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This paper focuses on the delay-dependent robust stability of linear neutral delay sys-
tems. The systems under consideration are described by functional differential equations,
with norm bounded time varying nonlinear uncertainties in the “state” and norm bounded
time varying quasi-linear uncertainties in the delayed “state” and in the difference opera-
tor. The stability analysis is performed via the Lyapunov–Krasovskii functional approach.
Sufficient delay dependent conditions for robust stability are given in terms of the existence
of positive definite solutions of LMIs.
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1. INTRODUCTION

A great variety of systems can be modelled by time-delay systems see [1, 6, 15] and
[24] i. e. the “future”states depend not only on the “present” states, but also on the
“delayed” states. Indeed, the delay naturally occurs in the dynamical behavior of
systems in many fields: mechanics, physics, etc. Even if the systems themselves do
not have internal delays, closed loop systems may involve delay phenomena, because
of actuators, sensors and computation time.

Among time delay systems, the class of neutral systems is characterized by the
fact that the delay argument occurs in the “state” and also in the derivative of the
difference operator applied to the state variable D(t)xt. Some examples of such
neutral systems are given in [1, 15, 19, 24].

Several works have been concerned with the stability analysis of neutral systems
either in the time domain approach, see for example: [11, 27, 31] or in the frequency
domain approach, see for example: [3, 20, 26, 31]. In these studies, the attention
was mainly focused on delay independent stability conditions, which are rather con-
servative. It is then of interest to consider delay-dependent stability analysis, see
[3, 13, 23, 28].
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Sufficient results have been obtained by the authors [30] concerning the delay
dependent robust stability of neutral systems; in these works, the proposed model
transformation includes an additional dynamics that may be unstable [9]. The model
transformation is a common practice [7]; for example, previous results ([17] and [23])
for neutral systems use the Leibnitz’s rule to transform a system with pointwise
delays to a system with distributed delay (see [15] for the terminology). Here,
another model transformation is used: the technique of integration over one delay
interval [16]; this model transformation is a fixed one and does not induce any
additional dynamics as it happens when the Leibnitz’s rule is used.

The objective of this paper is to study the stability analysis of linear neutral
systems in a delay-dependent framework incorporating robustness issues. One ob-
tains sufficient delay-dependent stability conditions via the Lyapunov–Krasovskii
functional approach. The main difference w.r.t. the result given in [30] is that addi-
tional dynamics are avoided for the kind of proposed uncertainties, leading to better
results; the stability results are expressed in terms of a checkable LMI.

This paper is organized as follows. Section 2 gives some preliminaries and states
the problem. The model transformation is discussed in Section 3 and the main
stability results (two theorems on robust stability) are given in Section 4. In Section 5
an example considering four cases for a scalar linear neutral system is presented.
Some final remarks end the paper.

Notation. In, 0n are respectively the identity and the zero matrices of dimensions
n × n. x ∈ Rn, ‖·‖ denotes the Euclidean norm of x. For a real number r > 0,
C ([−r, 0] , Rn) will be the Banach space of continuous vector functions ϕ : [−r, 0] →
Rn with the supremum norm ‖ϕ‖C = sup−r≤t≤0 ‖ϕ(t)‖. B (C, Rn) is the Banach
space of bounded linear mappings from C to Rn with the operator topology. The
function xt denotes the restriction of x to the interval [t − r, t] so that xt is an
element of C defined by xt (θ) = x (t + θ) for −r ≤ θ ≤ 0.

2. PROBLEM STATEMENT

In order to define a general class of neutral systems, one needs the definition of the
notion of atomicity ; let us recall this approach:

Let H ⊂ [τ,∞) × C ([−r, 0] , Rn) be an open, (t, ϕ) ∈ H, L (t) ∈ B (C, Rn) ; then,
the Riesz representation theorem implies that there is an n × n matrix function µ
on [−r, 0] of bounded variation such that

L (t)ϕ =
∫ 0

−r

[ dθµ (t, θ)]ϕ (θ) .

Here we regard µ as extended to R so that µ (t, θ) = µ (t,−r) for θ ≤ −r, µ (t, θ) =
µ (t, 0) for θ ≥ 0 (see [19]).

Definition 1. (Hale and Verduyn Lunel [11]) Let µ (t, β+) := limε→0µ (t, β + ε)
and µ (t, β−) = limε→0µ (t, β − ε) for some ε > 0. If there exists β ∈ R such that
the matrix A (t, β, L (t))=µ

(
t, β+

)
− µ

(
t, β−)

(1)
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is nonsingular at t = t0 ∈ [τ,∞) , L (t) is said to be atomic at β at t0. If A (t, β, L)
is non singular on O ⊂ H, then L (t) is atomic at β on O.

Now consider the following class of uncertain neutral systems, written in the form
proposed by [10], see also [11] and [15]:

d
dt

[D (t)xt] = Ax (t) + Bx (t−r2) + ∆A (t, xt (0)) + ∆B(t−r2, xt (−r2)), t ≥ σ,(2)

D (t) ϕ := ϕ (0) − Cϕ (−r1) + ∆C(t − r1, ϕ (−r1)), (3)

with the initial condition xσ = φ, {φ, ϕ} ∈ C, (4)

where τ ∈ R, {σ, t} ∈ [τ,∞) , the state xt is a functional in C, delays r1 ≥ 0, r2 ≥ 0
are assumed to be constants and unknowns, r := max {r1, r2} , i. e. linear neutral
differential equations that include continuous uncertainties. Assume that A, B, and
C are constant known matrices, the nonlinear mapping ∆A : H → Rn, and the
linear mappings w.r.t. the second argument ∆B ,∆C : H → Rn are continuous,
uniformly bounded and take closed bounded sets into bounded sets. The mappings
∆A,∆B , ∆C also satisfy the following properties for all t ∈ [τ,∞) and ϕ ∈ Ων =
{ϕ : ‖ϕ‖ ≤ ν, ν > 0} :

∆A (t, ϕ (0)) := EAδA (t, ϕ (0)) ,

δ>A (t + θ, ϕ (θ)) δA (t + θ, ϕ (θ)) ≤ ϕ> (θ) W>
A WAϕ (θ) ,

∆B (t − r2, ϕ (−r2)) := δB (t − r2)ϕ (−r2) ,

WB + δB (t + θ) ≥ 0, WB − δB (t + θ) ≥ 0,

∆C (t − r1, ϕ (−r1)) := δC (t − r1) ϕ (−r1) ,

WC + δC (t + θ) ≥ 0, WC − δC (t + θ) ≥ 0, ∀ (t, ϕ) ∈ R+ × Ων , θ ∈ [−r, 0] ,

(5)

where EA is a known matrix and WA, WB and WC are given weighting matrices.
The unknown mapping δA satisfies δA (t, 0) ≡ 0, so that x = 0 is a solution of the
neutral differential equation (2) – (5).

Notice that the uncertainty ∆A is structured by EA, while ∆B , ∆C are un-
structured. On the one hand, this property will be used to verify the main re-
sults, Theorems 6 and 8 by means of LMIs. On the other hand, the structure
of the system under consideration is motivated by applications, e. g., the lossless
transmission line circuit presented in [15, 24, 29] could present parameter uncer-
tainties (distributed parameters like resistance, capacity and inductance are not
precisely known). As a matter in fact the structure of the difference operator (3),
D (t) ϕ := ϕ (0) − Cϕ (−r1) + ∆C (0 − r1, ϕ (−r1)) , with ∆C time invariant is a
class of operator often arising in practice [6]. Let us introduce now the following
proposition.

Proposition 2. Let WJ and δJ be square real matrices, such that WJ ± δJ ≥ 0
(i. e. WJ + δJ ≥ 0 and WJ − δJ ≥ 0) for J ∈ {B,C} . Then:
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i) WJ ≥ 0,

ii) δ>δ ≤ W>
J WJ and

iii) δ>Sδ ≤ W>
J SWJ for all S ≥ 0 of appropriate dimensions.

P r o o f . Since x> (WJ + δJ)x + x> (WJ − δJ)x ≥ 0, hence WJ ≥ 0 is satisfied.
Next, since WJ ± δJ ≥ 0, it follows that

x> (
W>

J + δ>J
)
(WJ − δJ) x ≥ 0

and δ>δ ≤ W>
J WJ . Finally, for all S ≥ 0

x> (
W>

J + δ>J
)
S (WJ − δJ) x ≥ 0

and δ>J SδJ ≤ W>
J SWJ , for all S > 0 . (6)

¤
Next, one considers the following problem:

Delay-dependent robust stability problem: find a bound r∗2 , if it exists, on
r2, and conditions to ensure the asymptotic stability of the neutral system (2) – (4),
for r2 ≤ r∗2 and for any ∆A, ∆B , ∆C satisfying (5).

In this paper, we are interested in the sensitivity of stability to variations in the
parameters and in the delays. Notice that the stability of a neutral system requires
as a necessary condition the stability of the associated difference operator [11]. For
some of our results, we deal with the difference operator given by

D̂ϕ = ϕ (0) − Cϕ (r̂) , r̂ > 0.

In this case, the stability of D̂ is ensured if ρ (C) < 1, where ρ (·) denotes the
spectral radius. In a more general case we refer to [10, 11, 15]. In the next section,
the simultaneous study of robust stability and delay-dependent stability will be
considered.

3. MODEL TRANSFORMATION

The stability of neutral systems has been studied using model transformation, let us
remind two ideas in a time approach (see other transformations in [29]). First the
stability of the transformed model should imply the stability of the original model.
Then stability of the transformed model is studied by means of Lyapunov–Krasovskii
functionals. Linear neutral systems with pointwise delays can be transformed into
systems with distributed delays by using the Leibnitz’s rule in the difference oper-
ator, D (xt − xt−r2) =

∫ 0

−r2
dθ [Dxt+θ] (see [29]) or according to the classical Leib-

nitz’rule in the present state x (t) (see, [13, 31]). The structure of the transformed
system allows to study its stability. However the transformed model introduces
additional dynamics to the original system [14].
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Other transformation is the integration over one delay interval [18]. In order to
show the main idea, consider the following linear time invariant neutral system

.
x (t) = Ax (t) + Bx (t − r) + C

.
x (t − r) , r > 0. (7)

Since at least x (t) is differentiable in (7), it is easy to check that every solution of
(7) is also solution of [4]

d
dt

[x (t) − Cx (t − r)] = Ax (t) + Bx (t − r) , (8)

where x (t) does not need to be differentiable, only the difference x (t)−Cx (t − r) .
Then the stability of (8) implies the stability of (7). In the same way, each solution
x (t) of (8) is solution of

d
dt

[
x (t) − Cx (t − r) +

∫ 0

−r

Bx (t + θ) dθ

]
= (A + B)x (t) . (9)

The principal advantage of the technique of integration w.r.t. which uses the
Leibnitz’s rule, is that the technique of integration does not introduce additional
dynamics to the original system (see more details in [18, 29]). On the contrary, the
stability analysis of the associated difference operator for the transformed system
(via the integration over one delay interval), is more difficult to study than for
untransformed.

Now, the technique of integration above mentioned is applied over the delay
interval [0, r2] to the neutral system (2) – (5), the system can be rewritten in terms
of the new variable ξ (t) as (see [14, 16])

dD̃(t)ξt

dt
= (A + B) ξ (t) + ∆A (t, ξ (t)) + ∆B (t, ξ (t)) , (10)

where
D̃ (t)ϕ := D (t)ϕ +

∫ 0

−r2

[Bϕ (θ) + ∆Bt (θ)] dθ, (11)

is the difference operator and D (t) is defined in (3).
It is not difficult to verify that every solution of the neutral system (2) – (5), is

also solution of the equation (10) – (11), then the stability of (10) – (11) implies the
stability of (2) – (5), see [14].

Remark 3. The proposed model transformation does not induce any additional
dynamics in the characteristic equation for the system without uncertainties, but
the stability of the difference operator D̃ (t) is required.

The transformed model (10) – (11) is a neutral system in the sense of the definition
proposed by [18]. The next proposition establishes that, if the operator D (t), defined
in (3), is atomic at zero, then D̃ (t) in (11) is also atomic at zero, i. e. if the original
system (2) – (5) is neutral in the sense of [10], then the transformed model (10) – (11)
is also of neutral type in the sense of [10]. This fact allows to simplify the proof of
stability in the next section.
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Proposition 4. Let T be the transformation that transforms (2) – (5) into (10) –
(11), with the difference operators D (t) and D̃ (t) respectively. Then, if D (t) is
atomic at zero, then D̃ (t) is also atomic at zero, and the initial condition for both
systems belongs to C ([−r, 0] , Rn) .

P r o o f . First, it is shown that the system (10) – (11) is a neutral system, i. e.
the difference operator (11) is atomic at zero. Then assume that D (t) ∈ B (C, Rn)
is atomic at zero.

Now, rewriting (11) as a Riemann-Stieltjes integral

D̃ (t)ϕ =
∫ 0

−r

[dθµ (t, θ)] ϕ (θ) , θ ∈ [−r, 0] ,

with r := max {r1, r2} and

µ (t, θ) := µ0 (θ) + µ1 (θ) + µ2 (t, θ) + µ3 (t, θ) + µ4 (t, θ) ,

where µi are functions of bounded variation and defined as

µ0 (θ) :=
{

In if θ = 0,
0n if θ < 0,

, µ1 (θ) :=
{

−C if θ > −r1,
0n if θ = −r1,

µ2 (t, θ) :=
{

−δC (t − r1) if θ > −r1,
0n if θ = −r1,

µ3 (t, θ) :=
{

θB + r2B if −r2 < θ ≤ 0,
0n if θ = −r2,

µ4 (t, θ) :=

{ ∫ θ

−r2
δB (t + ϑ) dϑ if −r2 < θ ≤ 0,

0n if θ = −r2,

furthermore µ (t, θ) := µ (t,−r) for θ ≤ −r and µ (t, θ) := µ (t, 0) for θ ≥ 0.
Since B,C are real matrices and δB , δC are continuous and bounded, ∀ t ≥ σ,

θ ∈ [−r, 0] , then µi are of bounded variation. Hence µ is of bounded variation and
D̃ (t) ∈ B (C, Rn) .

From (1) and replacing L (t) = D̃ (t) where D̃ (t) is given by (11) at β = θ = 0 it
follows

A
(
t, 0, D̃ (t)

)
= µ0

(
0+

)
− µ0

(
0−

)
+ µ1

(
0+

)
− µ1

(
0−

)
+ µ2

(
t, 0+

)
− µ2

(
t, 0−

)
+ µ3

(
t, θ+

)
− µ3

(
t, θ−

)
+ µ4

(
t, θ+

)
− µ4

(
t, θ−

)
.

Since µ3 (t, θ) and µ4 (t, θ) are continuous functions then µ3 (t, θ+) − µ3 (t, θ−) = 0,
µ4 (t, θ+) − µ4 (t, θ−) = 0 and

A
(
t, 0, D̃ (t)

)
= I − C − δC (t − r1) . (12)

In the same way, it is easy to verify that when the operator L (t) in (1) is replaced
by D (t) given in (3) at β = θ = 0, it is obtained

A (t, 0, D (t)) = I − C − δC (t − r1) = A
(
t, 0, D̃ (t)

)
. (13)
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Since D (t) is atomic at zero, the matrix A (t, 0, D (t)) 6= 0, A(t, 0, D̃ (t)) is non
singular for all t ∈ [τ,∞) and it follows that the difference operator (11), D̃ (t) , is
atomic at zero. It implies that (10) – (11) is a neutral system by Definition 1, [11].

On the other hand, since both systems do have the same delay, then the initial
condition for (10) – (11) belongs to C, i. e. the same space that for original neutral
system (2) – (5). ¤

Remark 5. The fact that the initial condition belongs to the same space for the
original (2) – (5) and transformed system (10) – (11), does not always hold, see [29],
where the initial condition for the original space is C ([−r, 0] , Rn) while it belongs
to C ([−r − r2, 0] , Rn) for the transformed one.

4. ROBUST STABILITY

To prove sufficient conditions for asymptotic stability of neutral systems of the form
(10) – (11), one way is to propose a degenerated Lyapunov–Krasovskii functional on
D (t) (see for instance [24] to the case D (t) = D) and check the negativity of the
derivative of the functional along the solution of (10) – (11) and the stability of both
operators D (t) and D̃ (t) . In this section, a slightly different way is considered, that
uses the Lyapunov–Krasovskii functional approach on the operator D̃ (t) , with the
help of Theorem 8.1 given in [11] to prove the main results of this paper, given in
the following theorems. The results are then compared with previous ones, given in
the literature.

Theorem 6. Consider the Neutral System (2) – (5) and assume that the following
conditions are satisfied:

i) A1 := A + B is a Hurwitz stable matrix;

ii) The difference operators D (t) ϕ := [ϕ (0)−Cϕ (−r1)−∆C (t, ϕ)] and D̃ (t) ϕ :=
{D (t) ϕ +

∫ 0

−r2
[Bϕ (θ) + ∆B (t + θ, ϕ (θ))] dθ} are linear in ϕ, continuous and

uniformly stable with respect to C ([σ,∞) , Rn) , and D (t) is atomic at 0;

iii) there exist a real positive number r∗2 and positive definite matrices P , Si > 0,
i = 1, 6 such that the following LMIs hold:

Γ :=

 Q (r∗2) Γ12 S (r∗2)
Γ>

12 Γ22 0
S
>

(r∗2) 0 R

 < 0, (14)

S2 > S3 + W>
B S4WB + (2r∗2 + 3) B>SB + (2r∗2 + 3) W>

B SWB , (15)
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where

S :=
(
W>

A WA + W>
B S5WB + S1 + r∗2S2

)
, (16)

Q (r∗2) := Γ11 + S (r∗2)R−1S
>

(r∗2) , (17)

Γ11 = 2A>
1 P + 2S + 2r∗2S − S (r∗2) R−1S

>
(r∗2) , (18)

S (r∗2) :=
( √

r∗2PA1B
√

r∗2PA1 P PA>
1 PEA

)
, (19)

R−1 :=


−S−1

3 0 0 0 0
0 −S−1

4 0 0 0
0 0 −S−1

5 0 0
0 0 0 −S−1

6 0
0 0 0 0 −I

 , (20)

Γ12 := PA1C + SC, (21)
Γ22 := −S1 + W>

C S6WC + (2 + r∗2)C>SC + (2 + r∗2) W>
C SWC . (22)

Then, the Neutral System (2) – (5) is robustly delay-dependent asymptotically stable
for any r2 ≤ r∗2 .

Remark 7. Matrix inequalities (14) – (15) can be checked by LMI tools for every
r∗2 > 0 fixed.

P r o o f . Consider the Neutral System (2) – (5) and the Lyapunov–Krasovskii
functional:

V (t, ϕ) := V1 (t, ϕ) + V2 (ϕ) + V3 (ϕ) , (23)where
V1 (t, ϕ) :=

[
D̃ (t)ϕ

]>
PD̃ (t)ϕ, (24)

V2 (ϕ) :=
∫ 0

−r1

ϕ> (θ)S1ϕ (θ) dθ, (25)

V3 (ϕ) :=
∫ 0

−r2

∫ 0

θ

ϕ> (ϑ)S2ϕ (ϑ) dϑdθ. (26)

For the functional V, one can construct
.

V along the trajectories of (10) in terms
of D̃ (t)xt (see for example [30]). Let A1 = A + B, then we have:

.

V 1 (t, xt) = 2
[
D̃ (t)xt

]>
A>

1 PD̃ (t)xt + 2
[
D̃ (t) xt

]>
PA1Cxt (−r1)

− 2
[
D̃ (t)xt

]>
PA1B

∫ 0

−r2

xt (θ) dθ

− 2
[
D̃ (t)xt

]>
PA1

∫ 0

−r2

∆Bt (θ) dθ (27)

+ 2∆>
At (0)PD̃ (t) xt + 2∆>

Bt (0)PD̃ (t) xt

+ 2∆>
Ct (−r1) A>

1 PD̃ (t) xt,
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.

V 2 (xt) = x> (t)S1x (t) − x> (t − r1)S1x (t − r1) , (28)
.

V 3 (xt) = r2x
> (t) S2x (t) −

∫ 0

−r2

x>
t (θ)S2xt (θ) dθ. (29)

Using the equations and inequalities (5) – (6), and the following well known inequality

−2a>b ≤ inf
S>0

{
a>Sa + b>S−1b ∀ a, b ∈ Rn

}
(30)

one can bound (28) – (29) and then get a bound of
.

V in terms of D̃ (t)xt :

.

V (t, xt)≤ 2
[
D̃ (t) xt

]>
A>

1 PD̃ (t) xt+2x>
t (−r1)

(
C>S + C>A>

1 P
)
D̃ (t) xt

+
[
D̃ (t) xt

]> [
PA1R

−1
5 A>

1 P + 2S + PR−1
4 P + PEAR−1

3 E>
AP

]
D̃ (t) xt

+ r2

[
D̃ (t)xt

]> [
2S + PA1BR−1

1 B>A>
1 P + PA1R

−1
2 A>

1 P
]
D̃ (t)xt

+ x> (t − r1)
(
−S1 + W>

C R5WC + 3W>
C SWC + 2C>SC

)
x (t − r1)

+ r2x
> (t − r1)

(
2W>

C SWC + 2r2C
>SC

)
x (t − r1)

+
∫ 0

−r2

x>
t (θ)

(
−S2 + 3B>SB + 3W>

B SWB + R1 + W>
B R2WB

)
xt (θ) dθ

+ r2

∫ 0

−r2

x> (t + θ)
(
2B>SB + 2W>

B SWB

)
x (t + θ) dθ,

(31)

S :=
(
W>

A R3WA + W>
B R4WB + S1 + r2S2

)
. (32)

Finally, one chooses R1 = S3, R2 = S4, R3 = I, R4 = S5, R5 = S6 where

S2 > R1 + W>
B R2WB + 3B>SB + 3W>

B SWB

+ 2r2B
>SB + 2r2W

>
B SWB .

(33)

Now, with all these inequalities and identities, if there exists a real positive number
r∗2 ≥ r2 such that the LMI (14) holds, then this LMI is equivalent (via an appropriate
Schur transformation [2]) to the following inequality:

.

V (t, xt) ≤ ζ>Γζ < 0, (34)

ζ =
(

D̃ (t)xt

x (t − r1)

)
, Γ =

(
Γ11 Γ12

Γ>
12 Γ22

)
where r∗2 was replaced by r2 and (Γij)i=1,2,j=1,2 are defined in Theorem 6.

The inequality Γ < 0 in (34) means that Γ11 < 0 and that there exists some
γ > 0 such that V̇ (t, xt) ≤ −γ ‖D (t) xt‖ for all t ≥ σ. D (t) and D̃ (t) are stable
by Assumption ii) of Theorem 6, see [4, 11], then, the robust asymptotic stability
of (2) – (5) is ensured by Theorem 2.3 of [4] or Theorem 8.1 of [11] for all delay
r2 ≤ r∗2 . ¤

A variation of the same result can be derived if the bound of (34) is performed
in terms of x (t) , x (t − r1) :
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Theorem 8. Consider the Neutral System (2) – (5) with mapping ∆A = δAx (t) ,
δA, δB , δC constant uncertain matrices and assume that the following conditions are
satisfied:

i) A1 := A + B is a Hurwitz stable matrix;
ii) The difference operators Dϕ := [ϕ (0) − (C + δC) ϕ (−r1)] and D̃ϕ := [Dϕ +∫ 0

−r2
(B + δB) ϕ (θ)] are uniformly stable with respect to C ([σ,∞) , Rn) , and

D is atomic at 0;
iii) there exist a real positive number r∗2 and positive definite matrices P, Si,

Rj > 0, i = 1, 2, j = 1, 13, such that the following LMIs hold:

Γ :=

 Q (r∗2) Γ>
12 S (r∗2)

Γ>
12 Γ22 0

S
>

(r∗2) 0 R

 < 0,

−S2 + B> (R8 + R10 + R12)B + W>
B (R9 + R11 + R13)WB < 0,

where

Γ>
12 := −A>

1 PC, S (r∗2) =
(

S1 S2 (r∗2)
)

,

S1 =
(

P P A>
1 P W>

A E>
AP W>

A E>
AP W>

B P W>
B P

)
,

S2 (r∗2)=
√

r∗2
(

A>
1 P A>

1 P W>
A E>

AP W>
A E>

AP W>
B P W>

B P
)
,

Q (r∗2) := Γ11 + S (r∗2)R−1S
>

(r∗2) ,

Γ11 = 2A>
1 P + W>

A E>
AR1EAW>

A + W>
B R2WB + S1 + r∗2S2 − S (r∗2) R−1S

>
(r∗2) ,

R−1 := diag
(
R−1

j

)
, j = 1, 13,

Γ22 := −S1 + W>
C (R3 + R5 + R7) WC + C> (R4 + R6) C.

Then, the Neutral System (2) – (5) is robustly delay-dependent asymptotically
stable for any r2 ≤ r∗2 .

P r o o f . The proof is just sketched since it follows the basic ideas of Theorem 6.
Relations (23) – (29) are obtained but terms D̃xt are expanded and inequalities (5) –
(6) and (30) are used to get .

V (t, xt) ≤ ζ>Γζ < 0, (35)

ζ =
(

x (t)
x (t − r1)

)
, Γ =

(
Γ11 Γ12

Γ>
12 Γ22

)
.

Similar arguments to (34) are used in (35) to prove stability. ¤

Conditions of Theorem 6 are not difficult to check, except the difference operator
stability D̃ (t) given in equation (11). Now, some references are given for sufficient
conditions based on robust control techniques.

For the difference operator D̃ϕ defined in Theorem 8, mapping ∆A = δAx (t) and
δA, δB , δC constant matrices of appropriate dimensions, then the uniform asymptotic
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stability of (11) is equivalent to the stability of the corresponding characteristic
equation, that is, all the solutions s ∈ C of the associated characteristic equation

det
(

In − (C + δC) e−sr1 + (B + δB)
∫ 0

−r2

esθ dθ

)
= 0, (36)

have negative real part, i. e. Re (s) ≤ −ε < 0, (ε > 0) . This equation was studied in
[23] where some results are given.

Remark 9. In [23], where the uncertainties ∆A, ∆B , ∆C are zero, the delay
dependent stability problem is studied with the Lyapunov–Krasovskii functional
(23), V (ϕ) := V1 (ϕ) + V2 (ϕ) + V3 (ϕ) with V1 redefined as

V1 (ϕ) :=
[
D̃ϕ

]>
PD̃ϕ,

D̃ϕ := ϕ (0) − Cϕ (−r1) + B
∫ 0

−r2
ϕ(θ) dθ.

(37)

However, the main result in [23] is not equivalent to the one given here by Theorems 6
and 8 when WA = WB = WC = 0, since the bound in [23] is taken with V̇ (xt) ≤
−γ ‖Dxt‖ and not with

.

V (xt) ≤ −γ
∥∥∥D̃ (t) xt

∥∥∥ .

Remark 10. In [21], the neutral system (2) – (5) is considered with multiple time
delays but with C = 0, ∆C (t − r1, ϕ) = ∆C (ϕ) , ∆B = ∆C = 0. The Lyapunov–
Krasovskii functional studied in [21] corresponds to V (ϕ) := V1 (ϕ)+V2 (ϕ)+V3 (ϕ)
when there are two delays and V1 given in (37).

5. EXAMPLE

An interesting problem in control theory is to determine the total set of parameters
which guarantees stability of a system. For simplicity, in this section, the delay
dependent robust stability of the scalar linear neutral system (38) is studied in the
parameter space (a, b, c) , for a given r > 0.

We consider the following scalar neutral time-delay system

.
x (t) = −ax (t) − bx (t − r) − c

.
x (t − r) , (38)

the covector
(

a b c r
)

associated to it, and the following cases:

i)
(

a b 0 r
)
, a time-delay systems (TDS) of retarded type;

ii)
(

0 b c r
)
, a TDS of neutral type;

iii)
(

a 0 c r
)
, a TDS of neutral type;

iv)
(

a ac c r
)
, a TDS of neutral type.

The stability regions of systems (i) – (iv) can be drawn in the 3D parameter space
(a, b, c) . Note that the stability region of systems (i) – (iii) are the projections of the
stability region w.r.t. the parameters (a, b, c) of (38) in the planes (a, b) , (b, c) and
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(a, c) respectively. To check the stability regions of (i) – (iv) with numerical values
of parameters a, b and c, the Theorem 8 was used. It was assumed that some r > 0
is given and that parameters a, b and c had uncertainties. The stability results are
presented in table I and include the percentage of error in the parameters (a, b, c)
different from zero, it is denoted by “error”. The stability of D̃ holds from the
continuity argument of the roots w.r.t. r (see for example [23, 5]).

Table

Item a b c r WA WB WC % error stability figure

1 1 0 0 1000 0.99 0 0 99 X 1

2 1 1/2 0 0.5 0.46 0.23 0 46 X 1

3 1 1/2 0 1.4 0.1 0.05 0 10 X 1

4 0 1/2 0 0.5 0 0.23 0 46 X 1

5 0 1/2 0 1.4 0 0.05 0 10 X 1

6 0 1/2 ±1/10 0.5 0 0.175 0.035 35 X 2

7 0 1/2 ±1/10 1.2 0 0.05 0.01 10 X 2

8 1 0 ±1/2 1000 0.23 0 0.125 23 X 3

9 1 1/3 ±1/3 0.6 0.2 0.06 0.06 20 X 4

10 1 1/3 ±1/3 1 0.13 0.043 0.043 13 X 4

The stability regions can be obtained by the study of the transfer functions of
systems (i) – (iv) evaluated in s = jω.

For system (i) the delay-dependent stability domain is well known (see for instance
[15, 25]), it is depicted in Figure 1 for r = 0.5, but Theorem 8 was verified for large
numbers for example the one given in table I is r = 1000. For fixed r > 0, the upper
boundary of the region of stability is given parametrically by the equations

a =
−ω

tan (ωr)
, b =

ω

sin (ωr)
, r =

arccos (−a/b)√
b2 − a2

> 0, arccos (−a/b) ∈ (0, π) ,

and the lower boundary by
b = −a, a ≥ −1/r.

The region a > |b| corresponds to the region for which there is asymptotic stability
for all r > 0.

For system (ii), the boundary of the region of stability is given by

b = ω sin (ωr) , c = − cos (ωr) , r =
√

1 − c2

b
arctan

(√
1
c2

− 1

)

(see also [23] to compare). In this example the shaded area in Figure 2, was verified
with the values shown in Table

For system (iii), it is easy to check that the stability region (see Figure 3) is the
domain limited by

−1 < c < 1, a > 0
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Fig. 1. Plane (a, b).
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Fig. 2. Plane (b, c).
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Fig. 3. Plane (a, c).
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and is independent of the delay r. For the analysis of asymptotic stability of systems
of the form (iii) see [12] and the references therein.

Finally, from the transfer function of system (iv),

(s + a)
(
1 + ce−sr

)
= 0,

it is concluded that −1 < c < 1, a > 0

implies the delay-independent stability of system (iv), the stable surface is given in
Figure 4.

5 0 −5
b

0
1

2
3

4
5

a

−1.0

−0.6

−0.2

0.2

0.6

1.0

c

Fig. 4. Stable surface of systems ( a ac c r ).

6. CONCLUSIONS

In this paper, the delay-dependent robust stability of linear neutral systems was
considered. For a general class of uncertain neutral systems, sufficient conditions
were obtained, checkable in the LMI framework. The analysis has been performed
in terms of an appropriate Lyapunov–Krasovskii functional. This work which is the
continuation of [30], avoids the additional dynamics introduced in the transformation
model of [30]. The proposed stability analysis extends some previous studies on the
subject. Along the same lines, an interesting topic for further studies is the delay
dependent robust stabilization of neutral systems.
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840 S.A. RODRÍGUEZ, L. DUGARD, J.-M. DION AND J. DE LEÓN
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