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A NOTE ON THE OPTIMAL PORTFOLIO PROBLEM
IN DISCRETE PROCESSES
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We deal with the optimal portfolio problem in discrete-time setting. Employing the discrete
Itô formula, which is developed by Fujita, we establish the discrete Hamilton–Jacobi–
Bellman (d-HJB) equation for the value function. Simple examples of the d-HJB equation
are also discussed.
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1. INTRODUCTION

In the study of the optimal behavior in economic problem under risk environment,
it is important to investigate the optimal value function with respect to certain
utility. When we formulate an optimization problem in terms of the stochastic
control framework, the characterization of the optimality usually results in a form of
the Hamilton–Jacobi–Bellman (HJB) equation for the corresponding value function.
The HJB equation can reflect the optimal nature implied by the model; the solution
tells us what is the optimal strategy.

In this note, we are concerned with the portfolio optimization problem under
discrete-time circumstance. The market price process is modelled in discrete-time
stochastic sequence. We derive the discrete Hamilton–Jacobi–Bellman (d-HJB)
equation for the value function with respect to some utility functions. We also
examine simple examples.

It is well known that the optimization problem under discrete-time stochastic
processes has been already widely investigated and much progress has been made.
The characterization of the optimality, which is essentially equivalent to the d-HJB
equation of the current article, has been also well discussed. We refer for instance
to Chapter III of an excellent book by Duffie [3].

The novelty of our research is to recast and reformulated the optimization problem
in terms of the discrete Itô formula. The formula is recently discovered by Fujita
and Kawanishi [5] and corresponds to the famous Itô formula in the continuous
model. On the ground of this discrete Itô formula, we are able to build the theory
of discrete-time portfolio optimization.
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The paper is organized as follows. We recall the discrete Itô formula in Section 2.
The d-HJB equation is then established in Section 3, which is followed in Section 4
by examples. Section 5 concludes the present article with discussions.

2. DISCRETE ITÔ FORMULA

We here recall the basic tool of our researches, namely, the discrete Itô formula. In
the following presentation, we adopt the argument from recent work by Fujita and
Kawanishi [5] (see also Fujita [4]).

Let t = 0, 1, 2, . . . denote discrete time series and let {Bt}t=0,1,2,... with B0 = 0
be the one-dimensional random walk [8]:

Bt =
t∑

n=1

Yn, (1)

where {Yn}n=1,2,... are independent and identically distributed (i.i.d.) random vari-
ables. For simplicity, we assume

Prob(Yn = 1) = Prob(Yn = −1) =
1
2
, n = 1, 2, . . . , (2)

throughout this paper. Precisely stated, we confine ourselves to treating the sym-
metric standard one-dimensional random walk. Generalizations are possible and will
be revisited in Section 5.

The discrete Itô formula is then expressed as follows.

Theorem 1. (Fujita and Kawanishi [5])
(a) For any f : Z → R, we have

f(Bt+1) − f(Bt) =
f(Bt + 1) − f(Bt − 1)

2
Yt+1 +

f(Bt + 1) − 2f(Bt) + f(Bt − 1)
2

.

(b) For any f : Z × N → R, we have

f(Bt+1, t + 1) − f(Bt, t) =
f(Bt + 1, t + 1) − f(Bt − 1, t + 1)

2
Yt+1

+
f(Bt + 1, t + 1) − 2f(Bt, t + 1) + f(Bt − 1, t + 1)

2
+ f(Bt, t + 1) − f(Bt, t).

Now, the price process {Xt}t=0,1,2... with which we are concerned in this paper
is assumed to be governed by the following discrete stochastic processes.

Xt+1 − Xt = µ(Xt, t) + σ(Xt, t)(Bt+1 − Bt), t = 0, 1, 2, . . . , (3)

where µ, σ are given continuous functions. For related model we refer to [7]. It can
be seen that µ expresses the drift rate and σ means the volatility.

Concerning the process (3), we obtain the next proposition, which will be useful
in the sequel.
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Proposition 1. (a) For any f : Z → R, we have

f(Xt+1) − f(Xt) =
f(Xt + µt + σt) − f(Xt + µt − σt)

2
Yt+1

+ f(Xt + µt) − f(Xt)

+
f(Xt + µt + σt) − 2f(Xt + µt) + f(Xt + µt − σt)

2
,

(4)

where the use of abbreviations µt := µ(Xt, t), σt := σ(Xt, t) are made.

(b) For any f : R × N → R, we have

f(Xt+1, t+1)−f(Xt, t) =
f(Xt+µt+σt, t+1)−f(Xt+µt−σt, t+1)

2
Yt+1

+ (f(Xt + µt, t + 1) − f(Xt, t + 1))

+
f(Xt+µt+σt, t+1)−2f(Xt+µt, t+1)+f(Xt+µt−σt, t+1)

2
+ (f(Xt, t + 1) − f(Xt, t)).

(5)

For convenience of notation we write the latter part in the right hand side of (5)
as follows:

LXf(Xt, t) := f(Xt + µt, t + 1) − f(Xt, t + 1)

+
f(Xt + µt + σt, t + 1) − 2f(Xt + µt, t + 1) + f(Xt + µt − σt, t + 1)

2
+ f(Xt, t + 1) − f(Xt, t).

Remark. If the time step is taken to be δdt so that (3) turns into

Xt+δdt − Xt = µ(Xt, t)δdt + σ(Xt, t)
√

δdt(Bt+δdt − Bt),

we then find, parallel to (4),

f(Xt+δdt) − f(Xt)

=
f(Xt + µtδdt + σt

√
δdt) − f(Xt + µtδdt − σt

√
δdt)

2
Yt+δdt

+ f(Xt + µtδdt) − f(Xt)

+
f(Xt + µtδdt + σt

√
δdt) − 2f(Xt + µtδdt) + f(Xt + µtδdt − σt

√
δdt)

2
.

Consequently, as δ → 0, we recover the well known Itô formula

df(Xt) = f ′(Xt)σtdWt + f ′(Xt)µtdt +
1
2
f ′′(Xt)σ2

t dt,

where {Wt} denotes a standard Wiener process. This is just a heuristic argument,
which, however, justifies our discretization scheme at the same time.
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3. DISCRETE HAMILTON–JACOBI–BELLMAN EQUATION

In this section, we wish to analyze the optimal portfolio problem in discrete-time
setting. We begin with introducing a controlled price process {Xt}t=0,1,2,... of the
form

Xt+1 − Xt = µ(Xt, t, ut) + σ(Xt, t, ut)(Bt+1 − Bt), t = 0, 1, 2, . . . , (6)

where {ut}t=0,1,2,... stand for the adapted control; namely, ut is measurable with
respect to σ(Bk | k = 1, 2, . . . , t) (t = 1, 2, . . .). The involvement of the control
variable ut in (3) is for the sake of generality. Its interpretation should be considered
for each specific model. We will give examples in the next section.

Our aim is then to determine the adapted control {ut}t=0,1,2,... which maximizes
certain functional; that is, we want to solve the problem:

V (x, t) := sup
{us}T−1

s=t

J
(
x, t, {us}T−1

s=t

)
, (7)

where we have put

J(x, t, {us}T−1
s=t ) := Ex,t

[ T−1∑
k=t

U1(Xk, k, uk) + U2(XT , T )
∣∣∣ Xt = x

]
,

with positive T ∈ N. Here U1, U2 are utility functions, which are customarily
assumed to be an increasing and strictly concave function in Xk. We remark that in
this formulation the introduction of the utility U1 is just due to the fact that it is a
standard control framework; its interpretation is limited in the context of portfolio
optimization.

Now we derive the discrete Hamilton–Jacobi–Bellman (d-HJB) equation, which
features a property of the value function V (x, t) and hence gives a solution to the
stochastic control problem (7). It should be noted that the assumption of symmetry
in (1), (2) is not essential.

Theorem 2. (d-HJB equation) We have for t = 0, 1, . . . , T − 1,

sup
{us}T−1

s=t

{Lu
XV (x, t) + U1(x, t, ut)} :=

sup
{us}T−1

s=t

{
V (x + µt, t + 1) − V (x, t + 1)

+
V (x + µt + σt, t + 1) − 2V (x + µt, t + 1) + V (x + µt − σt, t + 1)

2

+ V (x, t + 1) − V (x, t) + U1(x, t, ut)
}

= 0,

V (x, T ) = U2(x, T ),

(8)

where we have put
µt := µ(x, t, ut), σt := σ(x, t, ut).
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P r o o f . We just give a sketch of proof.
Since {Xt} is Markovian, the so-called Bellman principle [2],[6] is in order; we

infer that

V (x, t) = sup
{us}T−1

s=t

Ex,t
[
U1(x, t, ut) + V (Xt+1, t + 1)

]
,

V (x, T ) = U2(x, T ).

Application of Proposition 1 to V (Xt+1, t+1) then completes the demonstration. ¤
The so-called verification theorem is also possible, which is read as follows.

Theorem 3. Let W (x, t) solves the discrete Hamilton–Jacobi–Bellman equation (8):

sup
{us}T−1

s=t

{Lu
XW (x, t) + U1(x, t, ut)} = 0,

W (x, T ) = U2(x, T ).

Then we have
W (x, t) ≥ J(x, t, {us}T−1

s=t ), (9)

for every x ∈ R, t = 0, 1, 2, . . . , T − 1 and adapted {ut}. Furthermore, if for every
x ∈ R, t = 0, 1, 2, . . . , T − 1 there exists an adapted {u∗

t } with

u∗
k ∈ arg sup

{ul}T−1
l=k

(Lu
XW (k,X∗

k) + U1(x,X∗
k , uk)),

for every t ≤ k ≤ T , where X∗
k is the controlled process corresponding to u∗

k through
(6), then we obtain

W (x, t) = V (x, t) = J(x, t, {us}T−1
s=t ).

P r o o f . It suffices to verify (9); that is

W (x, t) ≥ Ex,t
[ T−1∑

k=t

U1(Xk, k, uk) + U2(XT , T )
∣∣∣ Xt = x

]
, (10)

for every adapted {ut}. Since W is a solution of the d-HJB equation, we see that

Lu
XW (x, t) + U1(x, t, ut) ≤ 0. (11)

Application of the discrete Itô formula (4) yields

W (XT , T ) − W (Xt, t)

=
T−1∑
k=t

Lu
XW (Xk, k) +

T−1∑
k=t

W (Xk + µk + σk, t + 1) − W (Xk + µk − σk, t + 1)
2

Yk+1.

(12)

Taking expectations in (12) and taking into account of the inequality (11), we infer
that the desired inequality (10) holds true. This finishes the proof. ¤
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4. EXAMPLES

We present two examples of the d-HJB equation to illustrate our theory.

Example 1. We assume in (6) that µ ≡ 0 and σ(X, t, u) = σuX with positive
constant σ. The underlying model thus becomes

Xt+1 − Xt = σutXt(Bt+1 − Bt).

The control ut states the fraction of money invested in the stocks. It is to be noted
that these dynamics correspond to a stock evolving like St+1 = St +σSt(Bt+1 −Bt)
and a risk-free asset with zero interest rate. As to utility functions, we take U1 ≡ 0
and U2 =

√
x. Therefore, the d-HJB equation (8) becomes

sup
{us}T−1

s=t

{V ((1 + σut)x, t + 1) − 2V (x, t + 1) + V ((1 − σut)x, t + 1)
2

+ V (x, t + 1) − V (x, t)
}

= 0,

V (x, T ) =
√

x.

(13)

We will seek a solution of the form

V (x, t) = g(t)
√

x, (14)

where g(T ) = 1. Inserting (14) into (13) we deduce that

sup
ut

{
g(t + 1)

√
(1 + σut)x +

√
(1 − σut)x

2
− g(t)

√
x
}

= 0.

The maximization is attained by the optimal constant strategy ut ≡ 0 and hence we
obtain g(t) ≡ 1 as well as V (x, t) ≡

√
x.

Example 2. We assume in (6) that µ(X, t, u) = u and σ(X, t, u) = σu with σ > 1.
The underlying model thus becomes

Xt+1 − Xt = ut + σut(Bt+1 − Bt).

The control ut means the amount of money in the stock at time t, if we interpret
the dynamics of the stock price as St+1 = St + St1 + σSt(Bt+1 − Bt) and consider
a risk-free asset with null interest rate. As to utility functions, we take U1 ≡ 0 and
U2 =

√
x as before. Therefore, the d-HJB equation (8) becomes

sup
{us}T−1

s=t

{
V (x + ut, t + 1) − V (x, t + 1)+

V (x + ut + σut, t + 1) − 2V (x + ut, t + 1) + V (x + ut − σut, t + 1)
2

+ V (x, t + 1) − V (x, t)
}

= 0,

V (x, T ) =
√

x.

(15)
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We will seek a solution of the form

V (x, t) = g(t)
√

x, (16)

where g(T ) = 1. Inserting (16) into (15) we infer that

sup
{us}T−1

s=t

{
g(t + 1)

√
x + (1 + σ)ut +

√
x − (σ − 1)ut

2
− g(t)

√
x
}

= 0.

The maximization is attained by the optimal strategy

ut =
2

σ2 − 1
Xt. (17)

Placing (17) back into (15) we obtain

g(t) =
(1

2

)T−t(√
σ + 1
σ − 1

+

√
σ − 1
σ + 1

)T−t

,

and the corresponding V (x, t).

5. DISCUSSIONS

We have developed the theory of discrete-time portfolio optimization. On the basis
of the discrete Itô formula, we deduce the discrete Hamilton–Jacobi–Bellman (d-
HJB) equation for the corresponding value function under the stochastic control
framework, and establish the relevant verification theorem. Simple examples are
also exhibited.

Generalizations may be performed toward several directions. As an example, we
first point out that the basic random walk we consider in (1)(2) can be extended to,
for instance

Prob(Yn = a) = p, Prob(Yn = −b) = 1 − p,

with a,b > 0 and 0 < p < 1. The discrete Itô formula then turns out to be

f(Bt+1) − f(Bt)

=
f(Bt + a) − f(Bt − b)

a + b
Yt+1 +

bf(Bt + a) − (a + b)f(Bt) + af(Bt − b)
a + b

.

The Doob–Meyer decomposition is also possible in this case, which is

f(Bt) =
t−1∑
n=0

f(Bn + a) − f(Bn − b)
a + b

(Yn+1 − (a + b)p + b)

+
t−1∑
n=0

{bf(Bt + a) − (a + b)f(Bt) + af(Bt − b)
a + b

+
f(Bn + a) − f(Bn − b)

a + b
((a + b)p − b)

}
+ f(0).

Further extensions, including the formulation of d-HJB as in Theorem 3, are nat-
urally figured out; however, the corresponding optimality formulas become a little
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involved. We just remark that the validity of Theorem 3 does not depend on our
particular assumption of the symmetry of basic random walk.

There remains several issues to be pursued forward. Firstly, we should investigate
whether there exists an existence theory for the d-HJB equation or not. We remark
that although various methods have been introduced so far and substantial progress
has been achieved as to the HJB equation, we may understand that the analysis of
the HJB equation has stayed as main difficulties of this subject. We want to know
the discrete version, hopefully with a convergence result, really makes the situation
much easier to handle. Secondly, the risk measuring quantity such as the one in [1]
may be possible or not. Lastly, we should involve more examples, especially those
of practical importance. These points will be our next themes for future research.
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