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Managing Editors:

Lucie Fajfrová
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ABSORPTION IN STOCHASTIC EPIDEMICS

Josef Štěpán and Jakub Staněk

A two dimensional stochastic differential equation is suggested as a stochastic model
for the Kermack–McKendrick epidemics. Its strong (weak) existence and uniqueness and
absorption properties are investigated. The examples presented in Section 5 are meant to
illustrate possible different asymptotics of a solution to the equation.

Keywords: SIR epidemic models, stochastic epidemic models, stochastic differential equa-
tion, strong solution, weak solution, absorption, Kermack–McKendrick model
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1. INTRODUCTION

Consider a constant n0 > 0 and the 2-dimensional stochastic differential equation

dXt = − ϕ(Xt, Yt) dt + ψ(Xt, Yt) dWt, X0 = x0 ≥ 0
(1)

dYt =ϕ(Xt, Yt) dt − ψ(Xt, Yt) dWt − γYt dt, Y0 = y0 ≥ 0,

such that x0 + y0 = n0.

We shall assume and denote

ϕ,ψ : R2 → R Borel functions,
(2)

ϕ ≥ 0 on [0, n0]2, γ > 0.

The SDE (1) is designed to make more realistic the classical Kermack–McKendrick
epidemic model given by

dXt = −βXtYt, X0 = x0 > 0
dYt = βXtYt − γYt, Y0 = y0 > 0 (3)
dZt = γYt, Z0 = 0,

that assumes a fixed sized population of n0 = x0 + y0 individuals, the population
being divided into three subpopulations Xt, Yt and Zt = γ

∫ t

0
Ys ds, that change

their respective sizes Xt, Yt and γ
∫ t

0
Ys ds in time by means of the differential

equation (3). The individuals in Xt (susceptibles) are those exposed to an infection,
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Yt (infectives) denotes the size of individuals who are able to spread the infection
and finally Zt (removals) collect all restored to health not being able to be infected
again. Obviously, both in (1) and (3)

Xt + Yt + γ

∫ t

0

Ys ds = x0 + y0 = n0 (4)

holds. Since ϕ(Xt, Yt) (or βXtYt in (3)) measures the speed of the transfer in the
direction Xt → Yt, the constant β > 0 in (3) is called the intensity of infection. The
constant γ−1 is proportional to the average duration of the “state of being infected”.
The stochastic differentials ±ψ(Xt, Yt)dWt are designed to model a random exchange
between Xt and Yt subpopulations in both directions, where a negative value of
ψ(Xt, Yt)dWt suggests a possibility that some individuals might be infected again.
The Figure illustrates a well behaved epidemics with ϕ(x, y) = x+y+ and ψ(x, y) =√

x+y+ and a rather confusing model with ϕ(x, y) = ψ(x, y) = xy.
Our research is basically aimed at the problem of showing uniqueness and exis-

tence of nonnegative solutions (Xt, Yt) to (1).
A closely related problem is to determine whether the barriers x = 0 and y = 0

are absorbing or not.
The problem is how to recover the limit X∞ = n0 − γ

∫ ∞
0

Ys ds (the equality
follows by (4) since Y∞ = 0 holds under fairly general conditions by Theorem 2.3).

Recall that all problems stated above are easily and completely answered for the
equation (3) as follows ([9]):

Assuming that x0 > 0, y0 > 0, formula (3) has a unique solution (Xt, Yt) that is
positive on R+ = [0,∞) with Y∞ = 0. The limit X∞ = n0 − γ

∫ ∞
0

Ys ds is received
as a unique solution to

X∞ = x0 exp
{
−(n0 − X∞)

β

γ

}
> 0. (5)

The equation (3) is easily seen to be solved uniquely by

Żt = γ

(
n0 − Zt − x0 exp

{
−β

γ
Zt

})
, Żt = γYt, Z0 = 0, (6)

however, the explicit form of Zt as a function of time is not available.
Consider any solution (Xt, Yt) to (1) and define

τX := inf{t ≥ 0 : Xt = 0}, τY := inf{t ≥ 0 : Yt = 0}, (7)

and τ := τX ∧ τY . In (3) we get τX = τY = τ = ∞, but Example 5.1 exhibits
the equation with ψ(x, y) = 0 and ϕ(x, y) = γy+I(0,∞)(x) that is uniquely solved
by (Xt, Yt) where τY = ∞ and τX < ∞ which yields Yt > 0 for all t ≥ 0 and
X∞ = XτX

= 0.
Example 5.2 with

dXt = Y +
t I[Xt>0] dWt, dYt = −γYt dt − Y +

t I[Xt>0] dWt
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provides τY = ∞ a.s. and 0 < P [τX = ∞] < 1 if γ > 1
2 . By formula (14) below, we

are able to prove that for any nonnegative solution (Xt, Yt) to the equation (1) the
following implication holds almost surely:

τX < ∞ ⇒ Xt = 0, Yt = YτX e−γ(t−τX), t ∈ [τX ,∞) (8)

The implication is illustrated by the examples. Our principal results that will be
found in Section 3, are related to the unique strong and weak existence of the solution
(Xt, Yt) to (1). For example, the Theorem 3.1 states that the equation has a unique
solution (Xt, Yt) ∈ [0, n0]2 that is absorbed by the barrier B = {x = 0} ∪ {y = 0}
provided that ψ and ϕ are locally Lipschitz on (0, n0]2 and ψ = ϕ = 0 on B.

A generalization of the Kermack–McKendrick model (see (3)) is provided by
Štěpán and Hlubinka in [11]. The intensity β is assumed to be a function of
(Xt, Yt, Zt), or more simply a function of the removals subpopulation Zt while the
population size n0 is constructed to be time dependent and solves the Engelbert–
Schmidt equation.

In [5], Greenwood, Gordillo and Kuske present a stochastic SIR model with in-
fection rate β, removals rate γ and birth and death rate µ and compare its behavior
with the corresponding deterministic model. While the number of infectives con-
verges as time tends to infinity to a steady equilibrium, for the deterministic model,
the SIR model produces a permanent oscillation.

In [1], Allen and Kiruparaha offer both a deterministic and a stochastic epidemic
model with multiple pathogens. The models are studied in detail in the case of two
pathogens, the asymptotic stability of equilibrium is discussed, and the paper also
presents a series of numerical examples.

For the sake of completeness we also recall some more recent references that relate
to the deterministic dynamics of infections, further developing the research started
by the classical Kermack–McKendrick equation (3) introduced in [9]. These are
Bussenberg and Kenneth [3], Daley and Gani [4], Kalas and Posṕı̌sil [7] and finally
Wai-Yuan and Hulin [12] who offer a detailed review of the contemporary state of
art in the field of mathematical epidemic models.

A lot of papers concerned to deterministic and stochastic epidemic models are
collected also in [12].

2. PRELIMINARIES

The probabilistic framework for (1) is structured as (Ω,F , P,Wt,Ft), where (Ω,F , P )
is a complete probability space, (Ft, t ≥ 0) a P -complete right continuous filtration
and finally Wt is an Ft-Wiener process (W0 = 0). Our terminology and definitions
coincide with those introduced by [8], e. g. the random variables τX , τY and τ de-
fined by (7) are Ft-stopping times. Throughout the present section, we shall assume
(2) and consider a fixed solution (Xt, Yt) to the equation (1).

Lemma 2.1. If 0 < t < τ , then

γ

∫ t

0

Ys ds ∈ (0, n0) (9)
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holds outside a P -null set. Especially, Xt < n0 and Yt < n0 hold almost surely for
0 < t < τ . Moreover,

τ0 = inf
{

t ≥ 0 :
(

Xt, Yt, γ

∫ t

0

Ys ds

)
∈ R3 \ [0, n0]3

}
=: λ0 (10)

holds almost surely, where

τ0
X := inf{t ≥ 0 : Xt < 0}, τ0

Y := inf{t ≥ 0 : Yt < 0}, τ0 := τ0
X ∧ τ0

Y . (11)

P r o o f . Consider t ∈ (0, τ), therefore Ys > 0 and Xs > 0 for all s ≤ t which implies
that γ

∫ t

0
Ys ds > 0. Together with (4) we get Xt < n0, Yt < n0 and γ

∫ t

0
Ys ds < n0,

that proves (9). Obviously τ0
X ∧ τ0

Y ≥ λ0. If (Xt, Yt, Zt) 6∈ [0, n0]3 then
[Xt < 0] ∨ [Yt < 0] ∨ [∃ s ≤ t : Ys < 0] which proves that τ0

X ∧ τ0
Y ≤ t, hence

τ0
X ∧ τ0

Y ≤ λ0. ¤

Assuming
ψ(x, y) = ϕ(x, y) = 0, ∀ (x, y) 6∈ (0,∞)2, (12)

we may be more specific.

Lemma 2.2. τ0
X ∧ τ0

Y = λ0 = +∞ a.s. if ψ and ϕ satisfy (12).
In other words, (12) guarantees that (Xt, Yt, γ

∫ t

0
Ys ds) never exits the cube

[0, n0]3.

P r o o f . Assume to the contrary that λ0 < ∞. Then, there exists a t0 > 0 such that
either Xt0 < 0 or Yt0 < 0. If Xt0 < 0, denote s0 := sup{0 ≤ s ≤ t0 : Xs ≥ 0} < t0.
Thus, Xs ≤ 0 for all s0 ≤ s ≤ t0. Hence, according to (12),

Xt0 = Xs0 −
∫ t0

s0

ϕ(Xs, Ys) ds +
∫ t0

s0

ψ(Xs, Ys) dWs = Xs0 ≥ 0.

That is a contradiction.
If Yt0 < 0, denote s0 = sup{0 ≤ s ≤ t0 : Ys ≥ 0} < t0, hence Ys0 = 0 and Ys ≤ 0

on the interval [s0, t0]. For a t ∈ [s0, t0], we write

Yt = Ys0 +
∫ t

s0

ϕ(Xs, Ys) ds +
∫ t

s0

ψ(Xs, Ys) dWs − γ

∫ t

s0

Ys ds

that together with (12) yields that Yt = −γ
∫ t

s0
Ys ds holds on [s0, t0]. Hence, Yt = 0

for arbitrary t ∈ [s0, t0] that contradicts our assumption Yt0 < 0. ¤



462 J. ŠTĚPÁN AND J. STANĚK

Theorem 2.3. Consider the SDE (1) and assume (12). Then Xt is a nonnegative
Ft-supermartingal and almost surely the limits

X∞ = lim
t→∞

Xt, Y∞ = lim
t→∞

Yt = 0 a.s.

exists. Moreover,

τX < ∞ ⇒ Xt = 0, for all t ≥ τX , (13)

consequently
τX < ∞ ⇒ X∞ = XτX

= 0,

hold outside a P -null set.

P r o o f . It follows by (2) and Lemma 2.2 that

x0 +
∫ t

0

ψ(Xs, Ys) dWs = Xt +
∫ t

0

ϕ(Xs, Ys) ds

is a nonnegative martingale, hence Xt is a nonnegative supermartingale which pro-
cesses are known to have an integrable limits X∞ and to be absorbed by x = 0. Thus,
it follows by (4) that the limit Y∞ exists almost surely, and because γ

∫ ∞
0

Ys ds < n0,
by Lemma 2.2 it follows that Y∞ = 0 a.s. ¤

In particular, if ϕ and ψ satisfy (12) then

τX < ∞ ⇒ Yt = YτX
e−γ(t−τX), t ≥ τX (14)

holds almost surely.
To verify this, combine (12) and (13) to get

Yt = YτX
+

∫ t

τX

ϕ(Xs, Ys) ds−
∫ t

τX

ψ(Xs, Ys) dWs − γ

∫ t

τX

Ys ds = YτX
− γ

∫ t

τX

Ys ds.

Hence, under (12),

if X0 = 0, then X = 0, Yt = y0e
−γt is a unique solution to (1). (15)

Observing (4) we get Xt = n0 − Yt − γ
∫ t

0
Ys ds. This formula may be inverted as

follows:

Yt = −Xt + e−γtn0 + γe−γt

∫ t

0

eγsXs ds, t ≥ 0 a.s. (16)

To prove this, rewrite (4) as Yt = n0 −Xt − γ
∫ t

0
Ys ds and solve the equation by

means of proposition 21.2 in [8].
The implication (13) in Theorem 2.3 may be completed as follows:
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Lemma 2.4. Assume (12) and let n0 > 0. Outside a P -null set holds

τY < ∞ ⇒ τY < τX . (17)

Moreover, if (X,Y ) is absorbed by B = {x = 0} ∪ {y = 0} then

τY < ∞ ⇒ τX = ∞ (and X∞ = XτY
> 0) almost surely. (18)

P r o o f . If τX ≤ τY < ∞ then it follows by (13) that XτY
= YτY

= 0 which
contradicts (16) as X ≥ 0 by Lemma 2.2.

Consider a solution (X,Y ) that is absorbed by the barrier B and suppose that
τY < ∞, τX < ∞. Hence, τY < τX < ∞ by (17) and Y is absorbed by y = 0 at the
time τY . It follows that XτX

= YτX
= 0, a contradiction to (16), again. ¤

3. THE EXISTENCE AND UNIQUENESS

Throughout the rest of our presentation we shall consider the equation (1) with
x0 > 0, y0 > 0 and fix

ϕ,ψ : [0, n0]2 → R, ϕ ≥ 0, ϕ, ψ both locally Lipschitz on (0, n0]2 (19)

and bounded on [0, n0]2

such that

ϕ(x, 0) = ψ(x, 0) = 0, ϕ(0, y) = ψ(0, y) = 0, x, y ∈ [0, n0]. (20)

Our principal result is the following theorem:

Theorem 3.1. If ϕ and ψ satisfy (19) and (20), then there exists a unique process
(X,Y ) ∈ [0, n0]2 that is absorbed by the barrier B = {x = 0} ∪ {y = 0} and that
solves the equation (1).

Especially, assuming that ϕ and ψ in (19) and (20) are Lipschitz on [0, n0]2,
there exists a process (X,Y ) ∈ [0, n0]2 absorbed by B that is a unique nonnegative
solution to (1).

P r o o f . Let n0 > a1 > a2 . . . and lim
n→∞

an = 0, denote Dn = [an, n0]2 and assume

that (x0, y0) ∈ D1. Further, construct ϕn, ψn : R2 → R Lipschitz and bounded such
that

ϕn = ϕ and ψn = ψ on Dn, ϕn ≥ 0 and ϕn = ψn = 0 on R2 \ (0,∞)2.

The equation

dXt = −ϕn(Xt, Yt) dt + ψn(Xt, Yt) dWt, X0 = x0
(21)

dYt = ϕn(Xt, Yt) dt − ψn(Xt, Yt) dWt − γYtdt, Y0 = y0
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has a unique strong solution (Xn, Y n) as the coefficients ϕn(x, y), ψn(x, y) and γy
are Lipschitz of a linear growth. It follows by Lemma 2.2 that (Xn, Y n) is a process
that never leaves the cube [0, n0]2. Denote

λn := inf{t ≥ 0 : (Xn, Y n) 6∈ Dn}.

Observe that λn < ∞ a.s. since Y∞ = 0 a.s. by Theorem 2.3 and that the strong
uniqueness property of equation (21) implies that

(Xn+1, Y n+1) = (Xn, Y n) on [0, λn] and λn < λn+1, n ∈ N

holds outside a P -null set N . Put λ = supλn and for each ω ∈ Ω define a continuous
function

(X0(ω), Y 0(ω)) : [0, λ(ω)) → [0, n0]2

by
(X0(ω), Y 0(ω)) = (Xn(ω), Y n(ω)) on [0, λn(ω)].

We shall prove that outside another P -null set

λ < ∞ ⇒ there exists the limit (X0
λ− , Y 0

λ−) ∈ [0, n0]2 such that
(22)

either X0
λ− = 0 or Y 0

λ− = 0 holds.

To verify this, note that both ϕ(X0, Y 0)I[0,λ) and ψ(X0, Y 0)I[0,λ) are
Ft-progressive bounded processes, hence

Mt =x0 −
∫ t

0

ϕ(X0
s , Y 0

s )I[0,λ)(s) ds +
∫ t

0

ψ(X0
s , X0

s )I[0,λ)(s) dWs

Nt =y0 +
∫ t

0

ϕ(X0
s , Y 0

s )I[0,λ)(s) ds −
∫ t

0

ψ(X0
s , X0

s )I[0,λ)(s) dWs

− γ

∫ t

0

Y 0
s I[0,λ)(s) ds

are well defined continuous Ft-semimartingales on R+ such that

(M,N) = (X0, Y 0) on [0, λ) (23)

holds almost surely.
It follows that λ < ∞ implies the existence of the left limit (Xλ− , Yλ−) =

(Mλ, Nλ) ∈ [0, n0] almost surely. Because either (X0
λn

, Y 0
λn

) = (an, Y 0
λn

) or (X0
λn

, Y 0
λn

)
= (X0

λn
, an) and λn ↗ λ, we conclude that either X0

λ− = 0 or Y 0
λ− = 0. Finally, put

(Xt, Yt) = (X0
t , Y 0

t )I[0,λ)(t) + (X0
λ−

, Y 0
λ−

e−γ(t−λ))I[λ,∞)(t), (24)

check that it is a continuous Ft-adapted process that lives in [0, n0]2 and that is
absorbed by the barrier B.
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We shall prove the uniqueness of the absorbed process: Assume that

(X,Y ) and (X ′, Y ′) are both absorbed by B and solve (1) for some
(25)

(ϕ, ψ).

It follows by Lemma 2.2 that processes (X,Y ) and (X ′, Y ′) stay in [0, n0]2 forever.
Denote

λn := inf{t ≥ 0 : (Xt, Yt) 6∈ Dn} ∧ inf{t ≥ 0 : (X ′
t, Y

′
t ) 6∈ Dn} < ∞ a.s.

and check that both (X,Y ) and (X ′, Y ′) solves the (21) equation on the interval
[0, λn]. Owing to the strong uniqueness property of the equation (21), we conclude
that outside a P -null set

(X,Y ) = (X ′, Y ′) holds on [0, λ) where λ = supλn. (26)

It remains to prove that

(X,Y ) = (X ′, Y ′) on [λ,∞) if λ < ∞ (27)

is a statement to be true with probability one.
For these purposes note that (26) verifies that the implication

λ < ∞ ⇒ (Xλ, Yλ) = (X ′
λ, Y ′

λ) ∈ B

holds almost surely. Because both processes (X,Y ) and (X ′, Y ′) are absorbed by
B, we get that

λ < ∞ ⇒ ϕ(X,Y ) = ψ(X,Y ) = 0 on [λ,∞) almost surely

and therefore outside a P -null set

λ < ∞, t ≥ λ ⇒

{
(Xt, Yt) = (Xλ, Yλ − γ

∫ ∞
λ

Ys ds)

(X ′
t, Y

′
t ) = (X ′

λ, Y ′
λ − γ

∫ ∞
λ

Y ′
s ds)

holds. Hence,

λ < ∞, t ≥ λ ⇒

{
Xt = Xλ = X ′

λ = X ′
t

Yt = Yλe−γ(t−λ) = Y ′
λe−γ(t−λ) = Y ′

t

which verifies (27).

The “especially part” now follows in a straightforward manner: We have already
proved that there is an absorbed process (X,Y ) ∈ [0, n0]2 that solve equation (1).
Because ϕ+ and ψ+ are Lipschitz maps, the equation has a unique strong solution,
hence the solution is absorbed by the barrier B. ¤

One can also apply the above reasoning to prove the following corollary:
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Corollary 3.2. Assuming (19) and (20), the uniqueness in law holds for the equa-
tion (1) in the following sense:

If (Xt, Yt) ∈ (0, n0)2 and (X ′
t, Y

′
t ) ∈ (0, n0)2 are solutions to (1) (defined perhaps

on different probability spaces) then L(X,Y ) = L(X ′, Y ′).

For the p r o o f , just note that uniqueness in law holds for equation (21).

4. ABSORPTION

We are able to offer sufficient conditions for the equation (1) to produce solutions,
which are absorbed by {y = 0}, hence absorbed by the barrier B.

Theorem 4.1. Let the uniqueness in law1 holds for the equation (1). Then as-
suming (12), its arbitrary solution (X,Y ) is absorbed by the barrier B.

P r o o f . Just note that generally any solution (X,Y ) may be reorganized to a
solution (Xa, Y a) that is absorbed by {y = 0} as follows:

(Xa, Y a) = (X,Y ) on [0, τY ),
(28)

(Xa, Y a) = (XτY
, 0) on [τY ,∞).

¤
The uniqueness in law is not a property easy to recognize. Itô theorem (e. g.

Theorem 21.3, p. 415, in [8]), that proves the property for ϕ and ψ Lipschitz on
[0, n0]2, may not be always adequate in our context. A weaker sufficient condition
is suggested by the following lemma.

Theorem 4.3. Let ϕ and ψ satisfy (12) and suppose that there exists an ε > 0
such that

0 ≤ y ≤ ε ⇒ ϕ(x, y) ≤ γy for all x ∈ [0, n0]. (29)

Then arbitrary solution (X,Y ) to (1) is absorbed by the barrier B.

P r o o f . Note that

Zt := −I[τY <∞]

∫ t+τY

τY

ψ(Xs, Ys) dWs

is a continuous FτY +t-local martingale and

Yt+τY = I[τY <∞]

∫ t+τY

τY

ϕ(Xs, Ys) − γYs ds + Zt, t ≥ 0

a continuous FτY +t-semimartingale. Denoting

τδ := inf{t ≥ 0 : Yt+τY ≥ δ}, δ > 0

1If (X, Y ) and (X́, Ý ) are solutions (perhaps on different probability spaces) then (X, Y ) and

(X́, Ý ) have the same probability distribution in C(R+, R2).
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we define an FτY +t-stopping time and by Zt∧τδ
an FτY +t-local martingale. It follows

that for arbitrary 0 < δ ≤ ε

Zt∧τδ
= Yt∧τδ+τY

− I[τY <∞]

∫ t∧τδ+τY

τY

ϕ(Xs, Ys) − γYs ds ≥ 0

is a nonnegative FτY +t-local martingale, hence a nonnegative FτY +t-supermartingale.
Therefore

Yt∧τδ+τY
= YτY

= 0, t ≥ 0

holds almost surely for arbitrary 0 < δ ≤ ε. Especially the implication

τY < ∞, τδ < ∞ ⇒ Yτδ+τY = 0

is true outside a P -null set. It follows that P [τY < ∞, τδ < ∞] = 0 for all 0 < δ ≤ ε,
hence the process Y is absorbed by {y = 0}. ¤

5. EXAMPLES

Example 5.1. Consider the deterministic equation

dXt = −γY +
t I[Xt>0] dt, dYt = γY +

t I[Xt>0] dt − γYt dt (30)

with x0 = y0 = γ = 1. This is an equation (1) with ϕ(x, y) = γy+I(0,∞)(x) and
ψ(x, y) = 0, i. e. subject to (12). A solution is found easily as

Xt = (1 − t)+, Yt = e−(t−1)+ (31)

with τX = 1 and τY = +∞. Because ϕ(x, y) ≤ γy for all x ∈ [0, n0] it follows
by Lemma 2.2 and Theorem 4.3 that any solution to (30) is a nonnegative process
absorbed by the barrier B. “The moreover part” of Theorem 3.1 further yields that
(31) is a unique solution to (30) as ϕ and ψ are locally Lipschitz maps on (0, n0]2.

Example 5.2. The equation

dXt = Y +
t I[Xt>0] dWt, dYt = −γYt dt − Y +

t I[Xt>0] dWt, x0 > 0, y0 > 0 (32)

with ϕ(x, y) = 0 and ψ(x, y) = y+I(0,∞)(x) has a diffusion coordinate Xt. The-
orem 3.1 later on with Theorem 4.3 states that (32) has a unique nonnegative
solution (X,Y ). We shall verify that τY = ∞ a.s. It is possible to prove by us-
ing Itô formula (e. g. Theorem 17.18, p. 340, in [8]), that outside a P -null set,
Yt = y0 exp

{
−

(
γ + 1

2

)
t − Wt

}
> 0, for all t ∈ [0, λ], hence τY = ∞ almost surely.

We shall denote

Zt = exp
{
−

(
γ +

1
2

)
t − Wt

}
, λ = inf

{
t ≥ 0 :

∫ t

0

Zs dWs = −x0

y0

}
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and define

Xt = x0 + y0

∫ t∧λ

0

Zs dWs, Yt =

{
y0Zt, t < λ

y0Zλe−γ(t−λ), t ≥ λ.
(33)

Note that τX = λ and that (X,Y ) is the unique solution to (32) as Zt solves linear
equation dZt = −γZt dt − Zt dWt with Z0 = 1.

First, observe that P [τX < ∞] > 0. Obviously

τX ≤ inf
{

t ≥ 0 : Zt =
n0

y0

}
:= r

almost surely, because r is time of the first entry of Yt into {n0}. Thus,

τX ≤ r = inf
{

t ≥ 0 :
(

γ +
1
2

)
t + Wt = ln

y0

n0

}
.

It is a well known fact (see p. 18 in [10]) that

P [τX < ∞] ≥ P [r < ∞] = exp
{

2
(

1
2

+ γ

)
ln

y0

x0

}
> 0

as ln y0
n0

< 0 and γ + 1
2 > 0.

On the other side, it may happen that P [τX = ∞] > 0.

Denote It =
∫ t

0
Zs dWs and recall that τX = λ = inf{t ≥ 0 : It = −x0

y0
=: l0}.

Write β(t) := 〈I〉(t) =
∫ t

0
Z2

s ds and apply the DDS Theorem (e. g. Theorem 18.4,
p. 352, in [8]) to exhibit a Wiener process B such that Bβ(t) = It on R+ almost
surely2. Denote by ε the time of the first entry of B into {l0} and recall that ε < ∞
almost surely while Eε = ∞. Obviously,

τX = λ = ∞ ⇐⇒ ε ≥ β(∞) almost surely. (34)

We compute that

EZ2
t = Eexp{(−2γ + 1)t − 2Wt − 2t} = e(1−2γ)t, (35)

hence Eβ(∞) < ∞ if γ > 1
2 . It follows that P [ε < β(∞)] < 1 and that

P [τX = ∞] > 0 by (34) for γ > 1
2 . Thus, P [τX < ∞] ∈ (0, 1) if γ > 1

2 .
On the behavior of τX for more reasonable values γ ≤ 1

2 we may only remark
that Eβ(∞) = ∞ (see (35)) and β(∞) < ∞ almost surely (for all γ > 0). To verify
the latter statement apply the SLLN for W choosing δ < 2γ+1

2 and a Tm > 0 large
enough that |Wt(ω)

t | ≤ δ for all t > Tm, hence

Z2
t (ω) = exp

{[
−(2γ + 1) − 2

Wt(ω)
t

]
t

}
≤ exp{[−(2γ + 1) + 2δ]t}

for all t ≥ Tm.
2To construct B we may need to extend the underlying probability space (Ω,F , P ) to its standard

extension, see [8], p. 352.
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Example 5.3. Consider a ≥ 0, c ∈ R and the equation

dXt = −cY +
t I[Xt>0] dt +

√
2aY +

t I[Xt>0] dWt,
(36)

dYt = (cY +
t I[Xt>0] − γYt) dt −

√
2aY +

t I[Xt>0] dWt,

with X0 = x0 > 0, Y0 = y0 > 0. The coefficients ϕ(x, y) = −cy+I(0,∞)(x) and
ψ(x, y) =

√
2ay+I(0,∞)(x) are locally Lipschitz on (0, n0]2, hence there is a unique

nonnegative by the barrier B absorbed solution (X,Y ) to (36). Assuming c ≤ γ it
follows by Theorem 4.3 that (36) has no other solution. Having a ≥ 0 arbitrary, the
solution is constructed as follows: the equation

Zt = y0 + (c − γ)
∫ t

0

Zs ds −
∫ t

0

√
2aZ+

s dWs (37)

has a unique strong solution Zt ≥ 0, for a not completely trivial verification, see
Example 8.2, p. 221 in [6]. Putting λZ = inf{t ≥ 0 : Zt = 0} one can verify that
P [λZ < ∞] > 0 and that

c ≤ γ ⇒ P [λZ < ∞] = 1 and ZλZ+t = 0 ∀ t ≥ 0 a.s. (38)

Also define

It = x0 − c

∫ t

0

Zs ds +
∫ t

0

√
2aZ+

s dWs, λI = inf{t ≥ 0 : It = 0},

and λ = λZ ∧ λI .
A straightforward calculation proves that

Xt = It∧λ, Yt =
{

Zt, t < λ
Zλe−γ(t−λ), t ≥ λ.

(39)

solve the equation (36), hence it is a unique nonnegative absorbed solution to (36)
(a unique nonnegative solution to (36) if c ≤ γ).

Note that

λI ≤ λZ =⇒ τX = λI and τY = ∞
(40)

λZ < λI =⇒ τX = ∞ and τY = λZ < ∞

holds almost surely by Lemma 2.4 and therefore τX ∧ τY = λ. Assume

y0 ≤ x0, 0 < c ≤ γ

2
, a =

1
2

(⇒ c − γ ≤ −c and λZ < ∞ a.s.) (41)

and prove that P [τY < ∞] > 0.
Put α(t) :=

∫ t

0
Zs ds = 〈

∫ √
Z+

s dWs〉(t) and note that α is strictly increasing
on [0, λZ) and a constant on [λZ ,∞). As in Example 5.2 we may exhibit a Wiener
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process B such that
∫ t

0

√
Z+

s dWs = Bα(t) almost surely, hence assuming a = 1
2 ,

Zt = Z ′
α(t) and It = I ′α(t) hold almost surely where

Z ′
t = y0 + (c − γ)t + Bt and I ′t = x0 − ct − Bt

is a pair of drifted Brownian motions. Now assume that τY = ∞ a.s. and observe
that (40) yields that λI ≤ λZ < ∞ a.s. It follows that

λI′ = α(λI) ≤ α(λZ) = λZ′ . (42)

On the other hand,

Z ′
t = x0 + (c − γ)t + Bt ≥ x0 + ct + Bt =: I ′′t and L(I ′′) = L(I ′). (43)

Consequently,

λZ′ ≤ λI′′ =: inf{t ≤ 0 : I ′′t = 0} and L(λI′′) = L(λI′). (44)

Combining (42) and (44) we get for any t ≤ 0

P [λZ′ ≥ t] ≤ P [λI′′ ≥ t] = P [λI′ ≥ t] ≤ P [λZ′ ≥ t],

hence, L(λZ′) = L(λI′) which together with (42) yields λZ′ = λI′ almost surely
and a contradiction because Z ′ and I ′ are distinct processes almost surely, therefore
P [τY < ∞] > 0.

Finally, the procedure introduced above may serve to exhibit the probability
distribution of the random variable n0− (Xλ +Yλ) = γ

∫ λ

0
Ys ds that defines the size

of “Removals subpopulation” at the time λ = τY ∧ τX = λZ ∧ λI .
We assume (38) again to get λZ < ∞ a.s. This verifies that λI ≤ λZ iff λI′ ≤ λZ′ ,

hence α(λ) = λI′ ∧ λZ′ a.s. and

n0 − (Xλ + Yλ) = γ

∫ λ

0

Ys ds = γ

∫ λ

0

Zs ds = γα(λ) = γ(λI′ ∧ λZ′) a.s.

Example 5.4. Consider the equation

dXt = I[Xt>0,Yt>0] dWt, dYt = −γY dt − I[Xt>0,Yt>0] dWt (45)

with x0 > y0 > 0, i. e. ϕ(x, y) = 0 and ψ(x, y) = I(0,∞)2(x, y). Using Theorem 3.1
together with Theorem 4.3 we get that equation (45) has a unique solution which is
absorbed by the barrier B.

Because Xt = x0 + Wt∧τ and Yt = y0 − γ
∫ t

0
Ys ds − Wt∧τ ≤ y0 − Wt∧τ almost

surely then τX = inf{t ≥ 0 : Wt = −x0} and τ ≤ τ(−x0,y0) where τ(−x0,y0) :=
inf{t ≥ 0 : Wt 6∈ (−x0, y0)}, hence τ < ∞ almost surely (see Proposition 7.3, p. 14,
in [10]).
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It remains to prove that P [τX < ∞] > 0 and P [τY < ∞] > 0. First define
τy̌ := inf{t ≥ 0 : Wt = y0 − γn0t} and note that τY ≥ τy̌. Obviously τX ∧ τy̌ ≤ 1

γ ,
hence (see p. 295 in [2])

P [τX < ∞] ≥ P

[
τX ≤ 1

γ

]
≥ P

[
τy̌ >

1
γ

]
=

∫ ∞

1
γ

y0√
2πt

3
2

exp
{
− (y0 − γn0t)2

2t

}
dt > 0

holds. On the other hand, if we denote τy0 = inf{t ≥ 0 : Wt = y0}, then
P [τY < τX ] ≥ P [τy0 ≤ τX ] = x0

n0
> 0 (see Proposition 7.3, p. 14, in [10] again),

therefore P [τY < ∞] ≥ x0
n0

> 0.

Example 5.5. Another equation that provides a unique solution (X,Y ) with
P [τY < ∞] > 0 is

dXt =
√

X+
t ∧ Y +

t dWt, X0 = x0 > 0
(46)

dYt = −
√

X+
t ∧ Y +

t dWt − γYt dt, Y0 = y0 > 0.

The coefficients ϕ(x, y) = 0 and ψ(x, y) =
√

x+ ∧ y+ are chosen to be locally Lips-
chitz on (0, n0]2 such that ϕ = ψ = 0 on R2 \ (0,∞)2 and ϕ(x, y) ≤ γy when y ≥ 0.
It follows from Theorem 4.3 and Theorem 3.1 that (46) has a unique solution (X,Y )
which is nonnegative and absorbed by the barrier B = [x = 0] ∪ [y = 0]. More-
over, the process Xt is a bounded martingale, hence EX∞ = x0 > 0, and therefore
P [X∞ > 0] = p > 0. Because Y∞ = 0 almost surely, we may construct a T > 0 such
that P (A) ≥ p/2, where A = [Xt > Yt, t ≥ T ]. The equation

Zt = YT −
∫ t

T

√
Z+

s dWs − γ

∫ t

T

Zs ds, t ≥ T

has a unique strong solution Z ≥ 0 with λZ = inf{t ≥ T : Zt = 0} < ∞ a.s. by
Example 8.2 in [6] again. It follows that there is a P -null set N such that

ω ∈ A \ N ⇒ Yt(ω) = Zt(ω) for all t ≥ T and τY = λZ < ∞

hence, P [τY < ∞] ≥ P (A) ≥ p/2 > 0. Using Theorem 2.3, we get P [τX = ∞] ≥
P [X∞ > 0] = p > 0.

Example 5.6. Consider a bounded ϕ, locally Lipschitz and positive on (0, n0]2

such that ϕ(x, y) = 0 on R2 \(0,∞)2. Then ψ(x, y) =
√

ϕ(x, y) is a locally Lipschitz
function on (0, n0]2 and we shall scrutinize the following equation:

dXt = −cϕ(Xt, Yt) dt +
√

ϕ(Xt, Yt) dWt, X0 = x0 > 0
(47)

dYt = cϕ(Xt, Yt) dt − γYt dt −
√

ϕ(Xt, Yt) dWt, Y0 = y0 > 0
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where c > 0, a more general version of the equation (36). It follows by the Theo-
rem 3.1 that (47) has a unique nonnegative solution (X,Y ) that is absorbed by the
barrier B = [x = 0] ∪ [y = 0]. Note that

τX ∧ τY = τ = inf{t ≥ 0 : (Xt, Yt) ∈ B} = inf{t ≥ 0 : ϕ(Xt, Yt) = 0}

and observe that α(t) =
∫ t

0
ϕ(Xs, Ys) ds = 〈

∫ √
ψ(Xs, Ys) dWs〉(t) is a process

strictly increasing on [0, τ) and constant on [τ,∞). Apply the DDS theorem again to
write

∫ t

0

√
ϕ(Xs, Ys) dWs = Bα(t), where B is a Wiener process. Thus, the coordinate

X may be represented as Xt = X ′
α(t), where

X ′
t = x0 − ct + B(t)

is a drifted Brownian motion. Consider ϕ(x, y) a Lipschitz on [0, n0]2 with Lipschitz
constant Cϕ, then

α(∞) =
∫ ∞

0

ϕ(Xs, Ys) ds ≤
∫ ∞

0

CϕYs ds =
Cϕ

γ
(n0 − X∞) ≤ Cϕn0

γ
.

Denote λX′ := inf{t ≥ 0 : X ′
t = 0}, then

P [τX = ∞] = P [λX′ ≥ α(∞)] ≥ P

[
λX′ ≥ Cϕn0

γ

]
> 0 (48)

(see p. 295 in [2] again).
An interesting specification of the equation (47) is

dXt = −βX+
t Y +

t dt +
√

βX+
t Y +

t dWt

(49)
dYt = βX+

t Y +
t dt − γYt dt −

√
βX+

t Y +
t dWt,

where β > 0. Note that the solution (X,Y ) to (49) terminates as in (48), i. e. we
know only that P [τX = ∞] is positive.

On the other hand, having a solution to

dXt = −βXtYt dt + βXtYt dWt
(50)

dYt = βXtYt dt − γYt dt − βXtYt dWt

then

Xt = x0 exp
{
−β

∫ t

0

Ys ds + β

∫ t

0

Ys dWs −
1
2
β2

∫ t

0

Y 2
s ds

}
> 0

Yt = y0 exp
{

β

∫ t

0

Xs ds − β

∫ t

0

Xsd dWs −
1
2
β2

∫ t

0

X2
s ds − γt

}
> 0

hence, τX = τY = ∞ almost surely. The choice of the diffusion coefficient as a square
root of the trend coefficient (see (49)) is frequently used, see [1] and [5]. Adding this
diffusion coefficient to the Kermack–McKendrick model, the behavior of the model
does not change dramatically, while the choice in the equation (50) provide more
rugged paths, see Figure.
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Fig. Five simulations of (Xt, Yt, γ
R t

0
Ys ds), where (X, Y ) is a solution to (49) (left) and

(50) (right). Dotted line is used for Xt, solid line for Yt and dashed line for γ
R t

0
Ys ds.

The parameters are β = 0.38 and γ = 0.25.

Example 5.7. Consider a Langevin type of the equation (1):

dXt = −βI[Xt>0]Y
+
t dt + I[Xt>0,Yt>0] dWt, X0 = x0 > 0

(51)
dYt = βI[Xt>0]Y

+
t dt − γYt dt − I[Xt>0,Yt>0] dWt, Y0 = y0 > 0.

According to Theorem 3.1 the equation has a unique nonnegative absorbed solution
(X,Y ) and has unique nonnegative solution (X,Y ) assuming that β ≤ γ according
to Theorem 4.3. The solution is constructed as follows: Solve first the Langevin
equation

dZt = (β − γ)Zt dt − dWt, Z0 = y0 (52)

to get a unique strong solution

Zt = e−(β−γ)t

(
y0 −

∫ t

0

e(γ−β)s dWs

)
.

Define

It = x0 − β

∫ t

0

Zs ds + Wt, λZ = inf{t ≥ 0 : Zt = 0}, λI = inf{t ≥ 0 : It = 0}

and λ = λZ ∧ λI . Then the absorbed solution (X,Y ) to (51) reads as follows:

Xt = It∧λ, Yt =

{
Zt, t < λ

Yλe−γ(t−λ), t ≥ λ.

One can easily verify the implications (40), hence τX ∧ τY = λ a.s.
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