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In this paper, two robust consensus problems are considered for a multi-agent system
with various disturbances. To achieve the robust consensus, two distributed control schemes
for each agent, described by a second-order differential equation, are proposed. With
the help of graph theory, the robust consensus stability of the multi-agent system with
communication delays is obtained for both fixed and switching interconnection topologies.
The results show the leaderless consensus can be achieved with some disturbances or time
delays.
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1. INTRODUCTION

In multi-agent consensus applications, group of agents need to agree upon certain
quantities of interest that depends on the state of all the agents [14], which is a kind
of interesting collective phenomena in physics, nature and society [5]. In control
community, many consensus protocols had been investigated in multi-agent systems
with discrete-time or continuous-time dynamics [8, 10, 15, 17, 18, 21], which is
a simplified Vicsek model [20]. Further, some researchers considered multi-agent
consensus problems with directed and time-varying interconnection topologies [13,
17]. Recently, more researchers are interested in studying the robust consensus
problems, where the information flows are subject to uncertainties such as bounded
disturbances, noises and interconnection delays in multi-agent systems [6, 8, 15, 16,
19].

The consensus problems for multi-agent systems will become more complicated
when some kinds of perturbations are exerted on the interconnections among the
autonomous mobile agents. In [6], the authors proposed a distributed estimation
protocol to achieve consensus for a leader-follower multi-agent system with bounded
perturbations. In [19], consensus problems are considered for a group of agents with
first-order dynamics and white noises. Time delays resulting from interconnection
links have also been paid much attention to multi-agent systems because of the
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practical background (referring to [2, 11]). For example, a synchronous stability
criterion was derived for a network, in which each oscillator receives delayed signals
from selected other oscillators in [2]. In [15], a necessary and sufficient condition
for a time-delay consensus problem was presented for the agents with first-order
dynamics and undirected interconnection graph. Xiao et al. analyzed the consensus
stability for discrete-time multi-agent systems with directed information flow in [21].
A consensus problem was resolved in leader-following coordination for a group of mo-
bile agents in [8, 16]. These results suggest potential applications in areas including
synchronization, flocking, distributed decision making and formation control.

The objective of this paper is to propose two robust consensus schemes for leader-
less multi-agent systems with disturbances. In order to solve the consensus problem,
local controller for each agent is neighbor-based as did in many references related to
agent-based control systems. Different from some existing results about multi-agent
systems with disturbances, the considered dynamics of each agent is second-order
with directed interconnection graph, bounded disturbances and time-varying inter-
connection time delays. The convergence analysis of directed graphs (or digraph
for short) is more challenging than that of undirected graphs due to the complex-
ity of directed graphs. The analysis becomes even harder when disturbances and
time delays are involved. For robust consensus for multi-agent systems modeled by
delayed differential equations with disturbances, an effective way to deal with their
convergence and stability problems is to use Lyapunov-based method, which was
initiated by [4].

The paper is organized as follows. In Section 2, some preliminary knowledge
related to graph theory and functional differential equations are presented, and then
two robust consensus problems for multi-agent systems are formulated along with
corresponding neighbor-based controllers in Section 3. With the proposed local
control schemes, the consensus stability for each scheme is analyzed with both fixed
and switched interconnection topologies, in Section 4 and Section 5, respectively. In
the analysis, Lyapunov–Razumikhin functions are employed with help of the analysis
of matrix inequalities. Finally, some concluding remarks are given in Section 6.

By convention, R (or C) and Z+ represent the real (or complex) number set and
the positive integer set, respectively; In is an n×n identity matrix; 0n×m is a n×m
zero matrix; 1n = (1, . . . , 1)T ∈ Rn (1 for short, when there is no confusion); xT

denotes is the transpose of vector x; H∗ denotes the conjugate transpose of matrix
H; || · || denotes Euclidean norm; col(·) denotes the concatenation; let K = {a ∈
C(R̄+, R̄+) : a(s) is strictly increasing and a(0) = 0}, where R̄+ = R+ ∪ {0}.

2. PRELIMINARIES

In this section, we first introduce some basic concepts and notations in graph theory
that will be used [1, 3].

Let G = (V, E , A) be a weighted digraph of order n with the set of nodes V =
{1, 2, . . . , n}, set of arcs E ⊆ V × V , and a weighted adjacency matrix A = [aij ] ∈
Rn×n with nonnegative elements. The node indexes belong to a finite index set
I = {1, 2, . . . , n}. An arc of G is denoted by (i, j), which starts from i and ends
on j. The element aij associated with the arc of the digraph is positive, i. e. aij >
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0 ⇔ (i, j) ∈ E . Moreover, we assume aii = 0 for all i ∈ I. The set of neighbors
of node i is denoted by Ni = {j ∈ V : (i, j) ∈ E}. A cluster is any subset J ⊂ V
of the nodes of the digraph. The set of neighbors of a cluster J is defined by
NJ =

∪
i∈J Ni = {j ∈ V : i ∈ J , (i, j) ∈ E}. A path in a digraph is a sequence

i0, i1, . . . , if of distinct nodes such that (ij−1, ij) is an arc for j = 1, 2, . . . , f, f ∈ Z+.
If there exists a path from node i to node j, we say that j is reachable from i. If a
node i is reachable from every other node in G, then we say it is globally reachable.
A digraph G is strongly connected if any two distinct nodes are reachable from each
other. A strong component of a digraph is an induced subgraph that is maximal,
subject to being strongly connected. If

∑
j∈Ni

aij =
∑

j∈Ni
aji for all i = 1, . . . , n,

the digraph G is called balanced.
The interconnection topology between n agents can be conveniently described by a

digraph G = (V, E , A), which is defined so that (i, j) defines one of the digraph’s arcs
in case agent j is a neighbor of agent i . A diagonal matrix D = diag{d1, . . . , dn} ∈
Rn×n is a degree matrix of G, whose diagonal elements di =

∑
j∈Ni

aij for i =
1, . . . , n. Then the Laplacian of the weighted digraph is defined as

L = D − A.

The next lemma shows an important property of Laplacian L associated with G
([8, 15]).

Lemma 2.1. L has least one zero eigenvalue with 1 ∈ Rn as its eigenvector, and
all the nonzero eigenvalues of L have positive real parts. Laplacian L has a simple
zero eigenvalue if and only if G has a globally reachable node.

Let S1, S2, . . . , Sp be the strong components of G = (V, E , A) and NSi be the
neighbor sets for Si, i = 1, . . . , p, p > 1. The following lemma is a revised version of
a result reported in ([13]).

Lemma 2.2. A digraph G = (V, E , A) has a globally reachable node if and only
if every pair of Si, Sj satisfies NSi

∪
NSj 6= ∅. Moreover, if the graph is strongly

connected, then each node is globally reachable from every other node.

Next, we introduce the stability of time-delay systems. Consider the following
system with time delays [4]:{

ẋ = f(t, xt), t > t0,

x(θ) = ϕ(θ), θ ∈ [−τ, t0],
(1)

where xt(θ) = x(t + θ), ∀θ ∈ [−τ, t0] and f(t, 0) = 0. In the sequel, suppose that
t0 = 0. Let C([−τ, 0], Rn) be a Banach space of continuous function defined on
an interval [−τ, 0], taking values in Rn with the topology of uniform convergence,
and with a norm ||ϕ||c = maxθ∈[−τ,0] ||ϕ(θ)||. Assume that for any initial function
ϕ ∈ C([−τ, 0], Rn), there exists a unique solution x(t, t0, ϕ) of (1).
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Definition 2.3. (Hale and Lunel [4]) Let x(t) = x(t, t0, ϕ) be any solution of
system (1), system (1) is said to be

(i) uniformly bounded, if for any α > 0 , there exists β = β(α) > 0 such that for
any t0 ∈ R, ||ϕ||c < α implies ‖x(t)‖ < β for all t ≥ t0;

(ii) uniformly ultimately bounded, if there exists a positive constant b, for any
α > 0 there exists a T = T (α) > 0 such that for any t0 ∈ R, ||ϕ||c < α implies
‖x(t)‖ < b for all t ≥ t0 + T .

The following lemma is given for the boundedness of system (1).

Lemma 2.4. (Hale and Lunel [4]) Assume that there exist a continuous function
V (t, x) and u, v, w ∈ K satisfying that

(i) u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), where lim
s→+∞

u(s) = +∞;

(ii) ∃ h > 0, l > 0 and p ∈ C(R̄+, R̄+), p(s) > s, s > 0 such that

V̇ (t, x) ≤ −w(‖x‖) + l,

whenever ‖x(t)‖ > h and V (t + θ, x(t + θ)) < p(V (t, x(t))), θ ∈ [−r, 0].

Then system (1) is uniformly bounded (UB) and also uniformly ultimately bounded
(UUB).

Usually, V (t, x) in Lemma 2.4 is called a Lyapunov–Razumikhin function.
In the stability of time-delay systems, the following result plays an important

role [12].

Lemma 2.5. Assume that η1(·) ∈ Cn1 , η2(·) ∈ Cn2 and M(·) ∈ Cn1×n2 are defined
on an interval Ω. Then for any matrices X ∈ Cn1×n1 , Y ∈ Cn1×n2 and Z ∈ Cn2×n2 ,
the following inequality holds:

−2
∫

Ω

η∗
1(s)Mη2(s) ds ≤

∫
Ω

(
η1

η2

)∗ (
X Y − M

Y ∗ − M∗ Z

)(
η1

η2

)
ds, (2)

where (
X Y
Y ∗ Z

)
≥ 0. (3)
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3. PROBLEM FORMULATION

In this paper, we consider a group of n identical agents move in an m-dimensional
space and the agents are indexed by 1, . . . , n. A continuous-time model of the n
agents is described as follows: {

ẋi = vi,
v̇i = ui + δi,

(4)

where xi ∈ Rm can be the position (or angle) of agent i, vi ∈ Rm its velocity (or
angular velocity) and ui ∈ Rm its interconnection control inputs for i = 1, . . . , n.
In addition, the feedback for the ith agent involves a perturbation δi(t) which is a
periodic bounded function such that

‖δi(t)‖ ≤ δ̂,

∥∥∥∥∫ t

0

δi(s) ds

∥∥∥∥ ≤ %1,

∥∥∥∥∫ t

0

∫ s

0

δi(ω) dωds

∥∥∥∥ ≤ %2,

where %1, %2 are some positive numbers. Without loss of generality, it is assumed
further that δi(0) = 0.

The design of neighbor-based feedback ui(t) usually depends on xj(t), vj(t) for
some j ∈ Ni. However, in practice, there may be interconnection delays and per-
turbations, and each agent cannot instantly get the accurate information from oth-
ers. Thus, the feedback ui(t) should be constructed based on the information of
xj(t − r(t)) and vj(t − r(t)) for some j ∈ Ni and time-varying delay r(t) > 0, a
continuously differentiable function satisfying:

0 < r(t) < τ. (5)

Remark 3.1. The assumptions on the perturbations δi(t) (i = 1, . . . , n) can be
understood spontaneously since any function satisfying Dirichlet’s condition can be
expanded into a Fourier series.

Remark 3.2. When the perturbations δi(t) (i = 1, . . . , n) are white noises, we have
to employ differential generator method in [9] to analyze the stochastic stability of
system (4).

In this paper, two robust consensus problems, namely, free robust consensus and
robust consensus with desired velocity, will be worked on for system (4).

• A free robust consensus problem of system (4) is solved if

‖xi − xj‖ ≤ σ1, ‖vi − vj‖ ≤ σ2

for all i, j ∈ I and some nonnegative constants σ1, σ2. To deal with this con-
sensus problem for system (4), we propose the following local control scheme

ui(t) =k2
[ ∑

j∈Ni(σ)

aij(xj(t − r) − xi(t − r))

+ k
∑

j∈Ni(σ)

aij(vj(t − r) − vi(t − r))
]
, k > 0.

(6)
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• A robust consensus problem with desired velocity v0 is solved if

‖xi − xj‖ ≤ σ3, ‖vi − v0‖ ≤ σ4

for all i, j ∈ I and some nonnegative constants σ3, σ4. To handle this problem
for system (4), we propose the following local control scheme:

ui(t) =
∑

j∈Ni(σ)

aij(xj(t − r) − xi(t − r)) + k(v0 − vi(t)), k > 0. (7)

The interconnection topologies will be discussed in two cases. A fixed topology,
described by a digraph, is considered at first, and variable topologies described by
balanced digraphs are analyzed. To study varying interconnection topology, we
introduce a function σ : [0,∞) → IΓ = {1, . . . , N} (N denotes the total number
of all possible digraphs), which is a switching signal to show the sequence of the
switched interconnection topologies over time. The set Γ = {G1, . . . ,GN} is a finite
collection of graphs with a common node set V. If σ is a constant function, then the
corresponding interconnection topology is fixed. In addition, Ni(σ) is the index set
of neighbors of agent i in the digraph Gσ while aij (i, j = 1, . . . , n) are elements of
the adjacency matrix of Gσ.

Denote x, v, u and δ as the concatenations of xi, vi, ui and δi for i = 1, . . . , n,
respectively. Then, with the two control schemes (6) and (7), the closed-loop system
(4) can be rewritten in the following respective forms:{

ẋ = v,

v̇ = u + δ = −k2(Lσ ⊗ Im)(x(t − r) + kv(t − r)) + δ,
(8)

and, {
ẋ = v,

v̇ = u + δ = −(Lσ ⊗ Im)x(t − r) − k(v − 1 ⊗ v0) + δ,
(9)

where ⊗ denotes Kronecker product [7].
The stability analysis of multi-agent systems with time delays under controller

(6) or (7), that is, (8) and (9), will be studied in the following sections.

4. FIXED INTERCONNECTION TOPOLOGY

In this section, we will focus on the convergence analysis of the system (8) or (9)
when the switching signal is constant (or equivalently, the interconnection topology
is fixed). Then the subscript σ is dropped for simplicity and the system (8) or (9)
can be expressed with the following linear delayed differential equations:{

ẋ = v,

v̇ = −k2(L ⊗ Im)(x(t − r) + kv(t − r)) + δ,
(10)
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or, {
ẋ = v,

v̇ = −(L ⊗ Im)x(t − r) − k(v − v01) + δ.
(11)

We will focus on the two consensus problems with fixed topologies, correspond-
ing to the two time-delay systems (10) and (11), in the following two respective
subsections.

4.1. Free robust consensus problem

To solve the free consensus problem of the system (10), we first give a lemma. Its
proof is quite obvious and omitted here.

Lemma 4.1. For Laplacian L associated with digraph G, then there exists a non-
singular matrix

U =


1 ∗ . . . ∗
1 ∗ . . . ∗
...

...
...

1 ∗ . . . ∗

 ∈ Rn×n (12)

such that

U−1LU =
(

0 αT

0n−1 H

)
= Λ ∈ Rn×n, α ∈ Rn−1, H ∈ R(n−1)×(n−1). (13)

According to Lemma 4.1, with a coordinate transformation

x̄ = (U−1 ⊗ Im)x, v̄ = (U−1 ⊗ Im)v, δ̄ = (U−1 ⊗ Im)δ, (14)

system (10) becomes{
˙̄x = v̄,

˙̄v = −k3(Λ ⊗ Im)v̄(t − r) − k2(Λ ⊗ Im)x̄(t − r) + δ̄,

or equivalently,{
˙̄x1 = v̄1,

˙̄v1 = −k3(αT ⊗ Im)v̄2(t − r) − k2(αT ⊗ Im)x̄2(t − r) + δ̄1,
(15)

and {
˙̄x2 = v̄2,

˙̄v2 = −k3(H ⊗ Im)v̄2(t − r) − k2(H ⊗ Im)x̄2(t − r) + δ̄2,
(16)

where

x̄ =
(

x̄1

x̄2

)
, v̄ =

(
v̄1

v̄2

)
, δ̄ =

(
δ̄1

δ̄2

)
x̄1, v̄1, δ̄1 ∈ Rm, x̄2, v̄2, δ̄2 ∈ Rm(n−1).
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Remark 4.2. From Lemmas 2.1 and 4.1, if graph G has a globally reachable
node, the real parts of all the eigenvalues of H ∈ R(n−1)×(n−1) are positive, or
equivalently, −H is Hurwitz stable. Therefore, there exist a positive definite matrix
P̄ ∈ R(n−1)×(n−1) such that

P̄H + HT P̄ = In−1. (17)

Let λ̄ (or λ) denote the minimum (or maximum) eigenvalue of P̄ and µ the
maximum eigenvalue of HT P̄ P̄H. Then a result can be obtained for system (10).

Theorem 4.3. For system (10), take

k > k?
1 = max

{√
1
2
λ + 1,

µ

λ̄
+ 1

}
. (18)

If G has a globally reachable node and τ is sufficiently small, the free robust consensus
problem of the system (10) is solved.

P r o o f . Since G has a globally reachable node, zero is a simple eigenvalue of
Laplacian L while other eigenvalues have positive real parts (from Lemma 2.1). By
Lemma 4.1, there exists a nonsingular matrix U given in (12) such that L can be
transformed to (13), where H has eigenvalues with positive real parts. Then there
is a positive definite matrix P̄ satisfying (17).

For the subsystem (16), let ε = col(x̄2, v̄2) ∈ R2m(n−1), δ̃2 = col(0, δ̄2). Then we
have a compact form:

ε̇ = B ε(t) + Eε(t − r) + δ̃2, (19)

where

B =
(

0(n−1)×(n−1) In−1

0(n−1)×(n−1) 0(n−1)×(n−1)

)
⊗Im, E =

(
0(n−1)×(n−1) 0(n−1)×(n−1)

−k2H −k3H

)
⊗Im.

Take a Lyapunov–Razumikhin function

V (ε) = εT Pε, (20)

where

P =
(

kP̄ P̄
P̄ kP̄

)
⊗ Im

is positive definite since k > 1.
Furthermore, by Leibniz–Newton formula,

ε(t − r) = ε(t) −
∫ 0

−r

ε̇(t + s) ds

= ε(t) − B

∫ 0

−r

ε(t + s) ds − E

∫ 0

−r

ε(t − r + s) ds −
∫ 0

−r

δ̃2(t + s) ds.
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Therefore, (19) can be rewritten as

ε̇ = Fε − EB

∫ 0

−r

ε(t + s) ds − E2

∫ 0

−r

ε(t − r + s) ds (21)

− E

∫ 0

−r

δ̃2(t + s) d, F = B + E,

for arbitrary initial function on [−2τ, 0]. If the zero solution of (21) is UUB, then
the zero solution of (19) is UUB since (19) is a special case of (21) with continuous
initial function ϕ̃(s) given by ϕ̃(s) arbitrary for s ∈ [−2τ,−τ − r(0)], ϕ̃(s) = ϕ(s +
r(0)),−τ − r(0) ≤ s ≤ −r(0), and ϕ̃(s) = ε(t + s),−r(0) ≤ s ≤ 0 where ε(t) is the
solution of (19) with initial function ϕ on [−τ, 0].

Set η1 = ε(t), η2 = ε(t+s), η3 = E2T
Pε(t−r+s), η4 = ε(t−r+s), M1 = PEB =

Y1,M2 = I2m(n−1) = Y2, X1 = k4(1 + k2)I2m(n−1), X2 = P−1 and Z1 = Z2 = P.
Invoking Lemma 2.5 gives (3) with k given in (18), and leads to

V̇ =εT (FT P + PF )ε − 2
∫ 0

−r

εT PEBε(t + s) ds − 2
∫ 0

−r

εT PE2ε(t − r + s) ds

− 2
∫ 0

−r

εT PEδ̃2(t + s) ds

≤εT (FT P + PF )ε + rk4(1 + k2)εT ε +
∫ 0

−r

εT (t + s)Pε(t + s) ds

+ rεT PE2P−1E2T
Pε +

∫ 0

−r

εT (t − r + s)Pε(t − r + s) ds

+ rεT PEET Pε + τ δ̌2,

where δ̌ = ‖U‖δ̂.
Take φ(s) = qs for some constant q > 1. In the case of

V (ε(t + θ)) < qV (ε(t)), −2τ ≤ θ ≤ 0, (22)

we have, with Remark 4.2,

V̇ ≤ −εT Qε + rεT ((k4 + k6)I2m(n−1) + PE2P−1E2T
P + PEET P + 2qP )ε + τ δ̌2,

where

Q = −(FT P + PF ) =
(

k2In−1 k3In−1 − kP̄
k3In−1 − kP̄ k4In−1 − 2P̄

)
⊗ Im.

Q is positive definite if k satisfies (18), according to Schur complements theorem
([7]). Let λmin denote the minimum eigenvalues of Q. If we take

r < τ =
λmin

k4 + k6 + ‖PE2P−1E2T P‖ + ‖PEET P‖ + 2q(k + 1)λ
,
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then V̇ (ε) ≤ −ηεT ε + τ δ̌2 for some η > 0. By Lemma 2.4, we conclude that

‖ε‖ ≤

√
(k?

1 + 1)τλ

(k?
1 − 1)ηλ̄

δ̌.

On the other hand, for the system (15), let x̄1(0), v̄1(0) be the initial values of
x̄1(t), v̄1(t) and take a variable of change x̃1 = x̄1−(v̄1(0)t+x̄1(0))−

∫ t

0

∫ s

0
δ̄1(ω) dωds, ṽ1 =

v̄1 − v̄1(0) −
∫ t

0
δ̄1(s) ds. Then according to Lemma 5.3 of [4], it is not difficult to

have
‖x̄1 − (v̄1(0)t + x̄1(0))‖ ≤ κU%1, ‖v̄1 − v̄1(0)‖ ≤ κU%2,

where κU is a positive constant depending on the matrix U . From transformation
(14), we have∥∥∥∥x − (U ⊗ Im)

(
v̄1(0)t + x̄1(0)

0m(n−1)

)∥∥∥∥ = ‖x − 1 ⊗ (v̄1(0)t + x̄1(0))‖

≤ ‖U‖min

{√
(k?

1 + 1)τλ

(k?
1 − 1)ηλ̄

δ̌, κU%1

}
,

∥∥∥∥v − (U ⊗ Im)
(

v̄1(0)
0m(n−1)

)∥∥∥∥ = ‖v − 1 ⊗ v̄1(0)‖ ≤ ‖U‖min

{√
(k?

1 + 1)τλ

(k?
1 − 1)ηλ̄

δ̌, κU%2

}
.

Therefore, the free robust consensus can be achieved. The conclusion follows. ¤

Further, by using contradiction method, it can be shown that the condition that
G has a globally reachable node is also a necessary condition to solve the free robust
consensus problem of system (10) when there is no perturbation δ, i. e., δ̂ = 0, % = 0.
Then we describe the result as follows:

Corollary 4.4. With k and τ given in Theorem 4.3, if δ̂ = 0, the free consensus
problem (i. e. σ1 = 0, σ2 = 0) can be solved if and only if G has a globally reachable
node.

4.2. Robust consensus problem with desired velocity

In this subsection, we analyze the consensus problem of the system (11) with the
controller (7).

Take
x̃ = x − 1 ⊗ v0t, ṽ = v − 1 ⊗ v0 (23)

and system (11) can be expressed in the following form:{
˙̃x = ṽ,
˙̃v = −(L ⊗ Im)x̃(t − r) − kṽ + δ.
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Select a coordinate transformation x̄ = (U−1 ⊗ Im)x̃, v̄ = (U−1 ⊗ Im)ṽ with the
matrix U given in (12), and then system (11) becomes{

˙̄x1 = v̄1,

˙̄v1 = −kv̄1 − (αT ⊗ Im)x̄2(t − r) + δ̄1,
(24)

{
˙̄x2 = v̄2,

˙̄v2 = −kv̄2 − (H ⊗ Im)x̄2(t − r) + δ̄2,
(25)

where x̄1, v̄1 ∈ Rm, x̄2, v̄2 ∈ Rm(n−1).
Then the following result for system (11) can be derived.

Theorem 4.5. For system (11), take

k > k?
2 =

µ

λ̄
+ 1, (26)

with µ and λ̄ as defined in Theorem 4.3. If G has a globally reachable node and
τ is sufficiently small, the robust consensus problem with desired velocity v0 of the
system (11) is solved.

P r o o f . The proof is similar to that of Theorem 4.3. Here, we just give a proof
outline. Note that subsystem (25) can be written as:

ε̇ = B̄ ε(t) + Ēε(t − r) + δ̃2,

where

B̄ =
(

0(n−1)×(n−1) In−1

0(n−1)×(n−1) −kIn−1

)
⊗ Im, Ē =

(
0(n−1)×(n−1) 0(n−1)×(n−1)

−H 0(n−1)×(n−1)

)
⊗ Im.

As discussed above, set F̄ = B̄ + Ē for simplicity.
To analyze the stability of the subsystem (25), a Lyapunov–Razumikhin function

can be taken as
V (ε) = εT P̂ ε, (27)

where

P̂ =
(

kP̄ P̄
P̄ P̄

)
⊗ Im

is positive definite for k > 1.

Invoking Lemma 2.5, when X = (k + 1 +
√

k2 − 2k + 5)I2m(n−1), Z = P̂ and k
satisfies (26), we can get

0 < r ≤ τ =
λ̄min

(k + 1 +
√

k2 − 2k + 5)(1 + 1
2qλ) + ‖P̂ ĒĒT P̂‖

,
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where λ̄min denotes the minimum eigenvalue of the matrix

Q̄ = −(F̄T P̂ + P̂ F̄ ) =
(

In−1 HT P̄
P̄H 2(k − 1)P̄

)
⊗ Im.

Then it can be shown that system (11) is UUB. Hence, the conclusion follows. ¤

We also have

Corollary 4.6. With k and τ given in Theorem 4.5, if δ̂ = 0, the consensus problem
with desired velocity v0 (i. e. σ3 = 0, σ4 = 0) can be solved if and only if G has a
globally reachable node.

5. SWITCHED INTERCONNECTION TOPOLOGY

In this section, we consider the convergence of time-delay systems (8) or (9) for the
switched interconnection topology. It is hard to do this for switched interconnection
topologies described by general digraphs. Here a special class of digraphs, that is,
balanced digraphs, are considered in the following stability analysis.

As we did in the preceding section, the two consensus problems, corresponding
to systems (8) and (9), are considered in the following two respective subsections.

5.1. Free robust consensus problem

At first, a lemma about Laplacian L associated with a balanced digraph G is given.

Lemma 5.1. If G is balanced, then there exists a unitary matrix

V =


1√
n

∗ . . . ∗
1√
n

∗ . . . ∗
...

...
...

1√
n

∗ . . . ∗

 ∈ Cn×n (28)

such that

V ∗LV =
(

0
H

)
= Λ ∈ Cn×n, H ∈ C(n−1)×(n−1). (29)

Moreover, if G has a globally reachable node, H + H∗ is positive definite.

P r o o f . Let V = [ζ1, ζ2, . . . , ζn] be a unitary matrix where ζi ∈ Cn (i = 1, . . . , n)
are the column vectors of V and ζ1 = 1√

n
1 = ( 1√

n
, 1√

n
, . . . , 1√

n
)T . Notice that if G
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is balanced, it implies that ζ∗1L = 0. Then we have

V ∗LV = V ∗L[ζ1, ζ2, . . . , ζn]

=


ζ∗1
ζ∗2
...

ζ∗n

 [0n, Lζ2, . . . , Lζn]

=
(

0 0T
n−2

0n−2 H

)
.

Furthermore, if G has a globally reachable node, then L+LT is positive semidef-
inite (Theorem 7, [15]). Hence, V ∗(L + LT )V is also positive semidefinite. From
Lemma 2.1, zero is a simple eigenvalue of L and, therefore, H + H∗ is positive
definite. ¤

With a coordinate transformation

x̄ = (V ∗ ⊗ Im)x, v̄ = (V ∗ ⊗ Im)v, δ̄ = (V ∗ ⊗ Im)δ, (30)

the system (8) becomes {
˙̄x1 = v̄1,

˙̄v1 = δ̄1,
(31)

{
˙̄x2 = v̄2,

˙̄v2 = −k3(Hσ ⊗ Im)v̄2(t − r) − k2(Hσ ⊗ Im)x̄2(t − r) + δ̄2,
(32)

where x̄1, v̄1, δ̄1 ∈ Cm, x̄2, v̄2, δ̄2 ∈ Cm(n−1).

Based on Lemma 5.1 and the fact that the set IΓ is finite, if the balanced digraph
Gσ has a globally reachable node,

λ̃ = min{eigenvalues of Hσ + H∗
σ} > 0

µ̃ = max{eigenvalues of HσH∗
σ} > 0

can be well defined. Then a result of the switched system (8) with time-varying
delay is given as follows.

Theorem 5.2. For system (8) with balanced interconnection topology Gσ, take

k > k?
3 = max{

√
1
2λ̃

+ 1, µ̃ + 1}. (33)

If Gσ has a globally reachable node and τ is sufficiently small, then the free robust
consensus problem of system (8) is solved.
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P r o o f . To get the result, we first consider (32), or equivalently,

ε̇ = Bε(t) + Eσε(t − r) + δ̃2, (34)

where

B =
(

0(n−1)×(n−1) In−1

0(n−1)×(n−1) 0(n−1)×(n−1)

)
⊗ Im,

Eσ =
(

0(n−1)×(n−1) 0(n−1)×(n−1)

−k2Hσ −k3Hσ

)
⊗ Im.

Take a Lyapunov–Razumikhin function

V (ε) = ε∗P̃ ε, (35)

where

P̃ =
(

kIn−1 In−1

In−1 kIn−1

)
⊗ Im

is positive definite for k > 1.
Similar to the proof of Theorem 4.3, we can obtain

V̇ |(34) = εT (FT
σ P̃ + P̃Fσ)ε − 2εT P̃EσB

∫ 0

−r

ε(t + s) ds

− 2εT P̃E2
σ

∫ 0

−r

ε(t − r + s) ds − 2εT P̃Eσ

∫ 0

−r

δ̃2(t + s) ds,

where Fσ = B + Eσ.
Set φ(s) = qs for some constant q > 1. In the case of

V (ε(t + θ)) < qV (ε(t)), −2τ ≤ θ ≤ 0, (36)

using Lemma 2.5, we have

V̇ ≤ −εT Qσε + rεT ((k4 + k6)I2m(n−1) + P̃E2
σP̃−1E2

σ
T
P̃ + P̃EσET

σ P̃ + 2qP̃ )ε + τ δ̂2,

where

Qσ = −(FT
σ Φ + ΦFσ) =

(
k2(H∗

σ + Hσ) k3(H∗
σ + Hσ) − kIn−1

k3(H∗
σ + Hσ) − kIn−1 k4(H∗

σ + Hσ) − 2In

)
⊗ Im.

Clearly, Qσ is positive definite and then V̇ (ε) is negative definite if k is taken as (33)
and

r < τ =
λmin

k4 + k6 + (k13 + k11)µ̃2 + k4(k2 + 1)2µ̃ + 2q(k + 1)
,

where λmin denotes the minimum eigenvalue of all possible Qσ. Thus, the subsystem
(32) is UUB, i. e.,

‖ε‖ ≤

√
(k?

3 + 1)τ
(k?

3 − 1)η̄
δ̂.
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On the other hand, for the system (31), Let x̃1 = x̄1−v̄1(0)t−x̄1(0)−
∫ t

0

∫ s

0
δ̄1(ω) dωds,

ṽ1 = v̄1 − v̄1(0) −
∫ t

0
δ̄1(s) ds with x̄1(0) = 1√

n

∑n
i=1 xi(0), v̄1(0) = 1√

n

∑n
i=1 vi(0).

Then with the transformation (30), we have∥∥∥∥x − (V ⊗ Im)
(

v̄1(0)t + x̄1(0)
0m(n−1)

)∥∥∥∥ =

∥∥∥∥∥x − 1 ⊗ 1
n

n∑
i=1

xi(0)

∥∥∥∥∥ (37)

≤ min

{
%1,

√
(k?

3 + 1)τ
(k?

3 − 1)η̄
δ̂

}
,

∥∥∥∥∥v − 1 ⊗ 1
n

n∑
i=1

vi(0)

∥∥∥∥∥ ≤ min

{
%2,

√
(k?

3 + 1)τ
(k?

3 − 1)η̄
δ̂

}
. (38)

In this way, the conclusion follows. ¤

Remark 5.3. In fact, if the is no perturbation δi(t) and Gσ is balanced graph, the
position xi and the velocity vi of agent i (i = 1, . . . , n) in the considered multi-agent
system converge to the average values of initial positions (i. e., 1

n

∑n
i=1 xi(0)) and

initial velocities (i. e., 1
n

∑n
i=1 vi(0)), respectively, due to (37) and (38).

Remark 5.4. Theorem 5.2 can be easily extended to the leader-following case with
time-varying delays and bounded disturbances under the frameworks in [18] and [6].

5.2. Consensus problem with desired velocity

The consensus problem with desired velocity for system (9) is considered in this
section. Applying the changes of variable (23) yields{

˙̃x = ṽ,
˙̃v = −(Lσ ⊗ Im)x̃(t − r) − kṽ + δ.

Take a coordinate transformation

x̄ = (V ∗ ⊗ Im)x̃, v̄ = (V ∗ ⊗ Im)ṽ, δ̄ = (V ∗ ⊗ Im)δ, (39)

with the matrix V given in (28) and we have the following two subsystems:{
˙̄x1 = v̄1,

˙̄v1 = −kv̄1 + δ̄1,
(40)

{
˙̄x2 = v̄2,

˙̄v2 = −kv̄2 − (Hσ ⊗ Im)x̄2(t − r) + δ̄2,
(41)

where x̄1, v̄1 ∈ Cm, x̄2, v̄2 ∈ Cm(n−1).
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Employing the same technique in the proof of Theorem 5.2, choose a Lyapunov–
Razumikhin function

V (ε) = ε∗P̌ ε, (42)

where

P̌ =
(

kIn−1 In−1

In−1 In−1

)
⊗ Im

is positive definite for k > 1. Then a main result for system (9) with the switched
balanced topology can be obtained as followed:

Theorem 5.5. For system (9) with balanced interconnection topology Gσ, take

k > k?
4 = max

{
µ̃

2λ̃
+ 1, µ̃ + 1

}
, (43)

with µ̃ and λ̃ as defined in Theorem 5.2. If Gσ has a globally reachable node and τ
is sufficiently small, then the robust consensus problem with desired velocity of the
system (9) is solved.

6. CONCLUSIONS

The paper addressed two robust consensus problems of a group of multiple mobile
agents, with two respective neighbor-based rules. The robust consensus stability was
guaranteed with both fixed and switched interconnection topologies of the considered
multi-agent system. The dynamics of each agent was second-order with time-varying
delays and bounded disturbances and Lyapunov–Razumikhin function (rather than
the stochastic matrix related to graph theory) was employed in the stability analysis.

(Received December 2, 2008.)
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