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COMPONENTWISE CONCAVE COPULAS
AND THEIR ASYMMETRY
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The class of componentwise concave copulas is considered, with particular emphasis
on its closure under some constructions of copulas (e. g., ordinal sum) and its relations
with other classes of copulas characterized by some notions of concavity and/or convexity.
Then, a sharp upper bound is given for the L∞-measure of non-exchangeability for copulas
belonging to this class.
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1. INTRODUCTION

A (bivariate) copula is a distribution function on I2 = [0, 1]2 whose univariate
marginals are uniformly distributed. Copulas have received a great popularity in
the recent literature due to the celebrated Sklar’s Theorem, stating that every bi-
variate distribution function can be represented by means of some suitable copula
and its marginal distribution functions (see [30, 31]). For an introduction to copula
theory and some of its applications we refer to [1, 16, 24, 26, 28, 29].

Recently, investigations on various notions of concavity/convexity for copulas
have been considered, especially because of their potential use in the construction
of asymmetric stochastic models: see, for example, [1, 26] and the recent papers
[2, 3, 6, 10, 11, 13]. Here, we consider copulas that are componentwise concave,
i. e. they are concave in each argument when the other is held fixed. Such kind of
concavity has an important probabilistic interpretation in terms of a positive depen-
dence property, called stochastic increasingness or positive regression dependence, of
bivariate random pairs. In fact, if C is a componentwise concave copula associated
with an absolutely continuous random pair (X,Y ), then for all s ∈ R the functions
t 7→ P(Y > s | X = t) and t 7→ P(X > s | Y = t) are increasing. Intuitively,
this means that Y (respectively, X) is more likely to take on larger values as X
(respectively, Y ) increases (see [16, 26]).

In this paper, we aim at considering in detail the class of componentwise concave
copulas, with particular emphasis on its closure under some constructions of copulas
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(e. g., ordinal sum) and its relations with other classes of copulas characterized by
some notions of concavity and/or convexity (Section 2). Then, we investigate the
asymmetry of such a kind of copulas (Section 3) by obtaining a sharp upper bound
for the L∞-measure of non-exchangeability in this class.

2. THE CLASS OF COMPONENTWISE CONCAVE COPULAS

First, we introduce some notations that will be useful in the sequel.
A function C : I2 → I is a copula if it satisfies the following properties:

(C1) C is increasing in each variable,

(C2) C(x, 1) = C(1, x) = x for every x ∈ I,

(C3) C is 2-increasing, that is, for every x1, y1, x2, y2 ∈ I, x1 ≤ x2 and y1 ≤ y2, it
satisfies

VC([x1, x2] × [y1, y2]) := C(x1, y1) + C(x2, y2) − C(x1, y2) − C(x2, y1) ≥ 0.

The symbol C denotes the class of all copulas.
A copula C is called componentwise concave if, for every z0 ∈ I, the functions

x 7→ C(x, z0) and y 7→ C(z0, y) are concave (in the classical sense), viz. for all x, y
and λ in I,

C(λx + (1 − λ)y, z0) ≥ λC(x, z0) + (1 − λ)C(y, z0),
C(z0, λx + (1 − λ)y) ≥ λC(z0, x) + (1 − λ)C(z0, y).

A copula C is called componentwise convex if, for every z0 in I, the functions x 7→
C(x, z0) and y 7→ C(z0, y) are convex.

We will denote by Ccc and Ccx, respectively, the class of componentwise concave
and componentwise convex copulas. The copula W (x, y) = max(x + y − 1, 0) is
componentwise convex, the copula M(x, y) = min(x, y) is componentwise concave,
the copula Π(x, y) = xy is both componentwise convex and concave.

In the following, we will concentrate our attention on the class Ccc. In fact,
componentwise convexity for copulas has been already analysed in the literature,
also in connection with the notion of directional convexity (see [9, 15, 21] and the
references therein).

Note that every C ∈ Ccc is greater than Π in the concordance order, that is
C(x, y) ≥ Π(x, y) for every (x, y) ∈ I2. In other words, componentwise concave
copulas are positive quadrant dependent (see [16, 26]). Moreover, the following result
can be given.

Proposition 2.1. Let C be in Ccc and let (x0, y0) ∈ ]0, 1[2 such that C(x0, y0) =
x0y0. Then C = Π.

P r o o f . For (x0, y0) ∈ I2 such that C(x0, y0) = x0y0, let us consider the function
hy0 : I → [0, y0] given by hy0(x) = C(x, y0). From the Frechét–Hoeffding bounds
for copulas (see, for example, [26]), it follows that, for every x ∈ I, xy0 ≤ hy0(x) ≤
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min(x, y0). Due to the fact that C ∈ Ccc and, hence, hy0 is concave, hy0(x0) = x0y0

implies that hy0(x) = xy0. By repeating the same arguments, it also follows that,
for every x ∈ I, vx : I → [0, x] given by vx(y) = C(x, y) is a linear mapping. Thus,
C = Π. ¤

Example 2.2. Let Cα be a member of the Farlie–Gumbel–Morgenstern family of
copulas defined, for all α in [−1, 1] by

Cα(x, y) = xy(1 + α(1 − x)(1 − y)).

Then Cα is componentwise convex if α ∈ [−1, 0] and it is componentwise concave if
α ∈ I.

Example 2.3. Let Cα,β be a member of the Marshall–Olkin family of copulas de-
fined, for all α, β ∈ I by

Cα,β(x, y) =

{
x1−αy, xα ≥ yβ ,

xy1−β , xα < yβ .

Then it can be easily proved that Cα,β is componentwise concave. Note that this
copula is not symmetric for α 6= β.

Example 2.4. Let Cψ be an Archimedean copula, i. e. there exists ψ : I → [0, +∞]
such that

Cψ(x, y) = ψ(ψ[−1](x) + ψ[−1](y)),

where ψ[−1] is the pseudo-inverse of ψ (see [23, 26]). If ψ is differentiable everywhere,
it was proved that Cψ ∈ Ccc if, and only if, log(−ψ′) is convex (see [5]). An alternative
characterization is also given in [18].

Since it can be easily seen that Ccc is a convex subset of C, several other examples
of copulas of this type can be easily constructed. Furthermore, the class Ccc is also
closed with respect to the following transformation.

Proposition 2.5. Let (Ci)i∈I be a set of copulas, Ci ∈ Ccc, indexed by the (at
most) countable set I. Let (]ai, bi[)i∈I be a family of pairwise disjoint subintervals
of I indexed by the same set I. Then the ordinal sum of (Ci)i∈I with respect to
(]ai, bi[)i∈I , that is the copula C : I2 → I given by

C(x, y) =

{
ai + (bi − ai)Ci

(
x−ai

bi−ai
, y−ai

bi−ai

)
, (x, y) ∈ ]ai, bi[2,

min(x, y), otherwise,

is also an element of Ccc.

P r o o f . First, we prove that, given y ∈ I, hy : I → [0, y] defined by hy(x) = C(x, y)
is concave. Suppose that there exists i ∈ I such that y ∈]ai, bi[ (otherwise, the proof
is trivial). Then, we have that

hy(x) =


x, x ∈ [0, ai],

ai + (bi − ai)Ci

(
x−ai

bi−ai
, y−ai

bi−ai

)
, x ∈ ]ai, bi[,

y, x ∈ [bi, 1].
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Since Ci ∈ Ccc, hy is a piecewise concave function. Moreover,

(h′
y)−(ai) = 1 ≥ (h′

y)+(ai) =
[
∂+

x Ci

(
x − ai

bi − ai
,

y − ai

bi − ai

)]
x=ai

≥ (h′
y)−(bi) =

[
∂−

x Ci

(
x − ai

bi − ai
,

y − ai

bi − ai

)]
x=bi

≥ 0 = (h′
y)+(bi),

where the first and last inequality follow from the fact that the partial derivatives of a
copula take values on I (see, for example, [26]). Thus hy is concave on I. Analogously,
it can be proved that, for every x ∈ I, vx : I → [0, x] given by vx(y) = C(x, y) is
concave, which concludes the proof. ¤

The class Ccc is also closed with respect to the operation sending a copula to the
associated survival copula. We recall that, given a copula C, the copula Ĉ defined,
for every (x, y) ∈ I2, by

Ĉ(x, y) = x + y − 1 + C(1 − x, 1 − y)

is called survival copula related to C.

Proposition 2.6. If C ∈ Ccc, then Ĉ ∈ Ccc as well.

P r o o f . For a fixed y0 ∈ I and for λ ∈ I with λ = 1− λ, let x1, x2 be in I. Since C
is componentwise concave we have that

Ĉ(λx1 + λx2, y0) = λx1 + λx2 + y0 − 1 + C(λ(1 − x1) + λ(1 − x2), 1 − y0)

≥ λx1 + λx2 + y0 − 1 + λC(1 − x1, 1 − y0) + λC(1 − x2, 1 − y0)

= λĈ(x1, y0) + λĈ(x2, y0),

that is C is concave in the first argument being the other fixed. The same procedure
can be applied to show that C is concave in the second argument being the first
fixed. ¤

Remark 2.7. Note that Ccc is not closed under isomorphic transformations of its
elements by means of a concave bijection, as studied, for example, in [4, 14, 20, 25].
In fact, consider the function ϕ : I → I given by

ϕ(x) =

{
2x, x ∈

[
0, 1

3

]
,

x+1
2 , x ∈

]
1
3 , 1

]
.

Let us consider the copula Π that is in Ccc and its transformation Πϕ(x, y) =
ϕ−1(ϕ(x)ϕ(y)). Then, after some calculations, we get Πϕ

(
3
5 , 3

5

)
= 8

25 < 9
25 . Thus,

Πϕ is not positive quadrant dependent and, hence, does not belong to Ccc.
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An interesting geometric property can be described for any copula in Ccc. We
recall that, given C ∈ C and a, b > 0, the decreasing affine section at (−a, b) is the
function ϕC,−a,b : Ω → I defined by ϕC,−a,b(x) = C(x,−ax+b), where Ω is a suitable
set, depending on a, b, such that ϕ is well defined, viz. Ω = {t ∈ I | (−at + b) ∈ I}
(see [17]).

Proposition 2.8. Every decreasing affine section of C ∈ Ccc is concave.

P r o o f . Let a, b > 0 and let ϕ be the decreasing affine section at (−a, b) defined on
Ω. Let x1, x2 be in Ω and λ ∈ I with λ = 1− λ. From the componentwise concavity
of C we get

ϕ(λx1 + λx2) = C(λx1 + λx2,−aλx1 − aλx2 + b)
≥ λC(x1,−aλx1 − aλx2 + b) + λC(x2,−aλx1 − aλx2 + b)
≥ λ2C(x1,−ax1 + b) + λλC(x1,−ax2 + b)

+λλC(x2,−ax1 + b) + λ
2
C(x2,−ax2 + b)

= λ2
(
C(x1,−ax1 + b) − C(x1,−ax2 + b) − C(x2,−ax1 + b) + C(x2,−ax2 + b)

)
+λ

(
C(x1,−ax2 + b) + C(x2,−ax1 + b) − 2C(x2,−ax2 + b)

)
+ C(x2,−ax2 + b).

Since C satisfies the 2-increasing property (C3), we can minorize the first summand
of the last expression by putting λ instead of λ2. Then, after some little algebra, we
obtain that:

ϕ(λx1 + λx2) ≥ λC(x1,−ax1 + b) + λC(x2,−ax2 + b) = λϕ(x1) + λϕ(x2),

which is the desired assertion. ¤

Note that the increasing affine sections of C ∈ Ccc may not be concave: consider,
for example, the copula Π and its section along the main diagonal of I2.

The notion of componentwise concavity for copulas is connected with the notion
of quasi-concavity, as the following result shows.

Proposition 2.9. ([3]) A componentwise concave copula C is quasi-concave, i. e.
for all x1, x2, y1, y2 ∈ I and λ ∈ I,

C(λx1 + (1 − λ)y1, λx2 + (1 − λ)y2) ≥ min(C(x1, x2), C(y1, y2)).

Notice that there are quasi-concave copulas that are not greater than Π (in the
pointwise order) and, hence, cannot be componentwise concave (see [3]). Moreover, it
can be derived from [3], that, given C ∈ Ccc, the following statements are equivalent:

(a) C is symmetric,

(b) C is Schur-concave,

(c) C is weakly Schur-concave.

For the latter two notions, we refer to [13, 22] and [10], respectively.
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3. ASYMMETRY FOR COMPONENTWISE CONCAVE COPULAS

Recently, a great attention has been devoted to the study of possible asymmetry of
the copula of random pairs whose components are identically distributed [7, 19, 27].
In particular, it has been investigated the asymmetry of copulas characterized by
some analytical and/or statistical properties, with particular emphasis on positive
dependence properties (see, for example, [3, 6, 10, 11]). Among various ways for
measuring this asymmetry, a special interest has been devoted to the L∞-measure of
non-exchangeability µ∞ for random pairs (X,Y ), such that X and Y are identically
distributed and C is their copula, defined by

µ∞(C) := 3
(

max
(x,y)∈I2

|C(x, y) − C(y, x)|
)

. (1)

Notice that this measure takes value on I, since it has been proved in [19, 27] that

max
(x,y)∈I2

|C(x, y) − C(y, x)| =
1
3
.

Here we aim at finding
E(Ccc) = sup

C∈Ccc

µ∞(C),

which is the best possible upper bound for the measure of non-exchangeability of
an element of Ccc. Now, E(Ccc) is the supremum of the functional µ∞, which is
continuous with respect to the L∞-norm in C and to the Euclidean norm in I.
Furthermore, Ccc is a closed subset in the compact set C with respect to the L∞-
norm. Then, it follows that there exists C̃ ∈ Ccc such that E(Ccc) = µ∞(C̃). Copulas
C̃ of this type are called maximally non-exchangeable elements of Ccc.

Proposition 3.1. E(Ccc) = 3 · 5
√

5−11
2 ≈ 0.27.

P r o o f . Let C be a maximally non-exchangeable copula in Ccc. We can suppose,
without loss of generality, that there exist x, y ∈ ]0, 1[, x < y, such that

µ∞(C) = 3(C(x, y) − C(y, x)).

Given x ∈ ]0, 1[, we denote by hx and vx the horizontal and vertical sections of C
at x given, respectively, by hx(t) = C(t, x) and vx(t) = C(x, t). Since C ∈ Ccc,
these sections are increasing, concave and satisfy tx ≤ hx(t) ≤ min(x, t) and tx ≤
vx(t) ≤ min(x, t) for any t ∈ I. Let β = C(x, x) ≥ x2. Since C is maximally non-
exchangeable, hx and vx are such that δC(x, y) = |hx(y)−vx(y)| takes its maximum
value.

By the concavity of the sections, it is easy to see that this maximum is realized
when hx and vx assume, respectively, the smallest and biggest possible values on
[x, 1]. Thus, we should consider that hx is affine on [x, 1], i. e.

hx(t) = x−β
1−x (t − x) + β = β(1−t)+xt−x2

1−x ,
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and vx(t) = x on some suitable interval J ⊆ [x, 1]. Now, since vx(x) = C(x, x) =
β ≥ x2

y , the maximum value of δC is obtained when we take β = x2

y .
Therefore,

max
(x,y)∈I2

δC(x, y) = max
(x,y)∈I2

(
x − β(1 − y) + xy − x2

1 − x

)
= max

(x,y)∈I2
x(y − x)(1 − y)

(1 − x)y
.

Let us denote f(x, y) =
x(y − x)(1 − y)

(1 − x)y
. In order to find the maximum of f , let us

consider, for a fixed x, the function g(y) = f(x,y)
x . Now, g achieves the maximum

for y =
√

x. Thus, the maximum of f , for a fixed x, is given by k(x) = g(x,
√

x) =
x(1−

√
x)

1+
√

x
. After little algebra, it can be showed that the maximum of k is reached at

the point x0 = 3−
√

5
2 , for which k(x0) = 5

√
5−11
2 . This concludes the proof. ¤

From the proof of the above Theorem, it is easy to construct a maximally non-
exchangeable copula C̃ ∈ Ccc. Given x0 = 3−

√
5

2 , C̃ has horizontal section at x0

equal to

hx0(t) =

{√
x0t, t ∈ [0, x0[,

x
3/2
0 (1−t)+x0t−x2

0
1−x0

, t ∈ [x0, 1],

and vertical section at x0 equal to

vx0(t) =

{√
x0t, t ∈ [0, y0[,

x0, t ∈ [y0, 1].

Methods for constructing copulas with preassigned vertical and horizontal sections
(and, hence, such C̃) are discussed, for example, in [8, 12]

Thus, we have calculated sharp upper bound (approximately equal to 0.27) for
the class of identically distributed random pairs that are stochastically increasing.
Note that the sharp upper bound for positive quadrant dependent random variables
has been obtained in [6] and it equals 3(3− 2

√
2) (≈ 0.516). Thus, we may say that

pairs of continuous random variables whose copula is componentwise concave (the
latter being seen as a property of positive dependence) tend to manifest a symmetric
relation in the dependence structure, as illustrated by Proposition 3.1.

(Received February 24, 2009.)

REFERENCES

[1] C. Alsina, M. J. Frank, and B. Schweizer: Associative Functions. Triangular Norms
and Copulas. World Scientific, Hackensack, NJ 2006.

[2] E. Alvoni, F. Durante, P.-L. Papini, and C. Sempi: Different types of convexity and
concavity for copulas. In: New Dimensions in Fuzzy Logic and related Technologies –
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