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George Klir, Ivan Kramosil, Tomáš Kroupa,
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A COMPARISON OF TWO FEM–BASED METHODS
FOR THE SOLUTION OF THE NONLINEAR OUTPUT
REGULATION PROBLEM

Branislav Rehák, Sergej Čelikovský, Javier Ruiz-León

and Jorge Orozco-Mora

The regulator equation is the fundamental equation whose solution must be found in
order to solve the output regulation problem. It is a system of first-order partial differen-
tial equations (PDE) combined with an algebraic equation. The classical approach to its
solution is to use the Taylor series with undetermined coefficients. In this contribution,
another path is followed: the equation is solved using the finite-element method which is,
nevertheless, suitable to solve PDE part only. This paper presents two methods to handle
the algebraic condition: the first one is based on iterative minimization of a cost functional
defined as the integral of the square of the algebraic expression to be equal to zero. The sec-
ond method converts the algebraic-differential equation into a singularly perturbed system
of partial differential equations only. Both methods are compared and the simulation re-
sults are presented including on-line control implementation to some practically motivated
laboratory models.

Keywords: nonlinear output regulation, singularly perturbed equation, gyroscope

AMS Subject Classification: 93C10

1. INTRODUCTION

The output regulation problem (ORP) is one of the most important problems of the
recent control theory and its applications. As a matter of fact, it expresses the most
typical practical control problem: the system output should follow a given reference
while rejecting undesired disturbances. Specific feature of the output regulation is
that the reference to be followed and disturbances to be rejected are generated by
the known autonomous system, called as the exogeneous one.

The output regulation problem was extensively studied in [5, 6] for linear sys-
tems. For nonlinear systems, the problem was first studied in [7], and solutions to
the output regulation of nonlinear systems have been presented in [12] using “full
information” which includes the measurements of exogenous signals as well as of
the system state. The necessary and sufficient conditions for the existence of a
local full information solution of the classical output regulation problem are given
in [4, 9, 10, 11, 12]; they basically mean that the linearized system is stabilizable and
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there exists a certain invariant manifold. The classical output regulation via error
feedback has been solved in [1, 13] by application of system immersion technique.
The plant uncertainty (parameterized by unknown constant parameters) is treated
as a special case of exogenous signals and the solution, extended from the error
feedback regulation, is referred to as the structurally stable regulation in [1]. For
the more detailed study of the topic of the output regulation the interested reader
is referred to the recent nicely written monograph [8].

The basic approach, introduced by [12], uses the solution of the so-called regulator
equation. This equation is a system of partial differential equations (PDE) combined
with the algebraic restriction and its solution may be obtained off-line, in advance
during the regulator design, since it requires the data of the model of the plant
and of the exosystem only. As a consequence, sophisticated numerical methods and
unrestricted computing time are assumed to be available to handle this task. Yet,
the solvability of such systems of equations remains a rather complex issue with
many open problems. Moreover, the regulator equation does not fit into the usual
framework of the partial differential equations − it is a first-order problem on the
whole space Rµ (µ being the number of independent variables which is equal to the
dimension of the exosystem) with singularity in its coefficients.

The existing results concerning solvability of the regulator equation are based on
the so-called geometrical approach and require a special structure of the controlled
system. The simplest situation is when both the controlled plant and the exosystem
are hyperbolically minimum phase (see [12]), while [10] shows that the regulator
equation can be reduced to the partial differential equation part for a quite general
class of systems together with algorithms for the solution of this PDE. Nonethe-
less, these algorithms require laborious symbolic computation and are not easy to
implement as a universal applicable algorithm. This is because they are based on
an undetermined power series technique [9] requiring skilled mathematician efforts
during each particular system regulator design.

The aim of this paper is to further develop methods for solution of the regulator
equation overcoming the drawbacks mentioned above. Namely, to create computer
implemented algorithms, easily and universally applicable by almost any engineer
for every system from some reasonable class without necessity to study sophisticated
mathematics. The common feature of the presented methods is the use of the finite-
element method (FEM) for the evaluation of the solution of the partial differential
part of the regulator equation. The finite-element method is a widely used method
for solution of partial differential equations arising in many areas of physics and
technology. There are also numerous theoretical results concerning properties of
this method. These facts motivated us to apply the finite elements to the problem
described here.

As the regulator equation contains an algebraic condition, the finite elements
cannot be applied directly. To overcome this difficulty two new approaches were
investigated: the first approach is based on optimizing an error functional while the
second one uses singular perturbations. A universal algorithm for the solution of the
regulator equation based on the finite-element method and optimizing a functional
was first introduced in [2]. The second method, based on the singular perturbation of
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differential equations theory [18] is presented in [15] for the case of full-information
feedback and in [3] for the case of error-feedback. This method was verified by
simulations on the gyroscope model, the results of simulations are included in this
paper. Real-time results obtained on the laboratory gyroscope model can be found
in [16]. The aim of this paper is to further develop and compare these two methods
for the solution of the regulator equation.

The paper is organized as follows. The output regulation problem (ORP) is
briefly introduced in the next section, while the Section 3 explains the crucial role
of the regulator equation in solving the ORP. Section 4 collects known methods to
solve RE and introduces in detail the singular perturbation based method to solve
RE. Section 5 describes the laboratory model of gyroscopical platform and solves
RE arising in its ORP while the subsequent section provides both simulation and
experimental laboratory implementation results. Section 7 discusses implementation
and numerical aspects of the methods, while the final section draws some paper
conclusions.

2. THE OUTPUT REGULATION PROBLEM

At this stage some facts on nonlinear output regulation problem are recalled [9, 12].
Consider the plant

ẋ = f(x(t)) + g(x(t))u(t) + p(x(t))w(t)
y(t) = h(x(t)), (1)

where sufficient smoothness of the vector fields f, g, p and row function h is assumed.
Further, x(t) ∈ Rn is the state, u(t) ∈ Rm is its input, y(t) ∈ R its output and
w(t) ∈ Rµ is the state of the so-called exogeneous system (exosystem). This system
is supposed to be known, i. e. for the known functions s : Rµ → Rµ and q : Rµ → R
the exosystem is given by

ẇ = s(w), v = q(w). (2)

As a matter of fact, the output of the exosystem v(t) generates the reference signal to
be followed and/or the disturbance signal to be rejected. The exosystem is assumed
to be Lyapunov stable in both the forward and the backward time directions. This
property is sometimes called as the neutral stability. Thereby, exogeneous signal
is used to describe both reference to be tracked and undesired disturbance to be
rejected. This leads to the so-called output regulation problem (ORP), which may
be tackled by various kinds of feedback compensators.

The full information output regulation problem1 consists in finding the feedback
compensator u = α(x,w) such that

1. if no exogenous signal is present then the equilibrium x = 0 of the controlled
system is exponentially stable;

2. there exists a neighborhood U ⊂ Rn+µ of (0, 0) such that for each initial
condition (x(0), w(0)) it holds limt→+∞(h(x(t)) − v(t)) = 0.

1Full information means that all the states are measured, hence no observer is necessary.
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The error-feedback output regulation problem2 consists in finding the feedback com-
pensator

e = h(x) − v, ż = f̃(e, z, u), u = α(z, w) (3)

with the following properties:

1. if no exogenous signal is present the equilibrium x = 0 of the controlled system
(1,3) is exponentially stable;

2. there exists a neighborhood U ⊂ Rn+µ of (0, 0) such that for each initial
condition (x(0), v(0)) and solution (1,3) it holds limt→+∞(h(x(t))− v(t)) = 0.

The involved observer contains the copy of both the controlled system and the
exosystem affected by the additional loop − the output injection. Thus, the observer
dimension is n + µ and its state is denoted by z. As mentioned above, it can be
decomposed as follows

z =
(

zT
x zT

w

)T
.

Here the zx-part converges to the state of the controlled system and the zw-part
converges to the state of the exosystem. This approach allows to use the state
feedback that was designed for the full-information case only even in the case of
error feedback simply by replacing the true state (x, w) by its approximation − the
state of the observer z.

At the end of this section let us briefly mention the concept of the so-called
relative degree of the controlled system (1). For details, see [8, 14]. Assume there
exists a positive integer ν such that y(t), ẏ(t), . . . , y(ν−1)(t) do not depend explicitly
on u(t) while y(ν)(t) does depend on u(t). Denote ξ1(t) = y(t), ξ2(t) = ẏ(t) etc. up
to ξν(t) = y(ν−1)(t). Then there exist a vector η(t) ∈ Rn−ν , a scalar function ϕ and
a vector function Φ such that the system (1) can be reformulated as

d
dt


ξ1

...
ξν−1

ξν

η

 =


ξ2

...
ξν

ϕ(ξ1, . . . , ξnu, η, u)
Φ(ξ1, . . . , ξnu, η, u)

 .

The integer ν is called the relative degree of the system (1). The dynamical system

d
dt

η̃ = Φ(0, . . . , 0, η̃, 0)

is usually called as the zero dynamics. If the zero dynamics of a given nonlinear
system is asymptotically (exponentially) stable, it is called as the (exponentially)
minimum phase system.

2The error-feedback means that only the tracking error (3) is measured, hence an observer
must be designed to reconstruct the state of both the plant and the exosystem from the error
measurements.
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3. REGULATOR EQUATION AND ITS SOLUTION

The aim of this section is to introduce the so-called Regulator Equation (RE) and
describe its role in ORP solution. As a matter of fact, the RE is the crucial relation,
its solution being the essential part of the feedback compensators solving any kind
of ORP.

The solution of the RE, denoted as (x, c) : Rµ → Rn+1, provides the so-called
zero-error manifold x = x(w) which is forward invariant under the influence of
open loop control u = c(w). More precisely, this manifold is the µ-dimensional
manifold with the following property: if the state of the exosystem at the time
t is equal to w(t) then the tracking error equals to zero if the state of the plant
coincides with x(w(t)). Moreover, if the controlled input u equals to c(w), the
manifold x = x(w) is the maximal forward invariant manifold of the system (1)
having that zero-error property. The above intuitively geometric description of the
RE concepts immediately indicates its crucial role for the ORP problem solution.
Indeed, having the RE solution, the compensator ORP should simple stabilize the
zero-error manifold, i. e. to force trajectories starting away from it to converge to it.

The regulator equation is given by

∂x
∂w

s(w) = f(x(w), c(w), w) (4)

0 = h(x(w)) − q(w). (5)

Here, the equation (5) expresses the requirement that the tracking error is equal to
zero when x = x(w) while the condition (4) enforces forward invariance of the zero-
error manifold provided the control u = c(w) is applied.3 As already mentioned,
the RE is the key ingredient of the control scheme achieving any kind of ORP
solution, [8]. For example, in case of the full-information ORP, the control scheme
that achieves it might be expressed in the following form:

u(t) = K(x(t) − x(w(t))) + c(w(t)), (6)

where the meaning of the variables is as follows

• u(t) is the control at the time t,

• w(t) is the state of the exosystem at the time t,

• x is the state of the system (1),

• x(w), c(w) is the solution of the RE (4), (5),

• K is a vector such that u = Kx is a stabilizing feedback for the approximate
linearization of the system (1).

Here, the function c(w) is often called as the open loop part of the controller (6). This
function has to guarantee the forward time invariance of the zero error manifold. The
K-dependent part of (6) is called as the closed loop. This part keeps the trajectory
converging to the zero error manifold.

3Recall, that “forward invariant” manifold means that having initial condition in this manifold
and the future state state trajectory of the plant does not leave this manifold.
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4. METHODS TO SOLVE THE REGULATOR EQUATION

The previous section provided a clear motivation to develop efficient methods to
solve the RE. Still, the corresponding results are quite limited and the topic is not
adequately studied in the literature. As a matter of fact, the regulator equation has
features that are rather untypical and make the evaluation of its solution to be an
extremely challenging task:

• it is a first-order equation,

• the solution to be computed should be ideally given on the whole space Rµ,
this implies, no boundary condition is given,

• validity of the condition x(0) = 0 is required,

• most importantly: the algebraic part is present, so that standard PDE methods
can not be used directly.

The purpose of this section is to recall the known methods to solve the RE and to
discuss some new ideas in this respect. This is also one of the main contributions of
this paper. It will be seen that main issue is how to handle the algebraic part, i. e.
either to replace it by some additional PDE part (the singular perturbation method
later on), or replace it by a suitable penalty functional and its minimization. These
two approaches are compared mutually, as well as with a more classical Taylor
expansion based method.

4.1. Taylor–expansion method

This method can be seen as a classical one. It is thoroughly presented in [8], therefore
we limit ourselves to the sketch of its main ideas only. The basic idea of this method
is to decompose all functions in the equations (4), (5) into the Taylor polynomial
with coefficients of a sufficiently large degree. The feedforward c(w) as well as the
function x(w) are also assumed to be in form of a Taylor polynomial. Substituting
the Taylor polynomials into the RE one can compute the undetermined coefficients
of the Taylor expansions of the feedforward part c(w) and of the zero error manifold
graph x(w).

To further facilitate the computations, one can use the following observation:
if the original system has relative degree r, then one can determine r components
of the function x from the algebraic condition. These may be then substituted
into the original equation and the number of variables to be determined decreases.
However, the need for calculation of the Taylor series, especially their substitutions
and computation of the coefficients is difficult to be formalized in an algorithmic way
sufficient for computer implementation. Moreover, the assumptions of Theorem 3.19
in [8] are rather difficult to verify. Last but not least, Taylor based solution are
approximations in an arbitrarily small neighborhood of the working equilibrium only,
providing no reasonable estimate of neither neighborhood size, nor approximation
error.
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4.2. Minimization of the penalty

First note about the basic idea of this method can be found in [2] and its more
detailed description and further improvement can be found in [17]. The main idea
of this method is to convert the problem of solution of the regulator equation into
an optimization problem. Such an idea allows to decouple the two tasks described
above. It can be briefly introduced as follows: the differential equation in the regu-
lator equation is solved with a fixed function c(w) which is not yet the “right one” to
solve algebraic part as well and therefore the error in the algebraic condition occurs.
This error is evaluated throughout the domain in the exosystem state space to give
certain real number called as penalty functional. This quantity is then used to set
the value of the function c(w) in the next iteration.

Before doing this, the system is pre-stabilized. This means, a vector K ∈ Rn is
defined so that the system f(x)+g(x)Kx has a stable equilibrium point at the origin.
Then, one deals with the stabilized system only. The purpose of that preliminary
stabilization is to guarantee the existence of the solution of the differential part of
the RE for any c(w). This is the direct consequence of the center manifold theorem
and is also the well known fact from PDE theory. The RE is then solved on a
bounded domain Ωb ⊂ Rµ such that 0 ∈ Ωb.

To be more specific, the “quality” of the variable c − the error made in the
algebraic condition − is measured by the following penalty functional

J(c) =
∫

Ωb

(h(x(w)) − q(w))2dw1 . . . dwµ. (7)

where x(w) solves the equation (4) with the function c in its right-hand side. This
value is used to choose the next value of the feedforward c so that the penalty value
(7) decreases. Summarizing, the algorithm can be expressed as follows:

Step 1. Choose the function c

Step 2. Compute the solution of the equation (4) with the chosen function c

Step 3. Evaluate the functional (7)

Step 4. If its value is small enough, stop. If not, choose another value of the function
c and go to Step 2.

To precise Step 4: generally, one cannot expect that the value of the error functional
is driven to zero in a finite number of steps. Rather, one has to apply the feedforward
even if the error of the minimization was nonzero. As shown in [17], this minimization
error is closely related to the tracking error. So, the demand for precision of the
tracking imposes a condition for stopping the algorithm.

The equation (4) is solved using the finite-element method. Convergence of this
method is analyzed in [17] in detail. An illustrative example is presented there and
computational issues are discussed there as well.
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4.3. Singular perturbation method

This alternative approach uses the theory of singularly perturbed differential equa-
tions. It was presented first in [15, 16] without any detailed mathematical treatment.
Here, its convergence analysis and further theoretical aspects will be analyzed. This
is also a new contribution of this paper.

The main idea of the singular perturbation approach is to consider the algebraic
equation as the limit case of the equation

εċ = h(x(t)) − q(w(t)) (8)

for ε → 0+. If the algebraic condition is replaced by the equation (8), one can
formulate the following center manifold for the perturbed system:

∂x
∂w

s(w) = f(x(w), c(w), w) (9)

ε
∂c

∂w
s(w) = h(x(w)) − q(w). (10)

This is a system of purely differential equations, it can also be solved using a standard
software for solution of PDE, in particular, using FEM methods and FEMLAB
package. Again, one seeks the solution on the bounded domain Ωb as described in
the previous section.

The question of solvability of this set of equations is not well answered yet, rather,
it is a future research topic. There is a result about solvability of the singularly
perturbed equations which unfortunately does not fit well onto this problem. The
main theorem together with its proof can be found in [20]. This theorem deals with
the system

ẋε = f(xε, yε, t)
εẏε = g(xε, yε, t).

If ε → 0+ then the above system approaches the algebraic-differential equation

ẋ = f(x, y, t)
0 = g(x, y, t).

However, this sole fact is not sufficient to guarantee convergence xε → x. This
convergence is guaranteed if, among all, the condition

∂g

∂y
(x, y, t) < 0

holds. Satisfying this is a major problem as the most natural choice (presented
above) is not admissible anymore. The theory of singular perturbations of differential
equations is still a developing theory so there is a hope for a more suitable result to
appear. However, one can derive a condition guaranteeing existence of a solution of
the system of equations (9) for a (fixed) ε > 0.
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Let us assume in the following text that the system has already been converted
into an exactly linearized form. In this form, h(x(w)) = x1, ẋ1 = x2,. . . ,ẋν−1 = xν ,
ẋν = Φ(x, c) where ν ≤ n and Φ(0, c) 6= 0 if c 6= 0. The following notation will be
useful in the sequel: let the matrices A ∈ Rn×n, B ∈ Rn×1 be defined as follows:
the elements of the matrix A are given as aij = ∂ϕi

∂xj
(0, 0, 0), i, j = 1, . . . , n, the

matrix B is defined by B = ϕ(0, 0, 0). (Note that for elements the following holds:
bνc = Φ(0, c), bj = 0 for j < ν.) Moreover, define the function ζ : Rn × R × Rµ

by ζ(x, c, w) = ϕ(x, c, w) − Ax − Bc. For the purpose of the following proposition,
define also H = (1, 0, . . . , 0) ∈ Rn and the matrix

Ã =
(

A B
H 0

)
.

Note that the matrix Ã has the following structure (with s = n − ν):

Ã =



0 1 . . . 0 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . 1 0 . . . 0 0

aν,1 aν,2 . . . aν,ν aν,ν+1 . . . aν,n bν

α1,1 α1,2 . . . α1,ν β1,1 . . . β1,s γ1

...
...

...
...

. . .
...

...
αs,1 αs,2 . . . αs,ν βs,1 . . . βs,s γs

1 0 . . . 0 0 . . . 0 0


.

The main tool for investigation of solvability of this equation is the theorem from
[18]:

Lemma. Let f ∈ L2(Ωb), β, γ be functions defined on Ωb such that divβ − γ > 0
(here, divβ means the divergence of the vector function β). Then the equation

β∇x(w) + γx(w) = f(w)

has a solution x ∈ L2(Ωb). Moreover, there exists a positive constant k independent
of the function f such that ‖x‖ ≤ k‖f‖.

This lemma deals with linear scalar equations, however, the equation (9) is non-
linear and the solution is a vector of functions. The following remedy was found:
first, the equation (9) is rewritten into the form

∂ξ

∂w
s(w) = Ãξ + ζ̃(ξ(w)) (11)

where

ξ(w) =
(

x(w)
c(w)

)
and ζ̃(ξ(w)) = ζ(x(w), c(w), w).
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Assume the matrix Ã is diagonalizable, this means, there exists a nonsingular matrix
T and a diagonal matrix D so that

Ã = T−1DT.

Let η = Tξ. Then the equation (11) turns into

∂η

∂w
s(w) = Dη + ζ̃(T−1η(w)).

Using η(0) ÃL2(Ωb) one can define the sequence η(k), k ∈ N by

∂η(k)

∂w
s(w) = Dη(k) + ζ̃(T−1η(k−1)(w)). (12)

Note that the system of equations (12) is in fact a system of independent equations
for η

(k)
i , i = 1, . . . , n+1. Moreover, one can prove that the condition from the lemma

is satisfied if the element dii is real nonzero as the divergence term in the condition
from the lemma is zero. This holds thanks to neutral stability of the exosystem
which implies zero eigenvalues of its Jacobi matrix.

The system (12) has a solution η(k) for every η(k−1). Now it is to prove conver-
gence of this series to a fixed point of the equation (12). This is done by the Banach
fixed point theorem. First, observe that there exists a positive constant C so that

‖η(k)‖ ≤ C‖ζ̃(T−1η(k−1)‖.

Let η(0), η̄(0) ∈ L2(Ωb). These functions give rise to two sequences η(k), η̄(k). For the
difference holds

‖η(k) − η̄(k)‖ ≤ C‖ζ̃(T−1η(k−1) − ζ̃(T−1η̄(k−1)‖.

Assume now the function ζ̃ is Lipschitz. Then there exists a constant κ such that
‖ζ̃(T−1η(k−1) − ζ̃(T−1η̄(k−1)‖ ≤ κ‖η(k−1) − η̄(k−1)‖. Now one observes that the
mapping η(k−1) 7→ η(k) defined by the equation (12) is a contraction if Cκ < 1. This
can be summarized in the following theorem:

Theorem. The equation (9) has a solution x(w) if the following conditions are
satisfied:

• the matrix Ã is diagonalizable with nonzero real eigenvalues,

• Cκ < 1.

(the symbols Ã, C, κ being defined above).

Corollary. Let the matrix Ã be diagonalizable with no zero eigenvalues and let
Cκ < 1. Then the equation (9) has a solution in L2(Ω).
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Fig. 1. The Gyroscope.

5. THE GYROSCOPE CASE STUDY:
THE REGULATOR EQUATION AND ITS SOLUTION

The first and the second method described in Section 4 were demonstrated on the
model of the inverted pendulum on a cart system. (The system is described in
[4, 10].) The results of these mathematical simulations are contained in [2, 10, 17]
and mutually compared in [17]. The present paper aims to demonstrate the third
method and further discuss its properties.

In order to do so, this third method was used to control the gyroscope platform
(described thoroughly in [19]) which is a nonminimum-phase fourth-order system
with a two-dimensional zero dynamics. The results are thoroughly presented in
[3, 15]. The latter paper deals with the so-called error-output regulation problem.
This means the only information available was the tracking error. The state value
of the controlled system as well as of the exosystem was gained from this variable.
These results are also presented here. The system in question is a gyroscope of
two axes, shown schematically in Figure 1, which is a lab experiment developed by
Quanser Inc. For more information, see www.quanser.com. The gyroscope consists
basically of the following components: a support plate holding the gyro module with
a rotor which rotates at a constant speed, its movement being produced by a DC
motor, sensors for the angles α and ψ, and a data acquisition card connecting the
gyroscope to a computer.

The equations describing this system, obtained from the dynamics of the system
and the physical parameters, are as follows

a1α̈ + a2ψ̇ cos α + a3ψ̇
2 sinα cos α = a4 tanα

b1ψ̈ + b2 cos2αψ̈ + b3 sin2αψ̈ + b4 α̇ cos α

+b5 ψ̇α̇ sinα cos α = b6u + b7ψ̇.

(13)

Here, the angle α defines the angular position of the structure with the rotor with
respect to the gyro module, angle ψ is located between the gyro module and the
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support plate, and the control input u is the voltage applied to the DC motor. The
constants ai, bi were found by identification. Their values are in the following table:

a1 a2 a3 a4

0.0054435 0.4717409 −0.0004879 2.4610918
b1 b2 b3 b4

0.002 0.0008470 0.001335 −0.4717
b5 b6 b7

0.0009758 0.1126816997 −0.01044

Converting the equations (13) into a system of first order and introducing the
notation

ψ = x1, ψ̇ = x2, α = x3, α̇ = x4

one obtains

ẋ1 = x2

ẋ2 =
a4

a1
tanx1 −

a2

a1
x4 cos x1 −

a3

a1
x2

4 sinx1 cos x1

ẋ3 = x4

ẋ4 =
b6u + b7x4 − b4x2 cos x1 − b5x4x2 sin x1 cos x1

b1 + b2 cos2 x1 + b3 sin2 x1

.

(14)

The position of the plate (denoted by x3) is considered as the output. Thus the
first two equations express the zero dynamics. The system is not minimum phase.
Our task is to design a control so that the output tracks the trajectory x3 = k sin t,
k ∈ R. This corresponds to the case if the exosystem were

ẇ1 = w2

ẇ2 = −w1.
(15)

The algebraic condition then reads

0 = w1 − x3. (16)

The regulator equation derived from the mathematical description of the gyroscope
is (the argument is omitted)

ω

(
w2

∂x1

∂w1
− w1

∂x1

∂w2

)
= x2

ω

(
w2

∂x2

∂w1
− w1

∂x2

∂w2

)
=

a4

a1
tanx1 −

a2

a1
x4 cosx1 −

a3

a1
x2

4 sinx1 cosx1

ω

(
w2

∂x3

∂w1
− w1

∂x3

∂w2

)
= x4

ω

(
w2

∂x4

∂w1
− w1

∂x4

∂w2

)
=

b6c + b7x4 − b4x2 cosx1 − b5x4x2 sinx1 cosx1

b1 + b2 cos2 x1 + b3 sin2 x1

(17)
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Fig. 2. State of the Gyroscope – Simulations.

together with the condition (16). According to (6) the control u(t) is defined as
ũ(t) = −K(x(t) − x(w(t))) + c(w(t)) such that the feedback vector K stabilizes
the linearization of the gyroscope. (The value x(t) is to be replaced by the state
of the observer in the practical realization, see below.) As already mentioned, the
stabilizing feedback is to be defined prior to solution of the regulator equation. The
results described below were obtained, similarly as in [15], with

K = (−58.3795 −1.1314 −1 7.6697).

The condition (16) is replaced by a perturbed equation εċ = w1 − x3. This implies
that the algebraic condition is replaced by the equation

εω

(
w2

∂c
∂w1

− w1
∂c

∂w2

)
= x3 − w1.

This is solved together with the system (17) using the Finite-Element Method.

6. THE GYROSCOPE CASE STUDY: SIMULATIONS,
LABORATORY IMPLEMENTATION AND EXPERIMENTS

There was a possibility of experimental application of feedback compensators on the
laboratory model of the gyroscope, thus the experiments were carried out using this
model. As none of both angular velocities was measurable on the model, an observer
had to be designed as described above. More about the observer can be found in
[3, 16].

The results of simulations are shown first. Figure 2 shows all the states of the
system while Figure 3 shows the tracking error. One sees that the tracking error
approaches zero quite quickly.

Results obtained from the laboratory experiment are thoroughly described in [16].
Their major feature is that not only the velocities but also the angles and the states
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Fig. 3. Tracking Error – Simulations.
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Fig. 4. State of the Gyroscope – Laboratory Experiment.

of the exosystem were estimated by the observer. Its sole input was the tracking
error. The way how the problem was posed corresponds to the ”error-feedback”
setting. The tracking error (denoted by e(x) in the previous section) can be seen
in Figure 5, matching the reference with the output is shown in Figure 6. In the
real case, the error is much smaller than the value of the reference signal (about 5%
of the amplitude of the reference signal). This is the main result of this paper as
it shows that the proposed method is capable of controlling the real plant even in
presence of disturbances that were not taken into account at the design stage of the
method. In other words this is a verification of some robustness of the developed
approach. The control signal is seen in Figure 7.

Presence of the observer is a key point. The velocities can be obtained e. g. via
differentiating the outputs, however, this leads to a significant error as shown in [15],
which is not present when observer is used, cf. [3, 16].
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7. IMPLEMENTATION ASPECTS AND METHODS COMPARISON

The systems of partial differential equations were solved using the software package
FEMLAB 2.3. (Today, its successor is called Comsol Multiphysics). It is a powerful
solver that easily enables to define the problem. Moreover, even the peculiar features
of the regulator equation (first order, no boundary conditions) could be handled. The
mesh on which the problem was solved was generated by the Femlab’s built-in mesh
generator. In order to guarantee the condition xi = 0, the mesh was refined in the
neighborhood of the origin.

Femlab offers its own postprocessing functions to use the solution further. They
were used to obtain simulations. This was necessary as this set of functions includes
an interpolation function or computation of the integral defining the error functional.
However, to use the results without Femlab, the results were interpolated on the
nodes of a pre-defined grid (which may be different from the grid used for evaluation
of the solution) so that standard Matlab interpolation can be used.

Both the newly developed methods proved to be viable for practical implementa-
tion. They possess some features that are common to them but they differ in some
others. The main difference is the speed of computations. The method based on the
minimization of the error functional requires a successive evaluation of the regulator
equation. Moreover, the optimization method also involves some extra expenses.
The method based on singular-perturbation does not suffer from this drawback as
the solution of the equation (9) is evaluated once. On the other hand, the variable
c is a part of the solution which implies higher demand for memory. This might
be an issue if a fine mesh is required. A problem is also a not fully investigated
convergence of this method. However, as in practice one has to solve the perturbed
equation only, the Theorem gives a useful condition guaranteeing existence of solu-
tion of the perturbed regulator equation.

The estimate of the tracking error when using the feedforward based on the
numerical approximation of the solution of the regulator equation is contained in
[17]. Even if this article deals with the optimization-based method only, the estimate
is applicable for the singular perturbation-based one as well as evaluating the error
functional for the solution of (9) can be carried out analogously in this case. The
effect of the discretization of the equations solved by the FEM solver is discussed
in the cited article as well, this analysis is also valid for both methods. A feature
that deserves a special note here is the high tolerance to coarse discretization of the
domain Ωb.

8. CONCLUSION

Several methods to solve the regulator equation arising in the output regulation
problem were presented and discussed. The detailed mathematical analysis of one
of them was performed, namely, of the singular perturbation based method. Further
implementation aspects of this method are discussed and compared to other known
presented methods. Finally, the singular perturbation method was also tested on
laboratory system via experiment on a laboratory gyroscopical system to show that
it can be potentially applicable for real-time control design.
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