally the convergence properties of the CM acceleration
method for all the schemes. This investigation gives some surprising results.
We show that a generic parameter setting for the CM method does not work
well with the optimal control approaches.

(iii) Based on the results of the first two points, we refine the CM approach by
identifying a good choice for the stopping condition employed on the coarse
grid levels.

With this systematic study of algorithms for the PSFS model we complement recent
investigations of schemes for other SFS models performed in [8]. Furthermore, we
conjecture that our paper can be an important landmark for works on numerical
schemes for PSFS, as it summarizes and extends the recent efforts of several research
groups.

Paper organisation. In Section 2, we briefly review the PSFS model with light
attenuation. The three numerical approaches of interest are introduced in Section 3,
where we also discuss the acceleration techniques used in our tests. In Section 4, we
are concerned with the comparative study of numerical methods and in Section 5
we perform some additional experiments about the speed of convergence of the
methods and the effect of the acceleration techniques. The last section contains our
conclusions.
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2. THE MATHEMATICAL MODEL

In this section we recall the model for PSFS introduced in [15] with light attenuation
term.

Let (x, y) ∈ R
2 be in the image domain Ω, where Ω is an open set. Furthermore:

• I = I(x, y) is the normalised brightness function. We have I = E(x,y)
σ

, where
E is the greylevel of the given image and σ is the product of the surface albedo
(which tells us to which extent the surface reflects light) by the light source
intensity.

• f is the focal length, i. e. the distance between the optical center C of the
camera and the 2-D plane to which the scene of interest is mapped.

Let M be a generic point on the surface Σ. The unknown of the problem is the
function u : Ω → R such that

M = M(x, y) = u(x, y)m′ (1)

where

m′ =
f√

x2 + y2 + f2
m and m = (x, y,−f) , (2)

see Figure 1. Note that, according to these notations, u > 0 holds as the depicted
scene is in front of the camera.
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Fig. 1. The perspective SFS model with a point light source at the optical center.

We denote by r(x, y) the distance between the point light source and the point
M(x, y) on the surface. It holds u(x, y) = r(x, y)/f, since the light source location
coincides with the optical center.
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The PDE associated to this PSFS model is obtained writing down the image
irradiance equation:

R(n̂(x, y)) = I(x, y), (3)

making explicit the normal n̂ to the surface and the reflectance function R which
gives the value of the light reflection on the surface as a function of its normal.

We denote by ω(x, y) the unit vector representing the light source direction at
the point M(x, y) (note that in the classic SFS problem this direction is constant),

ω(x, y) =
(−x,−y, f)√
x2 + y2 + f2

. (4)

Taking into account additionally the assumption of a Lambertian surface, the func-
tion R is defined as

R(n̂(x, y)) =
ω(x, y) · n̂(x, y)

r(x, y)2
. (5)

In order to write down the corresponding PDE, it is useful to introduce the new
unknown v = ln(u) (remember that u > 0). Equation (5) can be written as a static
HJ equation:

1

Q(x, y)
I(x, y) f

2 W (x, y) − e−2v(x,y) = 0 (6)

where

W (x, y,∇v) :=
√

f2|∇v(x, y)|2 + (∇v(x, y) · (x, y))2 + Q(x, y)2 (7)

and

Q(x, y) :=
f√

x2 + y2 + f2
. (8)

The same equation admits also a ‘control formulation’. Indeed, it is proved in
[17, 18, 19] that v is defined as the solution of the following HJB equation:

− e−2v(x,y) + sup
a∈B(0,1)

{−b(x, y, a) · ∇v(x, y) − ℓ(x, y, a)} = 0 (9)

where B(0, 1) denotes the closed unit ball in R
2 and the other terms in (9) are

defined as follows:

b(x, y, a) := −JGT DGa , ℓ(x, y, a) := −I(x, y) f
2
√

1 − ‖a‖2 , (10)

J(x, y) := I(x, y)f
√

f2 + x2 + y2 (11)

where ‖ · ‖ denotes the Euclidean vector norm, and G and D are the 2×2 matrices:

G(x, y) :=
1√

x2 + y2

(
y −x
x y

)
, D(x, y) :=

(
f 0

0
√

f2 + x2 + y2

)
. (12)
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3. ALGORITHMS

We will proceed here as follows. First, we describe the set-ups of all the three
methods. Then, we proceed by giving relevant details of the discretisations and the
speed-up mechanisms we generally use for all the schemes. In the last parts of this
paragraph, we describe the CM acceleration method we investigate in detail in this
work, and we comment on the boundary condition.

In order to distinguish between the different algorithms, we will use from now on
the following abbreviations:

• PF denotes the numerical scheme introduced by Prados and Faugeras [16]
based on the optimal control approach using dynamic programming, comple-
mented with an upwind finite difference discretisation.

• CFS denotes the numerical scheme introduced by Cristiani, Falcone and Segh-
ini [7]. It is based on the same approach as PF but it uses a semi-Lagrangian
discretisation (see [9] for details) instead of finite differences. We also refer to
[6] for the approximation of a different PSFS model.

• VBW denotes the direct Hamilton–Jacobi–based method of Vogel, Breuß and
Weickert [23].

Upwind-type discretisation of spatial derivatives. In the PF and VBW
methods, the discretization of spatial derivatives is made by using the stable upwind-
type discretisation of Rouy and Tourin [21]. This is as follows. Let hx and hy be
the spatial mesh widths in x- and y-direction, respectively. Denoting then by vi,j

the value of v at the mesh point (ihx, jhy)
T , the approximate upwind differences of

[21] read as

∇̃xv(ihx, jhy) ≈ min

(
0,

vi+1,j − vi,j

hx

,
vi−1,j − vi,j

hx

)
, (13)

∇̃yv(ihx, jhy) ≈ min

(
0,

vi,j+1 − vi,j

hy

,
vi,j−1 − vi,j

hy

)
. (14)

In the case of the VBW scheme, if the third argument in (13) or (14) is cho-

sen, one needs to set then ∇̃xv(ihx, jhy) := (vi,j − vi−1,j) /hx or ∇̃yv(ihx, jhy) :=
(vi,j − vi,j−1) /hy, respectively, in order to ensure the consistency of the approxima-
tion.

In (13) – (14) neither iteration nor time levels of the values of v are specified yet.
The reason for this missing specification is that we use a Gauß-Seidel-type updating
and a sweeping technique in order to accelerate convergence. This combination of
techniques leads to a different choice of data labels for each sweeping direction.

Let us remark that in the original versions of the PF, the CFS and the VBW
schemes, acceleration techniques were barely considered: only the PF scheme is
originally used together with a Gauß-Seidel-type updating strategy, see [18].
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3.1. The PF scheme

The PF scheme proposed by Prados et al. [16, 17, 18, 19] is based on the HJB
formulation, see (9) – (12). For the numerical solution of the optimal control problem,
one has

(i) to discretise the occurring partial derivatives of v,

(ii) to discretise the source term e−2v, and

(iii) to find an optimal control a ∈ B(0, 1).

We address these points in this section. Having established the discrete formulation,
the equation is solved pointwise in an iterative way.

(i) In the PF scheme the first-order derivatives part of ∇v are discretised by using
appropriate upwind discretisations as described in [21]. These are summarized
in Section 3.4 below.

(ii) The PF method is practically a semi-implicit scheme where the implicitness
stems from the corresponding treatment of the source term. Newton’s method
is used for every fixed point iteration.

(iii) In order to solve the maximization problem in (9) we have to search for an op-
timal a in the entire unit ball. This is done in the PF scheme by computing the
analytical solution for a over B(0, 1), which is a quite complicated procedure,
as one needs to take into account the case distinctions w.r.t. the occurring
upwind directions.

3.2. The CFS scheme

The CFS scheme developed in [7] is also an optimal control technique. The HJB
equation is also solved by means of a specific iterative fixed point procedure. Al-
though the resulting method is close to the PF scheme, the scheme is based on
semi-Lagrangian approximation of the directional derivatives, which automatically
gives the upwind correction and results to be easier to implement than PF.

Introducing an artificial time step τ , and an artificial time-dependency into the
process (indicated by a lower index τ), one may obtain from (9) the semi-discrete
scheme

− vτ (x, y) + min
a∈B(0,1)

{
vτ

(
(x, y) + τb(x, y, a)

)
+ τℓ(x, y, a)

}
+ τe−2vτ (x,y) = 0 . (15)

This equation can be solved iteratively by employing a sequence v
(k)
τ , k = 0, 1, . . .,

marching in pseudo-time to infinity until a steady state of vτ is reached. To make
the scheme fully-discrete, a grid {(xi, yj)}i,j=1,...,N is introduced and equation (15)
is considered only at the grid nodes (xi, yj). Moreover, since the term (xi, yj) +
τb(xi, yj , a) is not in general sitting on the grid, the value of vτ at that point is
computed by linear interpolation using the three nearest grid nodes (note that other
more accurate but more expensive choices are possible for the interpolation [9]).
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Also the CFS algorithm is semi-implicit and employs Newton’s method for resolving
the source term.

Again the optimal control a has to be sought within the entire unit ball in R
2.

This is obtained in the CFS scheme via a sampling procedure, making use of 8
directions with 3 points in each direction additionally to the origin.

3.3. The VBW scheme

In the VBW scheme introduced in [23], the Hamilton–Jacobi equation (6) – (8) is
used directly, without resorting to the optimal control approach.

Also the VBW scheme relies on the use of the upwind discretisation of Rouy and
Tourin [21], see the next paragraph.

The means to obtain an iterative scheme with this approach is to augment the
depth variable v(x, y) with an artificial time variable t, i. e. v = v(x, y, t). One then
solves instead of (6) the time-dependent PDE

∂

∂t
v(x, y, t) +

I(x, y)

Q(x, y)
f
2W (x, y,∇v) = e−2v(x,y,t) (16)

for the steady state defined by ∂
∂t

v = 0, thus retrieving (6) for t → ∞. Denoting by
n the time iteration, the scheme then reads

vn+1
ij = vn

ij + τ

(
−

Iij

Qij

f
2
√

f2|∇̃vn
ij |

2 + (∇̃vn
ij · (xi, yj))2 + Q2

ij + e−2vn
ij

)
.

In the paper [23] the source term e−2v is treated implicitly, using Newton’s method
in each point and time step to solve the corresponding fixed point equations. In a
later work [2] an explicit discretisation of the source term is used, a variant we also
investigate here.

However, due to the direct Hamilton–Jacobi approach no optimal control needs
to be determined.

3.4. Acceleration techniques

We discuss here the acceleration techniques for the three methods.

The Gauß–Seidel–type updating. The idea behind this acceleration technique
is the same as with the Gauß–Seidel method for solving linear systems of equations.
It is based on the observation that at pixel (i, j) the data from the pixels (i, j),
(i± 1, j) and (i, j ± 1) contribute in the upwind formulae. Assume for instance that
we iterate from left to right and from top to bottom over the mesh points. Thus,
ascending in i and descending in j, we incorporate the available computed values
into the computation of derivatives from (13) – (14).

Using the iteration levels n and n + 1 together with a time step size τ , this
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procedure gives the formulae

∇̃xv(ihx, jhy, nτ) ≈ min

(
0,

vn
i+1,j − vn

i,j

hx

,
vn+1

i−1,j − vn
i,j

hx

)
, (17)

∇̃yv(ihx, jhy, nτ) ≈ min

(
0,

vn+1
i,j+1 − vn

i,j

hy

,
vn

i,j−1 − vn
i,j

hy

)
. (18)

Note again the proceeding for the VBW scheme concerning the third arguments, cf.
the comment after (13) – (14). Let us emphasize that the values vn+1

i,j+1 and vn+1
i−1,j in

(17) – (18) were already computed via the described method, so that the Gauß–Seidel
idea can be applied.

Sweeping. We also employ a sweeping technique, see [25]. The motivation of the
sweeping method can be given as follows on a completely discrete level.

Let us consider the situation when one iterates in only one direction over the
points, e. g. always ascending in i and descending in j as described above. By
application of the Gauß–Seidel idea, one uses the values vn+1

i−1,j from the left and

vn+1
i,j+1 from above in order to accelerate convergence. This means that information

is quickly propagated from top-left to bottom-right, but this is a one-sided advantage.
As a remedy, it is obvious to proceed by iterating over the grid in a cyclic way:

1. Left → Right, and Top → Bottom

2. Top → Bottom, and Right → Left

3. Right → Left, and Bottom → Top

4. Bottom → Top, and Left → Right

This procedure is called sweeping in the literature. As is easily seen, depending on
the actual sweeping direction within the above cycle, different values vn+1

i±1,j±1 have
to be taken into account in (17) – (18).

The Cascading Multigrid Method. In addition to the described improvements,
we employ a cascading multigrid (CM) method, see [1].

The CM routine is a relatively easy-to-use algorithm. Practically, it is a coarse-
to-fine strategy, where we start from a coarse level and iterate up to the finest
level identical with the original image domain. Thereby, the refinement is always
implemented by doubling the number of grid points in each direction, involving
linear interpolation from known values to the newly inserted nodes. Of course, this
implies that the original image must be given in a size identical to a power of two.
In our experiments, we always start at the coarsest level with 2 × 2 pixels.

The CM method is closely related to other well-known strategies in image pro-
cessing like e. g. the Gaussian image pyramids, cf. [20]. Thus, it is a good candidate
for a numerical acceleration technique for applications in the field we consider.
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3.5. Boundary Conditions

An important issue is always the definition of correct boundary conditions and their
numerical implementation. In the PSFS model the presence of the attenuation term
1/r2 makes suitable to use state constraint boundary conditions which can be easily
implemented in the form of homogeneous Dirichlet boundary conditions u(x, y) = u
where u = max(x,y)∈Ω u(x, y) (this is our choice for all tests of the paper). In fact,
in the context of the upwind differencing employed within the considered schemes,
the correct, so-called state constraints b.c. are satisfied automatically because of the
effect of the minimization procedure within the upwinding formulae. Other choices
are also possible: in particular situations the solution is known at the boundary,
then exact Dirichlet boundary conditions are the best choice. Alternatively, homo-
geneous Neumann boundary conditions can be used whenever this information is
not available.

4. COMPARISONS OF THE ALGORITHMS

For comparisons we use synthetic images, so that all the parameters for the camera,
the illumination and the true depth are known. The test surfaces are (i) a newly
rendered version of a ‘classic’ benchmark in SFS [8, 24], namely a Synthetic Vase on a
flat background and (ii) an Upside-down Pyramid on a flat background already used
in [5, 7] to compare the PSFS model we use here with the one where the light source
is assumed to be at infinite distance [4]. See Figures 2 – 3 for the corresponding input
images (256 × 256 pixels) and the surface we expect to reconstruct. Note that the
white part of the background in the 3-D surfaces corresponds to the region not visible
from the optical center (because it is hidden by the vase or by the pyramid itself).
In the top and bottom side of the vase the effect of the perspective deformation is
clearly visible, this is due to the fact that the camera is not at infinite distance from
the object.

(a) (b)

Fig. 2. Synthetic vase. (a) Input image, 256 × 256 pixels. It is rendered using the

parameters f = 256 and σ = 165.10. (b) Ground truth.
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(a) (b)

Fig. 3. Synthetic upside-down pyramid. (a) Input image, 256 × 256 pixels. It is

rendered using the parameters f = 256 and σ = 155.74. (b) Ground truth.

For initialising the iterative process for all algorithms we solve the optimal control
problem analytically for the null control a = (0, 0)T .

In all scheme variants we use the Gauß–Seidel idea as well as Sweeping. The
stopping criterion is satisfied if the difference of two successive iterates is less than
10−4 in the maximum-norm. This choice is reasonable for PSFS computations as
identified in [2].

In our numerical tests, all the algorithms return qualitatively the same result,
so we report just one outcome. In Figure 3 we show the result for the synthetic
vase in two cases: 1. the computation is performed only on the vase, 2. the com-
putation is performed in the whole square domain (including the background). We
show the function −u (the reversed solution of the PSFS equation), as well as the
reconstructed surface computed by means of (1).

As it can be seen, the reconstruction of the vase itself is quite good, while the
background is estimated as a continuation of the vase boundary, leading to a large
error on the top and the bottom of the vase. In Figure 4 we show the results for the
upside-down pyramid (with and without background). As in the previous test, the
pyramid itself is approximated quite well, and the background is again estimated as
a continuation of the pyramid boundary.

The computational times we present were obtained using an implementation in
C on a standard PC (Linux, Pentium IV, 3.2 GHz, 2 GB RAM). Numerical errors
(in L1 and L∞ norms) are computed comparing the approximate function u (see
Eq. (1)) with its exact value rather than comparing the exact and approximate
final surface. This is done because the surface is given in parametric form and it is
not defined on a regular grid. Errors are given in terms of the relative depth error,
i. e. in percentages of the true depth, as this is meaningful in the context of the
SFS task. We also report the number of iterations needed. Note that one iteration
consists of four sweeps. The use of the cascading multigrid algorithm is indicated
by ‘CM’. In this context, the number of iterations only represents the iterations on
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(a) (b)

(c) (d)

Fig. 4. Results of the numerical tests for the synthetic vase.

First row: function −u (without and with background).

Second row: reconstructed surface (without and with background).

the finest grid. The results of our comparison (vase and pyramid, with and without
background) are summarized in Tables 1 – 4.

Table 1. Schemes comparison for the vase experiment, without background.

Algorithm CM L1 error [%] L∞ error [%] Time [s] Iterations
PF no 0.06 0.21 16.9 27
CFS no 0.47 1.71 9.7 19
VBW no 0.17 3.04 3.2 62
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(a) (b)

(c) (d)

Fig. 5. Results of the numerical tests for the upside-down pyramid.
First row: function −u (without and with background).

Second row: reconstructed surface (without and with background).

Table 2. Schemes comparison for the vase experiment, with background.

Algorithm CM L1 error [%] L∞ error [%] Time [s] Iterations
PF no 1.10 10.42 125.5 38
CFS no 1.17 10.25 70.2 26
VBW no 1.98 10.41 20.4 100
VBW yes 1.90 10.04 8.1 29

Table 3. Schemes comparison for the pyramid experiment, without background.

Algorithm CM L1 error [%] L∞ error [%] Time [s] Iterations
PF no 2.95 5.16 46.1 23
CFS no 3.20 5.55 27.5 17
VBW no 3.01 5.47 6.9 63
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Table 4. Schemes comparison for the pyramid experiment, with background.

Algorithm CM L1 error [%] L∞ error [%] Time [s] Iterations
PF no 10.06 22.52 90.8 24
CFS no 9.49 22.40 55.4 18
VBW no 10.01 22.48 12.6 63
VBW yes 10.19 21.51 8.2 28

As observable, the results for the images without background (continuous surfaces)
are very accurate for all methods, indicating that the model has reached some level
of maturity. On the contrary, results for images with background are largely inac-
curate, this is due to the inability to catch the discontinuities of the surface. As a
side note, the use of the CM algorithm has a negligible influence on the accuracy,
cf. Tables 2 and 4. Generally speaking, minor differences between scheme variants
with and without CM depend on the stopping accuracy and the example.
VBW is the fastest method, even without the CM correction which gives an impor-
tant additional speed-up. PF is the most accurate method for the continuous case,
but it is the slowest one. Its accuracy is probably due to the fact that the optimal
control is computed analytically. Finally, we note that the differences between the
errors are not so relevant as those for CPU times.

5. EVALUATION OF ACCELERATION TECHNIQUES

In the previous experiments we used a fast sweeping technique for all the methods.
Now, we will analyse how big the impact of this technique is on the computation
times of the different methods. In addition, since we discretised the source term in
the VBW explicitly, we will investigate the effect of discretising it implicitly as done
in the other methods. We will do this on the upside-down pyramid test image (with
background).

Table 5. Analysis of the effect of fast sweeping and implicit discretisation

of the source term on the computation time for the pyramid image.

Method Sweeping (y/n) explicit/implicit Time [s] Iterations
PF n i 139.71 147
CFS n i 91.4 123
VBW n e 14.8 282
VBW n i 31.8 256
PF y i 90.8 24
CFS y i 55.4 18
VBW y e 12.6 63
VBW y i 28.7 63
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Table 5 shows the computation times and number of iterations needed for these
experiments. Note that we do not report the depth errors here, since none of the
modifications will have any impact on them. In addition, one iteration using the
fast sweeping technique means iterating over the image in four directions, i. e. one
iteration here corresponds to four iterations without sweeping. We observe that
for the VBW method, the effect is rather small, while the other methods are more
sensitive to this acceleration technique. In fact, the speed-up (which is the ratio
between the two CPU times) is 1.54 for PF, 1.65 for CFS and 1.17 for VBW.

Discretising the source term implicitly slows down the VBW method quite a bit,
but it remains the fastest method.

In the next step, we analyse the convergence properties of the methods. As we
have already seen, the VBW method needs more iterations than the methods em-
ploying an optimal control approach, but requires less computation time. Obviously,
the iteration steps are a lot cheaper for this method. Here, we aim at understand
how fast the algorithms approach the solution. Again, we do this on the pyramid
image. We stop each method as soon as the logarithmic depth change is less than
10−4 in all the pixels.
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Fig. 6. Evolution of the maximal change in depth by iteration of

the three methods on the pyramid image (with fast sweeping).

Figure 6 shows a graph of the convergence of the methods. As we can observe,
the VBW method converges relatively fast up to a maximal change per pixel of
about 10−3, and then converges very slowly. The optimal control methods are a
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bit slower in the beginning, in particular if we remember the iterations to be much
more expensive, but at very small changes, they converge extremely fast. The CFS
method reaches a maximum change of 10−4 within two iterations from a maximum
change of 10−3, while the VBW method takes more than 30 iterations for this.
Figure 7 shows the same experiment without fast sweeping. We observe the same
behaviour here.
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Fig. 7. Evolution of the maximal change in depth by iteration of

the three methods on the pyramid image (without fast sweeping).

Finally, we investigate the effect of using a cascading multigrid scheme as a solver.
We will do that in the same way for all three methods, employing fast sweeping as
above, and we discuss the gain for each method. We do each experiment twice:
In the first experiment we iterate on the coarser levels until convergence (10−4 as
before). As usual, we begin at the coarsest level with a 2 × 2 resolution. Then, we
repeat the experiment doing only 5 iterations – or until convergence if this happens
earlier – on the coarser levels. We only iterate until convergence on the finest level,
imposing a limit of 100 on the number of iterations that is by far not reached in
practice.

Table 6 shows the computation times for both experiments and all the methods.
We observe that the best choice in every case is to stop earlier the computation on
the coarser levels. The overall gain for the optimal control approaches is very small,
while for the VBW method we obtain a significant speed-up here.
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Table 6. Analysis of the effect of a cascading multigrid method

on the computation time for the pyramid image.

Method CM (y/n) coarse level iteration limit Time [s] Iterations (finest level)
PF n - 90.8 24
CFS n - 55.4 18
VBW n - 12.6 63
PF y none 89.6 20
CFS y none 54.8 15
VBW y none 8.9 28
PF y 5 84.6 20
CFS y 5 52.1 15
VBW y 5 8.4 28

CONCLUSIONS AND FUTURE WORK

We have shown that the considered schemes deliver visually equivalent results of
convincing quality, at least on continuous synthetic images. We have found that
the direct approach based on the Hamilton–Jacobi PDE is more efficient compared
to the schemes relying on the Hamilton–Jacobi–Bellman equation but the former
is not always the most reactive to the acceleration techniques. Regarding the er-
rors, outcomes are more test-dependent, and it is impossible to say which method
performs best. As expected, all methods give convincing results for differentiable
surfaces, while the errors increase in presence of edges and, even more, if the surface
is discontinuous.
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