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Managing Editors:

Lucie Fajfrová
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narová, Milan Vlach, Miloslav Vošvrda,
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ASYMPTOTIC PROPERTIES AND OPTIMIZATION OF
SOME NON–MARKOVIAN STOCHASTIC PROCESSES

Evgueni Gordienko, Antonio Garcia and Juan Ruiz de Chavez

We study the limit behavior of certain classes of dependent random sequences (processes)
which do not possess the Markov property. Assuming these processes depend on a control
parameter we show that the optimization of the control can be reduced to a problem
of nonlinear optimization. Under certain hypotheses we establish the stability of such
optimization problems.
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mitation, stability
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1. INTRODUCTION

The theory of discrete-time Markov control processes with the long-run average
cost is a well developed topic now. The basic methods here are dynamic program-
ming and the related technique of optimality equations, which essentially exploit
the Markov structure of the processes (see, e. g. [2, 5, 6, 11]). However there are
applied stochastic control processes where the asymptotic behavior depends heavily
on both, the control parameters and the whole past trajectory of the process. As
far as we know there do not exist general methods of control optimization for such
models.

In this paper we offer two examples of stochastic processes of the mentioned type
and study the asymptotic behavior and optimization of a particular and new class
of non-markovian discrete-time processes. We consider only the simplest “control”:
the choice of a parameter which minimizes the average cost per unite time over an
infinite horizon.

We will show that the optimization problem can be reduced to the minimization
of a certain nonlinear function that represents the limit value of the cost. In turn,
to find this function we need to determinate strong attracting points of a random
sequence associated with the processes under consideration. The methods to study
the convergence to such points are well known (for example, stochastic approxima-
tion, martingale method, the method of differential equations; see the book [1]).
Nevertheless, in our case an additional difficulty arises from the fact that the points
of attraction depend on the control parameter.
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In the last section of the paper we investigate the stability (robustness) of our
parameter optimization problem. Under certain conditions we give an upper bound
for “the stability index” introduced in [3]. We also give an example where the
optimization problem is not stable.

2. EXAMPLES OF APPLIED CONTROL MODELS RESULTING
NON–MARKOVIAN STOCHASTIC PROCESSES

Example 1. Non-markovian model of inventory control. In many well
known models of discrete time optimal inventory control it is assumed that the
successive demands on goods are independent and identically distributed (i.i.d.)
random variables or i.i.d. random vectors, see e. g. [8]. Such assumptions lead to
the Markov property of the corresponding control processes.

Let us consider a stock of only one commodity, for example certain product in
a supermarket, and let X0, X1, X2, . . . be the nonnegative random variables that
represent the consecutive weekly demand for the commodity. We suppose that at
the beginning of every week the owner of the supermarket orders a fixed amount
a ≥ 0 of the commodity. The control parameter a should be chosen to minimize the
long-run average losses, which is in fact minus the average of the revenues:

W (a) := lim sup
T→∞

1
T

T−1∑
t=0

E
{
c0[a − Xt)+] − r[min(Xt, a)]

}
, (2.1)

here r(y) is the one-stage revenue collected by selling y units of the commodity,
and c0(y) is the one stage losses due to the excess y of the commodity. (We are
considering some perishable goods, which can not be on sale more than a week.) We
suppose c0 and r are nonnegative and continuous.

Remark 1. Let us assume that a ∈ A := [θ0, θ1], 0 ≤ θ0 < θ1 < ∞. So we can add
a suitable constant to (2.1) in order to pass to an equivalent optimization criterion
with a nonnegative cost function.

If the demands X0, X1, X2, . . . are i.i.d. then the minimization of W is a simple
problem. However we are going to suppose that for all t = 1, 2, . . . the conditional
distribution function Ft (given a history up to t − 1 ) of the random variable Xt

depends as a parameter on the frequency of the past unsatisfied demands. That
is: Ft = FZt , where Zt := 1

t

∑t−1
k=0 I{Xk>a}, and Fz, z ∈ [0, 1] is a given family

of distribution functions (on [0,∞)) such that if z2 > z1, then the random vari-
able with distribution Fz2 is “stochastically less” than the random variable with
distribution Fz1 .

Remark 2. The stochastic ordering can be understood, for example as the in-
equality:

Fz2(x) ≥ Fz1(x), for z2 > z1 and all x ≥ 0. (2.2)
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The above assumptions reflect the fact that a customer who has came across
several lacks of a needed product can switch to other supermarket. In this situation
finding a stock level a∗ that minimizes W (a) in (2.1) is not a trivial task. In Section 4
we will point out how to tackle this.

Example 2. Message repeating in a damaging communication network.
Taking into account the high capacity of modern communication channels, the fol-
lowing example refers to a hypothetical situation of an armed conflict between rather
developed countries, where a significant part of the communication means such as
satellites could be destroyed or suppressed electronically. It is known that in military
communication networks, some important messages (commands) must be confirmed
by the receiver. If a sender has no confirmation during a prescribed period a ≥ 0,
then he sends again the message. The reason for such duplication is that in a poor
(damaged) packets switching network with a fixed routing a message can be lost or
delayed an inadmissible time. We consider the simplified model where at discrete
instants t = 0, 1, 2, . . . a sender emits messages and receives confirmations of its de-
livery after random delays denoted correspondingly by X0, X1, X2, . . .. For a chosen
control parameter a ≥ 0, if the sender has no confirmation on the tth message before
the time t + a, he transmits a copy of it at the time t + a. The confirmation of the
above copy delays Yt units of time, where Y0, Y1, Y2, . . . is a sequence of random
variables having the same distribution as those of X0, X1, X2, . . .

We set the problem of optimal “control” as finding a parameter a∗ that minimizes
the following performance index:

W (a) := lim sup
T→∞

1
T

T−1∑
k=0

E
[
min{Xt, a + Yt}

]
. (2.3)

Let us note that min{Xt, a + Yt} is the resulting delay of the confirmation on the
tth message.

As in the Example 1, the assumption that X0, X1, X2, . . . are independent and
identically distributed makes the problem trivial with solution a∗ = 0. This is not
the case when we take into account that a copy is sent only if Xt > a, and we admit
that a considerable number of users which share the channels of the network apply
the same procedure of copy sending. One can see that in this case the increasing of
the frequency of the message duplication raises the loading of the network. So it is
reasonable to expect that in a damaged network this leads to an increase of message
delays (for example, due to the growth of queues in pocket switching nodes, see [10]).
We suppose that for each t = 1, 2, . . . the random variables Xt, Yt are conditionally
independent given the “history” X0, X1,. . . , Xt−1 and have the same conditional
distribution function FZt . The latter depends as a parameter on the value of the
random variable

Zt :=
1
t

t−1∑
k=0

I{Xk>a},

the frequency of message repeating. Here Fz, z ∈ [0, 1] is a given family of dis-
tribution functions defined on the interval [0,∞), such that if z2 > z1, then the
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Fz2-distributed random variable is (in some sense) stochastically greater than the
Fz1-distributed random variable. In Section 4, we consider the problem of minimiza-
tion of W (a) in (2.3) in the above outlined setting.

3. DEFINITION OF THE CLASS OF STOCHASTIC PROCESSES UNDER
CONSIDERATION AND THE CORRESPONDING OPTIMIZATION
PROBLEM

Let us assume that A := [θ0, θ1], 0 ≤ θ0 < θ1 < ∞ is a given set of admissible
values of a “control parameter” a. We also suppose that Fz, z ∈ [0, 1] is a family
of distribution functions of nonnegative random variables, and n ≥ 1 is a fixed
nonnegative integer, and we interpret t = 0, 1, 2, . . . as the (discrete) time.

For an arbitrary but fixed a ∈ A we define the n-dimensional “controlled” process

Xt =
(
X

(1)
t , X

(2)
t , . . . , X

(n)
t

)
, t = 0, 1, 2, . . .

by means of the following recursive method.

1. Let z0 ∈ [0, 1] be fixed and let
{
X

(1)
0 , . . . , X

(n)
0

}
be i.i.d. random variables

with distribution function Fz0 .

2. For a t ≥ 1, if we have observed the “part of the trajectory” X
(1)
0 , X

(1)
1 , . . . ,

X
(1)
t−1, we calculate

Zt :=
1
t

t−1∑
k=0

I{X
(1)
k >a}, (3.1)

and let the random variables X
(1)
t , . . . , X

(n)
t be conditionally (given Zt) i.i.d.

with the conditional distribution function FZt .

That is, for (x1, x2, . . . , xn) ∈ Rn,

Pr
(
X

(1)
t ≤ x1, X

(2)
t ≤ x2, . . . , X

(n)
t ≤ xn / X0, X1, . . . , Xt−1

)
= Pr

(
X

(1)
t ≤ x1, X

(2)
t ≤ x2, . . . , X

(n)
t ≤ xn /Zt

)
= FZt

(x1)FZt
(x2) . . . FZt

(xn).

(3.2)

Remark 3. As we have explained in the Examples 1 and 2 (considering the cases
with n = 1 and n = 2), the definition in 2 means that the conditional distribution of
the random vector Xt, given a history of the process up to time t, is determined by
the family of distribution functions Fz, z ∈ [0, 1] and by the frequency of the “past
events” pointed out in (3.1).

Now we suppose that it is given a measurable one-stage cost function:

c : A × [0,∞)n → [0,∞),
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and introduce the performance index:

W (a) := lim sup
T→∞

1
T

T−1∑
t=0

Ec
(
a, X

(1)
t , . . . , X

(n)
t

)
, (3.3)

which is the average cost per unit of time over infinite horizon.
Under the assumptions that will be given on the next section we have that for all

a ∈ A, W (a) < ∞. It makes sense to set the following optimization problems:

(a) To find
W∗ := inf

a∈A
W (a); (3.4)

(b) To find a∗ ∈ A such that
W (a∗) = W∗,

provided that such an “optimal control” a∗ exists.

4. ASYMPTOTIC DISTRIBUTIONS OF XT AND CALCULATION OF W (A)

We can perform our analysis for n = 2 without any loss of generality. For a moment
we fix a ∈ A and denote:

ϕa(z) := 1 − Fz(a), z ∈ [0, 1]. (4.1)

Assumption 1.

(a) The second derivative ϕ′′
a(z) exists and is bounded on z ∈ [0, 1].

(b) For z ∈ [0, 1], ϕ′
a(z) < 1, and also for each x ∈ [0,∞) the function z → Fz(x)

is continuous on [0, 1].

Assumption 1 yields that the equation ϕa(z) = z has in [0, 1] a unique root, which
will be denoted in what follows as z∗ = z∗(a).

Remark 4.

(a) In Example 1 of Section 2, supposing that the applications z → Fz(x) are
smooth enough, condition (2.2) provides that ϕ′

a(z) ≤ 0.

(b) In Example 2 of Section 2 we have supposed something as decreasing of values
of Fz(x) as z increases. Thus under smoothness condition, to meet Assump-
tion 1 (b), this decreasing should be “not too fast” (see the below Figures 1
and 2).
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Fig. 1. A possible behaviour of ϕa(z) in Example 1.

(c) As an example of the family of distribution functions Fz(x), z ∈ [0, 1] that
satisfies Assumption 1, as well as Assumptions 3 and 4, one can consider

Fz(x) =
{

1 − e−λ(z)x, x > 0,
0, x ≤ 0.

Here λ ∈ C2[0, 1] is any positive function such that | λ′(z) |≤ α, z ∈ [0, 1] for
some α < 1.

Fig. 2. A possible behaviour of ϕa(z) in Example 2.

Proposition 1. Suppose that Assumption 1 holds. Then

(1) Zt
a.s.−→ z∗ as t → ∞ (4.2)

(2) Xt
weakly−→ X∗ as t → ∞, (4.3)

where X∗ =
(
X

(1)
∗ , X

(2)
∗

)
, and X

(1)
∗ , X

(2)
∗ are i.i.d. random variables with the distri-

bution function Fz∗ .
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Assumption 2.

(a) The function c(a, x1, x2) is continuous in (x1, x2) ∈ [0,∞) × [0,∞).

(b) There exist finite constants K1,K2 such that

sup
a∈A

c(a, x1, x2) ≤ K1 + K2(x1 + x2), x1, x2 ∈ [0,∞). (4.4)

(c) There exist p > 1, K < ∞ such that

sup
z∈[0,1]

∫ ∞

0

xpdFz(x) ≤ K. (4.5)

Proposition 2. Suppose that Assumptions 1 and 2 hold. Then

W (a) =
∫ ∞

0

∫ ∞

0

c(a, x1, x2) dFz∗(a)(x1) dFz∗(a)(x2) < ∞. (4.6)

Corollary 1. Let Assumption 1 and 2 hold for every a ∈ A. Then:

W∗ = inf
a∈A

∫ ∞

0

∫ ∞

0

c(a, x1, x2) dFz∗(a)(x1) dFz∗(a)(x2).

The existence of an “optimal control” a∗ such that W (a∗) = W∗ would follow, for
example, from the continuity of the function W (a), a ∈ A in (4.6).

Assumption 3.

(a) The function c is continuous on A × [0,∞) × [0,∞).

(b) |ϕ′
a(z)| < 1 for each z ∈ [0, 1], a ∈ A.

(c) For each z ∈ [0, 1], Fz has a density fz such that

sup
z∈[0,1]

sup
x∈A

fz(x) =: M0 < ∞. (4.7)

Proposition 3. Under Assumptions 1, 2 and 3 the function W in (4.6) is contin-
uous on A.

5. ESTIMATING THE STABILITY IN THE OPTIMIZATION PROBLEM

We proceed from the setting suggested in [3] and developed in the case of the average
cost, for instance, in [4, 7] to deal with the mentioned “stability”. We suppose that
the family of distribution functions Fz, z ∈ [0, 1] is known only approximately, i. e.
in place of {Fz} we dispose an approximation F̃z, z ∈ [0, 1].
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Now we assume that the last family satisfies Assumptions 1 and 2 for every a ∈ A
and that there is a parameter ã∗ minimizing the cost:

W̃ (a) :=
∫ ∞

0

∫ ∞

0

c(a, x1, x2) dF̃
ez∗(a)(x1) dF̃

ez∗(a)(x2), a ∈ A (5.1)

in the “approximating problem” determined by F̃z, z ∈ [0, 1].
In (5.1) z̃∗ = z̃(a) is the unique root of the equation 1 − F̃z(a) = z.

Remark 5. To guarantee the existence of ã∗ it suffices to impose on c and F̃z,
z ∈ [0, 1] the conditions of Proposition 3.

We analyze now the case when the parameter ã∗ can be found (at least theoreti-
cally), and it is applied to the “original” process determined by the family {Fz} (see
(3.1), (3.2)). If we use the index

∆ := W (ã∗) − W∗ ≥ 0, (5.2)

as a measure of “stability”, we have the following two questions:

• Can ∆ be bounded by the disturbance term

δ := sup
z∈[0,1]

sup
x≥0

|Fz(x) − F̃z(x)| ? (5.3)

• Is it possible that ∆ does not approach to zero despite of δ → 0?

Depending on the conditions imposed the answer to each above questions can be
positive.

In order to fix ideas and simplify computations we only consider the particular
case when X0, X1, X2, . . . are one dimensional, i. e. n = 1 in (3.2).

Assumption 4.

(a) There exists a constant L < ∞ such that for all x, y ∈ [0,∞), a ∈ A

|c(a, x) − c(a, y)| ≤ L|x − y|.

(b) There exists a constant α < 1 such that for all z ∈ [0, 1], and x ≥ 0∣∣∣∣ ∂

∂z
Fz(x)

∣∣∣∣ ≤ α

Remark 6. Assumption 4 (b) strengthens both Assumption 1 (b) and Assump-
tion 3 (b).
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Proposition 4. Suppose that the Assumptions 1, 2 and 4 hold with (x1, x2) being
replaced by x, and that for the approximating family {F̃z} the Assumptions 1 and 2
are satisfied and there exists the above defined optimal ã∗. Then

∆ ≤ M(p)δ1− 1
p , (5.4)

where δ was defined in (5.3) and

M(p) = 2L(1 − α)1/p−1

(
2K

p

)1/p

, (5.5)

where the constants p > 1 and K < ∞ were defined in (4.5).

The next example shows that in Proposition 4, Assumption 4 (b) is essential.

Example 3. An unstable optimization problem for n = 1. Let us assume
that γ : [0, 1] → [1,∞), and β : [0, 1] → (0,∞) are C2[0, 1]−functions, and we define
the functions

b(z) :=
γ(z) − 1

β(z)
, (5.6)

d(z) :=
γ(z)
β(z)

, (5.7)

We specify particular functions γ and β in such a way that the graphs of ϕa(z),
z ∈ [0, 1] defined below in (5.8) have the qualitative behavior as it is shown on
Figure 3 (with ϕ′

a(z) < 1 for a 6= 2).
The family {ϕa(z)} of functions indexed by a ∈ [1.9, 2.1] is given by the following

equality:
ϕa(z) := γ(z) − aβ(z), z ∈ [0, 1]. (5.8)

For any z ∈ [0, 1] let Fz be the uniform distribution on the interval [b(z), d(z)] ⊂
[0,∞).

Also we choose a one-stage cost function (in (3.3)) as

c(a, x) := a3 + x, a ∈ [1.9, 2.1], x ≥ 0. (5.9)

From (5.6) – (5.8) it is easy to see that for each

a ∈ [1.9, 2.1], z ∈ [0, 1], we have that 1 − Fz(a) = ϕa(z), (5.10)

and this corresponds to the definition of ϕa(z) in (4.1).
For every a 6= 2 it is not hard to check the fulfilment of Assumption 1, As-

sumption 2, Assumption 3 (a), (c) and Assumption 4 (a). However in this example
Assumption 3 (b) and Assumption 4 (b) are not satisfied. We show that the latter
leads to the discontinuity of the function W (a), a ∈ [1.9, 2.1] in the one dimensional
analog to (4.6) and to the lack of stability in the corresponding optimization problem
over a ∈ [1.9, 2.1].
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Fig. 3. The graphs of the function ϕa(z), z ∈ [0, 1] in Example 3.

By Proposition 2 and (5.9) we obtain for a 6= 2 that

W (a) = a3 +
1
2

[b(z∗(a)) + d(z∗(a))] ,

where z∗(a) is a root of the equation ϕa(z) = z.
Calculating z∗(a) and W (a) numerically we get the following graph (see also the

above graphs of ϕa(z)):
Thus W∗ = infa∈[1.9,2.1] W (a) = lima→2+ W (a).
Now, since for small enough ε > 0 we have that (5.8) defines properly ϕa(z) for

a ∈ [1.9, 2.1 + ε], we let

ϕ̃a(z) := ϕa+ε(z) = γ(z) − (a + ε)β(z), z ∈ [0, 1], a ∈ [1.9, 2.1],

and similarly to (5.6), (5.7) we define:

b̃(z) =
γ(z) − 1

β(z)
− ε,

d̃(z) =
γ(z)
β(z)

− ε.

Now let the approximation family F̃z, z ∈ [0, 1] be the uniform distribution on
[̃b(z), d̃(z)]. For this family 1 − F̃z(a) = ϕ̃a(z), and the conditions of Proposition 2
hold for a 6= 2− ε. (For a = 2− ε the equation ϕ̃a(z) = z has a continuum of roots.)
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Fig. 4. The graphs of the average costs W (a) and fW (a), a ∈ [1.9, 2.1].

Thus we can use Proposition 2 and the one dimensional analog of (5.1) to calculate
W̃ (a), a ∈ [1.9, 2.1] shown as a dotted line in Figure 4. The infimum of W is obtained
as a → (2 − ε)+.

Replacing in (5.2) ã∗ by any ãε such that

W̃ (ãε) − inf
a∈[1.9,2.1]

W̃ (a) < ε,

aε < 2, we conclude that for each (small enough) ε > 0,

∆ε := W (ãε) − W∗ = r − W∗ ≥ 1.2

On the other hand, it is almost evident that for the current example in (5.3) δ → 0
as ε → 0.

Remark 7. To obtain the equation (4.6) we use the almost surely convergence
in (4.2). The computer simulation made to evaluate the rate of convergence have
shown that if the values of ϕ′

a(z) are “significantly less” than 1, then Zt, t = 1, 2, . . .
defined in (3.1) approach the root z∗(a) “fast enough” (with t being several hundred
Zt is “very close” to z∗(a)).

On the other hand, when in some neighborhood of z∗(a) we have ϕ′
a(z) < 1, but

ϕ′
a(z) ≈ 1 (as in the case a = 1.95 in Figure 3), then Zt converges to z∗(a) “very

slowly” (even values of t of order 30 000 do not provide a good approximation).

6. PROOFS

The proof of the first part of Proposition 1 follows from Theorem 9.2.11 in [1], the
simplified version of which we cite for reference convenience.

Let (Ω,F , P ) be a probability space with a filtration {Ft, t = 0, 1, 2, . . .} ⊂ F ,
and let {ξt, t = 1, 2, . . .}, {γt, t = 0, 1, . . .} be sequences of random variables adapted
to {Ft}, such that, γt ≥ 0,

∑∞
t=0 γt = ∞,

∑∞
t=0 γ2

t < ∞ almost surely.
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Let also Γ ⊂ R be a bounded closed interval and h : Γ → R be a continuous
function such that for any z0 ∈ Γ,

Zt+1 = Zt + γth(Zt) + γtξt+1 ∈ Γ (6.1)

for t = 1, 2, . . ..

Theorem. (Duflo [1]) Suppose that there exists a function V ∈ C1(G), where
G ⊃ Γ is an open interval, such that:

(a) [h(z)]2 ≤ const[V (z) + 1], z ∈ Γ;

(b) |V ′(z) − V ′(y)| ≤ const|z − y|, z, y ∈ Γ;

(c) E[ξt+1|Ft] = 0, E[ξ2
t+1|Ft] = O[V (Zt) + 1]; for t = 0, 1, 2, . . . almost surely;

(d) For some z∗ ∈ Γ, h(z∗) = 0, V (z∗) = 0 and V ′(z)h(z) < 0, V (z) > 0 for
z ∈ Γ\{z∗}.

Then
Zt

a.s.−→ z∗ as t → ∞.

To p r o v e P r o p o s i t i o n 1 we first rewrite Zt+1 in (3.1) as follows:

Zt+1 =
1

t + 1

t∑
k=0

I{X
(1)
k >a} =

t

t + 1
Zt +

1
t + 1

I{X
(1)
t >a}

= Zt −
1

t + 1
Zt +

1
t + 1

I{X
(1)
t >a} −

1
t + 1

Pr(X(1)
t > a/Zt)

+
1

t + 1
Pr(X(1)

t > a/Zt)

= Zt + 1
t+1 [ϕa(Zt) − Zt] +

1
t + 1

[
I{X

(1)
t >a} − ϕa(Zt)

]
. (6.2)

We set the following elements to apply the above theorem:

• Ft := σ(X(1)
0 , X

(1)
1 , . . . , X

(1)
t−1);

• Γ = [0, 1] and G ⊃ [0, 1] an open interval;

• h(z) := ϕa(z) − z, z ∈ [0, 1]; (6.3)

• γt := 1
t+1 ;

• ξt+1 := I{X
(1)
t >a} − ϕa(Zt); (6.4)

• V (z) := [ϕa(z) − z]2, (6.5)

(where V is extended to G in any smooth way).
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The conditions (a) and (b) of the Theorem hold because of (6.5) and Assump-
tion 1 (a). Regarding the condition (c), we have (see (6.2), (6.4) and (3.2)):

E[ξt+1/Ft] = E[(I{X
(1)
t >a} − ϕa(Zt)) /Ft] = ϕa(Zt) − ϕa(Zt) = 0.

Also 0 ≤ ξt+1 ≤ 1, t = 0, 1, 2, . . .. Finally, let z∗ be a root of the equation ϕa(z) = z
which is unique by Assumption 1.

Then from (6.3) and (6.5) we get that h(z∗) = 0, V (z∗) = 0, V (z) > 0, z 6= z∗
and V ′(z)h(z) = 2[ϕa(z) − z]2(ϕ′

a(z) − 1) < 0 for z 6= z∗ by the Assumption 1 (b).
Now (4.2) in Proposition 1 follows from the above Theorem.

To prove (4.3) it suffices to observe that for any x1, x2 ∈ [0,∞) by (3.2), (4.2),
Assumption 1 (b) and the bounded convergence theorem we have:

Pr(X(1)
t ≤ x1, X

(2)
t ≤ x2) = E{FZt(x1)FZt(x2)} → Fz∗(x1)Fz∗(x2). ¤

P r o o f o f P r o p o s i t i o n 2. Taking into account (3.3) it is enough to show
that as t → ∞,

Ec(a,X
(1)
t , X

(2)
t ) → Ec(a, X

(1)
∗ , X

(2)
∗ ), (6.7)

where the i.i.d. random variables X
(1)
∗ and X

(2)
∗ have distribution function Fz∗ .

From (4.4) we have:[
c(a, x1, x2)

]p ≤ B(p)
[
1 + (xp

1 + xp
2)

]
,

where B(p) = B(p,K1,K2) is a finite constant.
Also in view of (4.5), for i = 1, 2,

E[X(i)
t ]p = E

[
E

{
[X(i)

t ]p /Zt

}]
= E

∫ ∞

0

xpdFZt(x)

≤ sup
z∈[0,1]

∫ ∞

0

xpdFz(x) ≤ K.

Therefore supt≥0 E
[
c(a,X

(1)
t , X

(2)
t )

]p
< ∞.

Now from (4.3), Assumption 2 (a) and the well-known sufficient condition of con-
vergence of expectations, we obtain (6.7).

P r o o f o f P r o p o s i t i o n 3. For an arbitrary but fixed a ∈ A, we choose a
sequence {an}n≥1 ∈ A such that an → a as n → ∞. As previously, let z∗ = z∗(a)
and zn = zn(a) be the roots of, respectively, the equations ϕa(z) = z and ϕan(z) = z.
We remark that the uniqueness of the roots follows from Assumption 1. Thus

|zn − z| = |ϕan(zn) − ϕa(z)| ≤ |ϕa(z) − ϕa(zn)|

+|ϕa(zn) − ϕan(zn)| ≤ α|z − zn| + |a − an|M0,
(6.8)

where M0 is the constant from (4.7), and α = α(a) := supz∈[0,1] |ϕ′
a(z)| < 1 by

Assumption 3 (b) and Assumption 1 (a).
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From (6.8) we get:

|zn − z| ≤ M0

1 − α
| a − an|. (6.9)

Let us denote by X
(1)
∗,n, X

(2)
∗,n two i.i.d. random variables with the distribution

function Fzn , and as previously, X
(1)
∗ , X

(2)
∗ be i.i.d. random variables with the

distribution function Fz∗ . Using (6.9), Assumption 1 (b) we see that

(X(1)
∗,n, X

(2)
∗,n)

weakly−→ (X(1)
∗ , X

(2)
∗ ) (as n → ∞). (1)

Moreover, interpreting an, a as degenerative random variables and making use of
Assumption 3 (a) we see that c(an, X

(1)
∗,n, X

(2)
∗,n)

weakly−→ c(a,X
(1)
∗ , X

(2)
∗ ) (as n → ∞).

Here we do again the procedure of the previous proof and use the Assumption 2 (b)
and (c) to get:

sup
n≥1

E
[
c(an, X

(1)
∗,n, X

(2)
∗,n)

]p
< ∞.

Therefore

Ec(an, X
(1)
∗,n, X

(2)
∗,n) −→ Ec(a,X

(1)
∗ , X

(2)
∗ ),

or in view of (4.6) W (an) → W (a).

P r o o f o f P r o p o s i t i o n 4. From the definitions in (5.2) we have:

∆ = W (ã∗) − inf
a∈A

W (a) ≤ |W (ã∗) − W̃ (ã∗)| + | infa∈A W̃ (a) − infa∈A W (a)|

≤ 2 supa∈A |W (a) − W̃ (a)|,
(6.10)

where analogously to (4.6) and (5.1) we have

W (a) = Ec(a,X∗), W̃ (a) = Ec(a, X̃∗),

and the random variables X∗, X̃∗ have, respectively the distribution functions Fz∗

and F̃
ez∗ .

Let a ∈ A be arbitrary but fixed. Using Assumption 4 (a) and the two equivalent
definitions of the Kantorovich distance

`(F,G) :=
∫ ∞

−∞
|F (x) − G(x)|dx

between the distribution functions F and G, we can see (consult [9], Chapt. 8, for
details), that

∣∣Ec(a,X∗) − Ec(a, X̃∗)
∣∣ ≤ L

∫ ∞

0

∣∣Fz∗(x) − F̃
ez∗(x)

∣∣ dx (6.11)
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For arbitrary b ≥ 0,

I :=
∫ ∞

0

|F
ez∗(x) − F̃

ez∗(x)|dx ≤
∫ b

0

|Fz∗(x) − F̃
ez∗(x)|dx

+
1

bp−1

∫ ∞

b

xp−1
∣∣(1 − Fz∗(x)) − (1 − F̃

ez∗(x))
∣∣ dx

≤
∫ b

0

|Fz∗(x) − F̃
ez∗(x)|dx +

1
bp−1

×
[∫ ∞

0

xp−1(1 − Fz∗(x)) dx +
∫ ∞

0

xp−1(1 − F̃
ez∗(x)) dx

]
.

(6.12)

We integrate by parts and use (4.5) to find that the second term on the right-hand

side of (6.12) is less than
2

pbp−1
K.

The next task is to bound the first summand on the right-hand side of (6.12).
We observe that by Assumption 4 (b)

|Fz∗(x) − F̃
ez∗(x)| ≤ |Fz∗(x) − F

ez∗(x)| + |F
ez∗(x) − F̃

ez∗(x)|

≤ α|z∗ − z̃∗| + δ = α|Fz∗(a) − F̃
ez∗(a)| + δ,

(6.13)

where δ was defined in (5.3).
Letting ε := supx≥0 |Fz∗(x) − F̃

ez∗(x)|, we see from (6.13) that

ε ≤ αε + δ, or ε ≤ δ

1 − α
.

Therefore we can strengthen inequality (6.12) as follows:

I ≤ b

1 − α
δ +

2
pbp−1

K. (6.14)

We choose b =
[

2(1−α)K
δp

]1/p

to make both summands in the last inequality equal.
Finally, comparing (6.10), (6.11) and (6.14) we obtain the desired inequality (5.4).
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