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A STOPPING RULE FOR DISCOUNTED MARKOV
DECISION PROCESSES WITH FINITE ACTION SETS
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In a Discounted Markov Decision Process (DMDP) with finite action sets the Value
Iteration Algorithm, under suitable conditions, leads to an optimal policy in a finite num-
ber of steps. Determining an upper bound on the necessary number of steps till gaining
convergence is an issue of great theoretical and practical interest as it would provide a
computationally feasible stopping rule for value iteration as an algorithm for finding an
optimal policy. In this paper we find such a bound depending only on structural properties
of the Markov Decision Process, under mild standard conditions and an additional “indi-
viduality” condition, which is of interest in its own. It should be mentioned that other
authors find such kind of constants using non-structural information, i. e., information not
immediately apparent from the Decision Process itself. The DMDP is required to fulfill
an ergodicity condition and the corresponding ergodicity index plays a critical role in the
upper bound.
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1. INTRODUCTION

In recent research it has been possible to establish that, under suitable conditions (in
particular, uniqueness of the optimal policy), the value iteration procedure produces
a sequence of policies that converges to the optimal policy uniformly over compact
sets (see [1] for the uniform on compact sets convergence of the value iteration
policies to the optimal policy, and [3] for the detection of a value iteration policy
which is a uniform on compact sets ε-approximation to the optimal policy). This
poses the problem of the rate of convergence, and an interesting twist to this problem
is observed when in some applications (not at all uncommon) the action sets are
finite (due to design decisions or to discretization procedures): in such a context
convergence could be observed in a finite number of steps, and Value Iteration would
then become a candidate for an algorithm that computes the optimal policy. In
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this case, the issue of when stopping the algorithm becomes relevant. Even if a
stopping condition is available (in this case, the optimality equation, for instance),
it is important to have upper bounds on how long it will take for the procedure to
find the solution. Studying an “Individuality” Condition (IC ) on the actions −to
be precisely described later – in a sense enforces that different actions are “really”
different from each other. So it is possible, not only to observe the convergence to
the optimal policy, but to find the desired lower and upper bounds on the number
of iterations under an Ergodicity Condition (in particular, there will be assumed the
existence of an ergodicity index λ). Let us stress that if the ergodicity index λ is
known, such a bound is determined directly by the structure of the Markov Decision
Process (MDP), in particular, it is not necessary to express it depending on other
constants indirectly determined by the MDP, as in some cases.

There are two bonuses in this context worth mentioning. Firstly, there exists an
interesting relationship between the “individuality” condition and the uniqueness
of optimal policies, which vouches for its appropriateness. Secondly, the knowledge
of both lower and upper bounds on the number of steps till gaining convergence
allows us to determine if myopic optimal policies (i. e. optimal policies which also
are minimizers of the first step of the value iteration algorithm) are absent from
particular decision processes. This is of interest, as many classical examples do
admit myopic optimal policies.

As both the lower and the upper bounds are determining by the roots of some
polynomials whose degrees depend on the structure of the Decision Process, it is
apparent that these degrees somehow reflect the complexity of the optimal policy.

Now, the structure of the paper will be outlined. In Section 2 the Discounted
Markov Decision Processes are defined. In Section 3 the conditions used in the paper
are stated, devoting a little time to the “individuality” condition, commenting on
its nice relationship with respect to the uniqueness of optimal policies. In Section 4
all the necessary technical lemmas are established. In Section 5 the stopping rule is
found through the main theorem, that is stated and proved, providing the lower and
upper bounds on number of steps necessary to convergence through Value Iteration
in terms of the ergodicity index λ and structural information (i. e. information
readily available from the Decision Process). In Section 6 some illustrative examples
are presented, where the bounds are used as a tool to determine if a model admits
myopic policies, or such policies are to be ruled out. In the last Section several open
problems in this area are outlined.

2. DISCOUNTED MARKOV DECISION PROCESSES

In this paper a quite standard Markov Decision Process setting will be used, and
referred to as the Decision Model henceforth:

Decision Model. Let (X,A, {A(x) : x ∈ X}, Q, c) be the usual discrete-time
Markov decision model (see [4] and [6]), where the state space X is a Borel space,
and the control space A is a finite set. For each x ∈ X, A(x) ⊂ A is the subset of
admissible actions at a state x, the set K = {(x, a) : x ∈ X, a ∈ A(x)} is assumed
to be a Borel subset of X × A. Consider the transition probability law Q(B|x, a),
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where B ∈ B(X) (B(X) denotes the Borel σ-algebra of X) and (x, a) ∈ K is a
stochastic kernel on X, given K (i. e. Q(·|x, a) is a probability measure on X for
every (x, a) ∈ K, and Q(B|·) is a measurable function on K for every B ∈ B(X)).
Finally, the cost per stage c is a nonnegative, upper bounded (by a bound denoted
by M), and measurable function on K.

Policies. A control policy π is a (measurable, possibly randomized) rule for choos-
ing actions, and at each time t (t = 0, 1, . . .) the control prescribed by π may depend
on the current state as well as on the history of the previous states and actions. The
set of all policies will be denoted by Π. Given the initial state x ∈ X, any policy π
defines the unique probability distribution of the state-action process (xt, at) , for
details see [4] and [6]. This distribution will be denoted by Pπ

x , while Eπ
x stands

for the corresponding expectation operator, and the stochastic process {xt} will be
called Markov decision process (MDP). F denotes the set of measurable functions
f : X → A such that f(x) ∈ A(x) for all x ∈ X. A policy π is stationary if there
exists f ∈ F such that, under π, the action f(xt) is applied at each time t. The class
of stationary policies is naturally considered as F.

Optimality Criterion. Given π ∈ Π and initial state x0 = x ∈ X, let

V (π, x) = Eπ
x

( ∞∑
t=0

αtc(xt, at)

)
(1)

be the total expected discounted cost. The number α ∈ (0, 1) is called the discount
factor.

A policy π∗ is said to be optimal if V (π∗, x) = V ∗(x) for all x ∈ X, where

V ∗(x) = inf
π

V (π, x), (2)

x ∈ X. V ∗ defined in (2) is called the optimal value function.
An MDP with the total expected discounted cost as the optimality criterion will

be referred to as a discounted MDP.

3. ASSUMPTIONS AND CONDITIONS

In this section the conditions on the Decision Model are listed and discussed.
Let Φ(X) be the (Banach) space of the bounded measurable function endowed

with the supremum norm ‖u‖ = supx∈X |u(x)|. For every u ∈ Φ(X), Tu is the
function on X defined as

Tu(x) = min
a∈A(x)

[
c(x, a) + α

∫
u(y) Q(dy|x, a)

]
, x ∈ X. (3)

Remark 3.1. As c is bounded, it is well-known that T, defined in (3), is a con-
traction, i. e.

‖Tu − Tu′‖ ≤ α‖u − u′‖, (4)
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for all u, u′ ∈ Φ(X) (see Note 4 p. 52 in [5]).
Hence, by Banach’s Fixed-Point Theorem, V ∗ is a fixed point of T, i. e. V ∗

satisfies the Optimality Equation (OE):

V ∗ (x) = min
a∈A(x)

[
c (x, a) + α

∫
V ∗ (y) Q (dy|x, a)

]
, (5)

for all x ∈ X.
Also, this Theorem allows to obtain that the Value Iteration Algorithm is valid.

That is the value iteration functions defined as

vn (x) = min
a∈A(x)

[
c (x, a) + α

∫
vn−1 (y) Q (dy|x, a)

]
, (6)

x ∈ X and n = 1, 2, . . . , with v0 = 0, are well-defined, and for each x ∈ X,
vn(x) → V ∗(x).

The Basic Assumptions are fulfilled on a wide variety of cases, see [4, 5, 6] and
[8] and deserve no further comment.

Basic Assumptions (BA).

(a) There is f∗ ∈ F such that

V ∗ (x) = c (x, f∗ (x)) + α

∫
V ∗ (y) Q (dy|x, f∗ (x)) , (7)

x ∈ X, and f∗ is optimal.

(b) For each n = 1, 2, . . . , there exists fn ∈ F such that, for each x ∈ X,

vn (x) = c (x, fn (x)) + α

∫
vn−1 (y) Q (dy|x, fn (x)) . (8)

Ergodicity Condition (EC). There exists a number λ ∈ (0, 1) such that

sup
k,k′

‖Q(·|k) − Q(·|k′)‖v ≤ 2λ, (9)

where the sup is over all k, k′ ∈ K, ‖ · ‖v denotes the variation norm for signed
measures, and λ will be call in this paper the ergodicity index.

This Ergodicity Condition has been discussed extensively in [4] pp. 56–60. There
the reader can find three alternative necessary conditions for EC, much easier to
verify. For instance, the fact that there exists a state x∗ which for any state and
action has a probability greater than a positive constant is very useful in this paper,
since it implies EC. It may be asked if this condition is relevant in the discounted
case. As a matter of fact, it is: see [7], Section 6.8 where it is used to find an
upper bound to a difference of integrals in terms of the span of a bounded function
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and the ergodicity index. By the way, inequality (6.8.4) and the fact that it uses
non-structural information on the MDP partially inspired the present paper.

Before stating the next condition, some notation will be provided: for each x ∈ X
and a∗ ∈ A(x), let

Kx(a∗) = min
a∈A(x)−{a∗}

|c(x, a) − c(x, a∗)| − αλM

1 − α
, (10)

where λ is given in (9), and let

K∗
x = min

a∗∈A(x)
Kx(a∗)

= min
a∗∈A(x)

{
min

a∈A(x)−{a∗}
|c(x, a) − c(x, a∗)|

}
− αλM

1 − α

= Dx − αλM

1 − α
, (11)

where Dx := mina∗∈A(x)

{
mina∈A(x)−{a∗}|c(x, a) − c(x, a∗)|

}
.

Individuality Condition (IC). For each x ∈ X, K∗
x > 0.

An ancestor of the Individuality Condition is discussed in [9], p. 63 (inside the
proof of Lemma 3.7 when defining δ). Intuitively, this condition means that, given a
state x, different actions have different costs to at least a minimum uniform degree.
Lately it will be seen how naturally this condition is in relation to the uniqueness of
the optimal policy(see [2] for some conditions which imply the uniqueness of optimal
policies in Discounted MDPs).

Remark 3.2. Without further mention, throughout the rest of the paper MDPs
which satisfy the definitions given in Section 2 and the Assumptions and Conditions
given in Section 3 will be taken into account. In particular, these Assumptions and
Conditions will not be mentioned in each Lemma, Theorem, or Example, but are
supposed to hold.

4. PRELIMINARY LEMMAS

Before stating and proving the main result, some Lemmas will be dealt with.

Lemma 4.1.

‖V ∗ − vn‖ = sup
x∈X

|V ∗(x) − vn(x)| ≤ αnM

1 − α
, (12)

for all n ≥ 1.

P r o o f . Inequality (12) is a direct consequence of the fact that T, defined in (3),
is a contraction (see Remark 3.1). ¤
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Let
G(x, a) := c(x, a) + α

∫
V ∗(y) Q(dy|x, a), (13)

(x, a) ∈ K (observe that G(x, f∗(x)) = V ∗(x), x ∈ X).

Lemma 4.2. For each x ∈ X and n = 1, 2, . . . ,

|G(x, fn(x)) − G(x, f∗(x))| ≤ 2Mαn

1 − α
. (14)

P r o o f . Let x ∈ X and n ≥ 1 be fixed.
Then, using (8) and Lemma 4.1, it follows that

|G(x, fn(x)) − G(x, f∗(x))| = |G(x, fn(x)) − V ∗(x)|

= |c(x, fn(x)) + α

∫
V ∗(y) Q(dy|x, fn(x))

+vn(x) − vn(x) − V ∗(x)|

≤ |α
∫

(V ∗(y) − vn−1(y))Q(dy|x, fn(x))

+(vn(x) − V ∗(x))|

≤ α

∫
|V ∗(y) − vn−1(y)|Q(dy|x, fn(x))

+|vn(x) − V ∗(x)|

≤ Mααn−1

1 − α
+

Mαn

1 − α

=
2Mαn

1 − α
.

This finalizes the proof of Lemma 4.2. ¤

The span of a function Ψ ∈ Φ(X) is defined by

sp(Ψ) := sup
x∈X

Ψ(x) − inf
x∈X

Ψ(x). (15)

The following lemma is crucial to the main argument of the paper and provides
a tool to integral comparison through the ergodicity index.

Lemma 4.3. For any (x, a) and (x′, a′) in K and any Ψ ∈ Φ(X),∫
Ψ(y)Q(dy|x, a) −

∫
Ψ(y) Q(dy|x′, a′) ≤ λ sp(Ψ). (16)

P r o o f . The proof of this lemma is a part of the proof of Lemma 3.5, p. 59 in
[4].

¤
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For each x ∈ X and a∗ ∈ A(x), let Hx,a∗ : A(x) − {a∗} → R, given by

Hx,a∗(a) = |G(x, a) − G(x, a∗)|, (17)

a ∈ A(x) − {a∗}.

Lemma 4.4. For each x ∈ X,

min
a∗∈A(x)

{
min

a∈A(x)−{a∗}
Hx,a∗(a)

}
≥ K∗

x. (18)

P r o o f . In the proof, the basic inequalities (19), (20), and (21) will be used:

|z − w| ≥ |z| − |w|, (19)

for all z, w ∈ R,

−sp(V ∗) ≥ −M

1 − α
, (20)

and ∣∣∣∣∫ V ∗(y)Q(dy|x, a) −
∫

V ∗(y)Q(dy|x′, a′)
∣∣∣∣ ≤ λ sp(V ∗), (21)

(x, a), (x′, a′) ∈ K. (Observe that (21) is a direct consequence of Lemma 4.3 with
Ψ = V ∗.)

Let x ∈ X and a∗ ∈ A(x). Take a ∈ A(x) − {a∗}. Then, from (19), (20) and (21)
it follows that

Hx,a∗(a) = |G(x, a) − G(x, a∗)|

≥ |c(x, a) − c(x, a∗)| − α|
∫

V ∗(y)Q(dy|x, a∗)

−
∫

V ∗(y)Q(dy|x, a)|

≥ |c(x, a) − c(x, a∗)| − αλ sp(V ∗)

≥ |c(x, a) − c(x, a∗)| − αλM

1 − α

≥ min
a∈A(x)−{a∗}

|c(x, a) − c(x, a∗)| − αλM

1 − α

= Kx(a∗).
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Therefore,
min

a∈A(x)−{a∗}
Hx,a∗(a) ≥ Kx(a∗), (22)

and

min
a∗∈A(x)

{
min

a∈A(x)−{a∗}
Hx,a∗(a)

}
≥ min

a∗∈A(x)
Kx(a∗) = K∗

x. (23)

This is the end of the proof of Lemma 4.4. ¤

Remark 4.5. From Lemma 4.4 it results that for each x ∈ X,

min
a∈A(x)−{f∗(x)}

Hx,f∗(x)(a) (24)

≥ min
a∗∈A(x)

{
min

a∈A(x)−{a∗}
Hx,a∗(a)

}
≥ K∗

x,

i. e., for each x ∈ X,

min
a 6=f∗(x)

|G(x, a) − G(x, f∗(x))| ≥ K∗
x. (25)

Moreover, notice that (7), (13), (25), and IC imply the uniqueness of f∗.

5. MAIN RESULT

The previous lemmas finally allow to upper bound the number N(x) of steps needed
to find the optimal rule f∗(x), and hence the stopping rule for a state x. In particular,
if A(x) and c(x, a) do not depend on x, or if X is finite, N(x) will not depend on x
and the stopping rule will be uniform on X.

Let d be the discrete metric on A , i. e. d(a, a′) = 0 if a = a′, and d(a, a′) = 1 if
a 6= a′.

Theorem 5.1. For each x ∈ X and the N(x)th step of the value iteration proce-
dure, fN(x)(x) = f∗(x), where N(x) = [(ln((1 − α)K∗

x)/2M))/ lnα] + 1, and [z] is
the integer part of z.

P r o o f . Let x be a fixed state. Firstly, note that

d(f∗(x), f∗(x)) = 0 =
1

K∗
x

|G(x, f∗(x)) − G(x, f∗(x))|. (26)

(Recall that K∗
x is assumed to be positive.) On the other hand, using (25), for each

a ∈ A(x) with a 6= f∗(x),

d(a, f∗(x)) = 1

=
mina6=f∗(x)|G(x, a) − G(x, f∗(x))|
mina6=f∗(x)|G(x, a) − G(x, f∗(x))|

≤ 1
K∗

x

|G(x, a) − G(x, f∗(x))|.
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Hence,

d(a, f∗(x)) ≤ 1
K∗

x

|G(x, a) − G(x, f∗(x))|, (27)

for all a ∈ A(x).
Now, letting a = fn(x) in (27) and using Lemma 4.2 it results that

d(fn(x), f∗(x)) ≤ 1
K∗

x

|G(x, fn(x)) − G(x, f∗(x))|

≤ 1
K∗

x

2Mαn

(1 − α)
,

for each n ≥ 1. Finally, solving the inequality

1
K∗

x

2Mαn

(1 − α)
< 1, (28)

it follows that

n >
ln{(1 − α)K∗

x/2M}
ln α

. (29)

Take

N(x) :=
[
ln{(1 − α)K∗

x/2M}
lnα

]
+ 1. (30)

Therefore, fN(x)(x) = f∗(x).
Since x is arbitrary, Theorem 5.1 follows. ¤

Remark 5.2. It is not clear that N(x) is always positive: observe that

0 < (1 − α)Dx − αλM = (1 − α) min
a∗∈A(x)

{
min

a∈A(x)−{a∗}
|c(x, a) − c(x, a∗)|

}
−αλM

< (1 − α)2M − αλM

= 2M − 2αM − αλM

< 2M,

hence

0 <
(1 − α)Dx − αλM

2M
< 1, (31)

and, using (11), it results that

ln{(1 − α)K∗
x/2M} = ln{((1 − α)Dx−αλM)/2M} < 0. (32)

Then, as ln α < 0,
ln{(1 − α)K∗

x/2M}
lnα

> 0. (33)
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Remark 5.3. From (30) it is possible to find conditions which allow to obtain the
optimal policy f∗ in k steps, k = 1, 2, . . . . For instance, from (11), (30), and (33),

0 <
ln{(1 − α)K∗

x/2M}
lnα

=
ln{((1 − α)Dx−αλM)/2M}

lnα
< 1

if and only if
(Dx + λM + 2M)α − Dx < 0. (34)

(Recall that M > 0, λ, α ∈ (0, 1), and, from IC, Dx > 0.)
Hence, f1(x) = f∗(x) if and only if (Dx + λM + 2M)α − Dx < 0. Similarly,

f2(x) = f∗(x) if and only if

1 ≤ ln{((1 − α)Dx−αλM)/2M}
ln α

< 2, (35)

that is, if and only if
(Dx + λM + 2M)α − Dx ≥ 0, (36)

and
2Mα2 + (Dx + λM)α − Dx < 0. (37)

For the rest of the cases, i. e., fk(x) = f∗(x), k ≥ 3 holds, if and only if

2Mαk−1 + (Dx + λM)α − Dx ≥ 0, (38)

and
2Mαk + (Dx + λM)α − Dx < 0. (39)

Now, three examples will be presented. For each of them, it is not difficult to
verify that BA hold (for instance, in each case, it is possible to verify that the
assumptions needed in [6], pp. 44–45 hold).

6. EXAMPLES

Example 6.1. Let X = {0, 1}, and for x ∈ X, A(x) = {1, 2}. The transition
law is given by Q({0}|0, 1) = p, Q({1}|0, 1) = q, Q({0}|1, 1) = r, Q({1}|1, 1) = s,
Q({0}|0, 2) = p1, Q({1}|0, 2) = q1, Q({0}|1, 2) = r1, Q({1}|1, 2) = s1. The cost
function is given by c(0, 1) = θ1, c(0, 2) = θ2, c(1, 1) = θ3, c(1, 2) = θ4.

Assumption 6.2.

(a) p, q, r, s, p1, q1, r1 and s1 are positive, p+q = 1, r+s = 1, p1+q1 = 1, r1+s1 = 1,
and p = min{p, q, r, s, p1, q1, r1, s1}.

(b) θ1, θ2, θ3, θ4, θ2 − θ1 and θ4 − θ3 are positive, and θ4 = max{θ1, θ2, θ3, θ4}.



A Stopping Rule for Discounted MDPs with Finite Action Sets 765

Lemma 6.3. Under Assumption 6.2,

N(0) = [{ln((1 − α)(θ2 − θ1) − α((2 − p)/2)θ4)/2θ4}/ lnα] + 1, (40)

and

N(1) = [{ln((1 − α)(θ4 − θ3) − α((2 − p)/2)θ4)/2θ4}/ lnα] + 1. (41)

P r o o f . Note that from Assumption 6.2 (b), M = θ4, D0 = θ2 − θ1, and D1 =
θ4 − θ3. Now, observe that from Assumption 6.2 (a),

Q({0}|x, a) ≥ p > 0, (42)

for all (x, a) ∈ K. Hence, Condition 3.1 (1) in [4] p. 56 holds, and for Lemma 3.3
in [4], the EC holds as well, with λ = (2 − p)/2 (see also the proof of Lemma 3.3
in [4]). Therefore, (11) and (30) imply (40), and (41). ¤

Now, a specific example to illustrate Example 6.1 will be presented.

Example 6.4. Consider Example 6.1 with p = q = r = s = p1 = q1 = r1 = s1 =
1/2, θ1 = θ3 = 1, θ2 = θ4 = 20. Here, Dx = 19, x ∈ X, M = θ4 = 20, λ = 3/4, and

N(x) = [{ln{19(1 − α) − 15α}/40}/ ln α] + 1, (43)

x ∈ X. A straightforward computation implies by the IC that α < 0.55882 . . . . Then
the next array (constructed with the help of the inequalities provided in Remark 5.3
solved in terms of α ) shows the range of values of α which obtain the optimal policy
f∗ in k steps, k = 1, 2, . . . , 10. (For instance, using (36) and (37), f∗(x) = f2(x),
x ∈ X if 0.256757 ≤ α < 0.384707; observe that the array is the same for both x = 0
and x = 1.)

k α
1 (0, 0.256757)
2 [0.256757, 0.384707)
3 [0.384707, 0.450943)
4 [0.450943, 0.490645)
5 [0.490645, 0.51585)
6 [0.51585, 0.532117)
7 [0.532117, 0.542544)
8 [0.542544, 0.549101)
9 [0.549101, 0.553122)

10 [0.553122, 0.55553)
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Example 6.5. Let η and n be a positive constant and a positive integer, respec-
tively. Take X = [0, η], A = A(x) = {η + 1, η + 2, . . . , η + n}, for all x ∈ X.
The transition law is given by xt+1 = min{[xt + at − ξt]+, η}, t = 0, 1, 2, . . . .
Here [z]+ = max{0, z}, and ξ0, ξ1, . . . are i.i.d. random variables taking values in
S = [0, +∞). Let ξ be a generic element of the sequence {ξt}. The cost function is
given by c(x, η + k) = g(x) + (η + k), x ∈ X, k = 1, . . . , n, where g : X → R is a
nonnegative, upper bounded measurable function. Let ϕ be a bound for g.

Assumption 6.6.

P{ξ ≥ 2η + n} := β > 0. (44)

Lemma 6.7. Under Assumption 6.6, for each x ∈ X,

N(x) = [(ln((1 − α) − α((2 − β)/2)ϕ)/2ϕ)/ ln α] + 1. (45)

P r o o f . It is easy to obtain that M = ϕ and Dx = 1, x ∈ X. From Assump-
tion 6.6, for each (x, a) ∈ K,

Q({0}|x, a) = P{xt+1 = 0|xt = x, at = a}
= P{ξ ≥ x + a}
≥ P{ξ ≥ 2η + n}
= β.

Hence, as in the proof of Lemma 6.3, it results that λ = (2 − β)/2. Therefore,
from (11) and (30), (45) follows. ¤

7. CONCLUSIONS

It seems apparent that the BA, EC and IC allow a clean analysis of the problem
when the action sets are finite. The Value Iteration procedure plays a significant role
all through the analysis. There is one immediate question: would Policy Iteration
provide extra information to this problem?

The polynomials in α appearing in (38) and (39) raise another question: how do
they describe the “complexity” of the optimal policy? It would be very interesting to
determine if they could be turned into a useful tool to determine whether a DMDP
admits myopic policies or not.

Finally, if we revert to non-finite action sets, could we apply this scheme to the
number of steps to enter a ball of given radius centered on the optimal policy?
Besides it is open to determine how similar bounds are to be found when dealing
with MDPs not satisfying EC.

Hopefully, these questions will be addressed to in forthcoming papers.
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[2] D. Cruz-Suárez, R. Montes-de-Oca, and F. Salem-Silva: Conditions for the unique-
ness of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004),
415–436.
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