
Kybernetika
VOLUME 45 (2009), NUMBER 1

The Journal of the Czech Society for
Cybernetics and Information Sciences

Published by:

Institute of Information Theory and Automation of the AS CR

Editorial Office:
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Karel Sladký
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DECENTRALIZED STRUCTURAL CONTROLLER DESIGN
FOR LARGE–SCALE DISCRETE–EVENT SYSTEMS
MODELLED BY PETRI NETS

Aydın Aybar and Altuğ İftar

A decentralized structural controller design approach for discrete-event systems mod-
elled by Petri nets is presented. The approach makes use of overlapping decompositions.
The given Petri net model is first overlappingly decomposed into a number of Petri subnets
and is expanded to obtain disjoint Petri subnets. A structural controller is then designed
for each Petri subnet to avoid deadlock. The obtained controllers are finally applied to the
original Petri net. The proposed approach significantly reduces the computational burden
to design the controller. Furthermore, the controller obtained is decentralized and, hence,
is easier to implement.

Keywords: large-scale systems, decentralized control, discrete-event systems, Petri nets,
overlapping decompositions

AMS Subject Classification: 93A15, 93A14, 93C65

1. INTRODUCTION

Behaviour of many large-scale systems, such as manufacturing systems, communi-
cation systems, and transportation systems, can best be described by occurrence of
certain events. Such systems are commonly named as discrete-event systems (DESs)
[9, 14]. A good way to model a DES is by using Petri nets [29, 34].

A controller may be required for a DES to avoid undesirable behaviour, such
as deadlock (e. g., [5, 12, 13, 31, 33]), or to enforce desirable behaviour, such as
liveness, boundedness, or reversibility (e. g., [6, 15, 25]). There are two main control
approaches to controller design for DESs modelled by Petri nets: the forbidden states
approach (e. g., [15, 25, 32, 33]) and the structural approach (e. g., [8, 25, 26, 27]).
In the forbidden states approach, the reachability set of the given Petri net must be
constructed. In the structural approach, it is required to identify certain parts of
the Petri net, such as siphons, which has certain structural properties. Constructing
the reachability set of a large-scale Petri net may be very time consuming [11].
Identifying parts of a Petri net with certain structural properties, on the other hand,
also becomes more time consuming as the Petri net gets more complex [10].

For a large-scale complex DES, its Petri net description would also be complex.
Therefore, it is more difficult to design a controller for a large-scale complex DES,
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whether the forbidden states approach or the structural approach is used. As in the
case of continuous-state systems, decomposition-based methods for decentralized
controller design may be useful to overcome this difficulty. Furthermore, for most
large-scale systems there may exist communication constraints, which must be taken
into account for controller design. In such a case, decentralized controller design is
required. Even if there are no communication constraints, a decentralized design
approach may be preferred for ease of design and/or implementation.

A useful decomposition approach for decentralized controller design is overlapping
decompositions, which was originally introduced for continuous-state systems [7, 16,
17, 18, 19, 21, 22, 23, 28]. This approach was first considered for DESs (as a special
case for hybrid systems) in [20]. It was then considered for data-communication
networks in [1], for DESs modelled by finite automata in [2] and by Petri nets in [3].
Overlapping decompositions has been used for supervisory controller design for Petri
nets to avoid deadlock in [5] and to enforce liveness, boundedness, and reversibility
in [6]. In both [5] and [6], however, forbidden states approach was used.

In the present work, using overlapping decompositions and the structural ap-
proach, we present a decentralized controller design approach for DESs modelled
by Petri nets. Using the presented approach, a controller which avoids deadlock
is obtained, whenever it exists. Using the proposed approach, the computational
burden to design the controller is significantly reduced compared to the centralized
approach. Furthermore, the controller obtained is decentralized and, hence, is easier
to implement in most cases.

2. PRELIMINARIES

2.1. Petri nets and structural control

A Petri net is a five tuple G = (P, T,N,O,m0), where P is the set of places, T is
the set of transitions, N : P × T → {0, 1} is the input matrix, which specifies the
arcs directed from places to transitions, O : P × T → {0, 1} is the output matrix,
which specifies the arcs directed from transitions to places, and m0 : P → N is the
initial marking, where N denotes the set of natural numbers.

M : P → N is a marking vector, M(p) indicates the number of tokens assigned by
marking M to place p. A transition t ∈ T is enabled if and only if M(p) ≥ N(p, t) for
all p ∈ P . An enabled transition t can fire at M , yielding the new marking vector:

M ′(p) = M(p) + O(p, t) − N(p, t) , ∀ p ∈ P . (1)

The reachability set of a Petri net G, denoted by R(G,m0), is the set of all mark-
ings of G, which can be reached by firing a sequence of enabled transitions starting
from m0. An important property for a Petri net is deadlock freeness. Deadlock is
said to occur in a Petri net G, if there exists M ∈ R(G,m0), such that no t ∈ T is
enabled.

The • notation is used to denote the set of places/transitions which preceed/follow
a certain transition/place. Specifically, for p ∈ P , p• := {t ∈ T | N(p, t) = 1} and
•p := {t ∈ T | O(p, t) = 1}. Similarly, for t ∈ T , t• := {p ∈ P | O(p, t) = 1} and
•t := {p ∈ P | N(p, t) = 1}. Also for S ⊂ P , S• :=

∪
p∈S p• and •S :=

∪
p∈S •p.
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A non-empty set S ⊂ P , is said to be a siphon if •S ⊂ S•. A siphon S is said to
be a minimal siphon if it does not contain any other siphon. A siphon is said to be
a controlled siphon, if M(p) ≥ 1 for at least one p ∈ S, ∀M ∈ R(G,m0). It is known
that, for any siphon S, if m0(p) ≥ 1 for at least one p ∈ S, then S can be made a
controlled siphon by adding a control place pc. The output and input transitions of
this control place are respectively defined as follows:

pc• =

t ∈ S•
∣∣∣ ∑

p∈•t∩S

N(p, t) >
∑

p∈t•∩S

O(p, t)

 (2)

and

•pc =

t ∈ •S
∣∣∣ ∑

p∈•t∩S

N(p, t) <
∑

p∈t•∩S

O(p, t)

 . (3)

The initial marking of this control place, on the other hand, is taken as

mc
0(pc) =

∑
p∈S

m0(p) − 1 , (4)

where mc
0 denotes the initial marking of the controlled Petri net, Gc, obtained by

adding the control places to the given Petri net G.
Furthermore, for a siphon S, if Q ⊂ S is a controlled siphon, then S is also a

controlled siphon. Therefore, it is sufficient to control only the minimal siphons of G.
If G contains only controlled siphons, then deadlock does not occur in G. Therefore,
a widely used control strategy to avoid deadlock is to add a control place for each
uncontrolled minimal siphon, so that the controlled Petri net does not contain any
uncontrolled siphons, which guarantees deadlock freenees.

For example, let us consider the Petri net shown in Figure 1, which is borrowed
from [4]. In this Petri net, if t5, t1, t2, t5 or t6, t7, t8, t6 fire at the initial marking, then
deadlock occurs. To design a controller to avoid deadlock, we identify the minimal
siphons as S1 = {p1, p4, p5, p6, p7, p10, p11}, S2 = {p2, p3, p5}, S3 = {p2, p4, p5}, S4 =
{p8, p9, p11}, and S5 = {p8, p10, p11}. Among those, S1, S2, and S4 are controlled
siphons and S3 and S5 are uncontrolled siphons. To make S3 a controlled siphon,
we add the control place p1

c and to make S5 a controlled siphon, we add the control
place p2

c . By (2) and (3), p1
c• = {t2}, •p1

c = {t4}, p2
c• = {t8}, •p2

c = {t10}. By (4), on
the other hand, mc

0(p
1
c) = mc

0(p
2
c) = 0. The resulting controlled Petri net is shown

in Figure 2. It can be verified that deadlock does not occur in this Petri net.

2.2. Overlapping decompositions and expansions

Overlapping decompositions and expansions of Petri nets were first introduced in [3].
Overlapping decomposition of a Petri net is obtained by identifying the overlapping
subnets (from here on called Petri subnets (PSNs)) by an inspection of the Petri
net’s topological structure. In this work, we allow the overlapping part of any two or
more PSNs to contain only places (i. e., no transitions are allowed in the overlapping
part). Furthermore, the only interconnection between the PSNs must be through
the overlapping part, i. e., no arc should be directed from one transition/place in
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Fig. 1. The example Petri net [4].

Fig. 2. The controlled Petri net.

one PSN to a place/transition in another PSN unless one of these places is in the
overlapping part of the two PSNs. For example, for the example Petri net shown in
Figure 1, an overlapping decomposition may be obtained as shown in Figure 3. The
overlapping part of the two PSNs contain place p6 in this example.

Once an overlapping decomposition of the original Petri net is obtained, in order
to obtain disjoint subnets, the overlappingly decomposed Petri net is expanded as
follows:

i) A place in the overlapping part of n PSNs is repeated n times and each repeated
place is assigned to a different PSN.

ii) Two transitions with proper arcs are added between any two repeated places,
such that each transition, when fire, transfers a token from one repeated place
to the other.

iii) Each token which is initially assigned to a place in an overlapping part of the
original Petri net is assigned to one of the repeated places corresponding to
that place. Number of tokens in any place which is not in any overlapping
part remain unchanged.
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Fig. 3. Overlappingly decomposed example Petri net [4].

As a result of this procedure, an expanded Petri net (EPN), G̃ = (P̃ , T̃ , Ñ , Õ, m̃0),
which consists of λ disjoint PSNs, is obtained from an original Petri net (OPN), G =
(P, T,N,O,m0), which was decomposed into λ overlapping PSNs. Each place/tran-
sition/arc of a PSN corresponds to a place/transition/arc of the OPN. The PSNs are
interconnected through the transitions introduced in step (ii) of the above procedure.
Step (iii) of the above procedure determines the initial marking, m̃0, of the EPN.
The set of places of the EPN is given by P̃ :=

∪λ
i=1 Pi, where Pi is the set of places

of the ith PSN. The set of transitions of the EPN, on the other hand, is given by
T̃ :=

(∪λ
i=1 Ti

) ∪
T , where Ti is the set of transitions of the ith PSN and T is

the set of transitions between the PSNs (as introduced in step (ii) of the above
procedure). For example, for the OPN shown in Figure 1, which is overlappingly
decomposed into two PSNs as shown in Figure 3, the above procedure produces the
EPN shown in Figure 4. Here, place p6 is repeated as p6a and p6b and the former
is assigned to the first PSN, while the latter is assigned to the second PSN. Two
transitions, tx and ty, are introduced between these two places. Finally, the token
in place p6 is assigned to p6a in order to define the initial marking m̃0. The sets
of places and transitions of this EPN are respectively given by P̃ = P1 ∪ P2 and
T̃ = T1 ∪ T2 ∪ T , where P1 = {p1, p2, p3, p4, p5, p6a}, P2 = {p6b, p7, p8, p9, p10, p11},
T1 = {t1, t2, t3, t4, t5}, T2 = {t6, t7, t8, t9, t10}, and T = {tx, ty}.

3. DECENTRALIZED CONTROLLER DESIGN

Consider a given OPN G = (P, T,N,O,m0), overlappingly decomposed into λ PSNs.
Let G̃ = (P̃ , T̃ , Ñ , Õ, m̃0) be the corresponding EPN. Also let Gk = (Pk, Tk, Nk,
Ok,mk0) denote the kth PSN, k = 1, . . . , λ. The initial marking of Gk is obtained
by taking the appropriate part of m̃0; i. e., mk0(p) = m̃0(p), ∀ p ∈ Pk.

We define ∆ : P̃ → P such that, for p̃ ∈ P̃ , ∆(p̃) denotes the place in P which
corresponds to p̃ ∈ P̃ . For example, for the OPN shown in Figure 1 and the EPN
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Fig. 4. Expanded Petri net [4].

shown in Figure 4, ∆(p1) = p1 and ∆(p6a) = ∆(p6b) = p6. We also define Θ : P →
2P̃ such that, for p ∈ P , Θ(p) denotes the set of places in P̃ which corresponds
to p ∈ P . For example, for the OPN shown in Figure 1 and the EPN shown in
Figure 4, Θ(p1) = {p1} and Θ(p6) = {p6a, p6b}. Furthermore, for S ⊂ P and S̃ ⊂ P̃ ,
Θ(S) :=

∪
p∈S Θ(p) and ∆(S̃) :=

∪
p∈S̃{∆(p)}.

To obtain a decentralized design approach, we first prove the following.

Lemma 1. S is a siphon of the OPN, G, if and only if S̃ = Θ(S) is a siphon of the
EPN, G̃. Furthermore, S is a controlled siphon of G if and only if S̃ is a controlled
siphon of G̃.

P r o o f . Let TS• = S̃•∩T and •TS = •S̃∩T . Then, S̃• = S•∪TS• and •S̃ = •S∪•TS .
Since S̃ = Θ(S), for any p ∈ S̃ either ∆(p) = p (i. e., p is not in any overlapping

part, in which case p• and •p does not contain any elements of T ) or Θ(∆(p)) ⊂ S̃
(which implies that for any t ∈ T , if t ∈ pa• for some pa ∈ S̃, then there exists
pb ∈ S̃ such that t ∈ •pb and vice versa). This implies that TS• = •TS .

Therefore, •S ⊂ S• if and only if •S̃ ⊂ S̃•, which proves that S is a siphon of G
if and only if S̃ is a siphon of G̃.

It is known that [3] for any M̃ ∈ R(G̃, m̃0) there exists M ∈ R(G,m0) such that

M(p) =
∑

p̃∈Θ(p)

M̃(p̃) ∀ p ∈ P . (5)

Therefore, if M(p) ≥ 1 for at least one p ∈ S, ∀M ∈ R(G,m0), then, for all
M̃ ∈ R(G̃, m̃0), M̃(p̃) ≥ 1 for at least one p̃ ∈ S̃. On the other hand, it is also
known that [3] for any M ∈ R(G, m0) there exists M̃ ∈ R(G̃, m̃0) such that (5)
holds. Therefore, if M(p) = 0, ∀ p ∈ S, for some M ∈ R(G,m0), then there exists
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M̃ ∈ R(G̃, m̃0) such that M̃(p̃) = 0, ∀ p̃ ∈ S̃. These imply that S is a controlled
siphon if and only if S̃ is a controlled siphon. ¤

Lemma 2. If S̃ is a siphon of the EPN, G̃, then Sk = S̃ ∩ Pk is a siphon of the
kth PSN, Gk, for all k ∈ κ(S̃), where κ(S̃) = {k | S̃ ∩ Pk 6= ∅}. Furthermore, if Sk

is a controlled siphon of Gk, for all k ∈ κ(S̃), then S̃ is a controlled siphon of G̃.

P r o o f . Let S̃ be a siphon of G̃ and Sk = S̃ ∩ Pk. Consider any t ∈ •Sk for any
k ∈ κ(S̃). Since t ∈ •Sk, t ∈ Tk. Furthermore, since Sk ⊂ S̃, t ∈ •S̃. Since S̃ is a
siphon, this implies t ∈ S̃•, i. e., ∃p ∈ S̃ such that t ∈ p• or p ∈ •t. Since for any
t ∈ Tk, •t ⊂ Pk, this implies t ∈ Sk•. Hence, Sk is a siphon of Gk.

If Sk is a controlled siphon of Gk, then it can become empty in G̃ only by a firing
of some t ∈ T . Such a t, however, when fire transfers one token from pa ∈ Sk to
some pb ∈ Θ(∆(pa)). However, such pb ∈ Sl for some l ∈ κ(S̃). Therefore, although
Sk may become empty for some k ∈ κ(S̃), S̃ never becomes empty. Which implies
that S̃ is a controlled siphon of G̃. ¤

We now propose the following decentralized controller design approach:

Controller Design Algorithm.
Step 1. Obtain an overlapping decomposition and expansion of the given OPN as de-

scribed in Subsection 2.2.
Step 2. For each disjoint PSN, identify all minimal siphons. If there are any minimal

siphons which are not controlled, introduce control places, as explained in
Subsection 2.1, to make those siphons controlled. If an uncontrolled siphon
is initially empty, design a controller by assuming that there initially exists
one token in any one of the places of this siphon which corresponds to a place
in the overlapping part of the OPN. If such a siphon does not contain any
places which corresponds to a place in the overlapping part of the OPN, then
this siphon corresponds to an uncontrolled siphon of the OPN which is initially
empty. In this case there exist no controller (even through a centralized design)
which can make this siphon a controlled siphon.

Step 3. Apply the control places determined in the above step to the OPN. Note that,
since for a control place pc, determined for the kth PSN, Gk, pc• ⊂ Tk ⊂ T
and •pc ⊂ Tk ⊂ T , application of these control places to the OPN is straight
forward.

The following theorem shows that using the above algorithm, a controlled OPN
which has no uncontrolled siphons is obtained, provided only that the uncontrolled
minimal siphons of the given OPN are initially non-empty. Note that, if the given
OPN has an uncontrolled minimal siphon which is initially empty, then there exists
no controller (even through a centralized design) which can produce a controlled
OPN without any uncontrolled siphons.

Theorem 1. Assuming that all the uncontrolled minimal siphons of the given
OPN are initially non-empty, the Controller Design Algorithm given above produces
a controlled OPN which does not have any uncontrolled siphons.
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P r o o f . By Lemma 2, if all the PSNs contain only controlled siphons, then the EPN
will contain only controlled siphons. Then, by Lemma 1, OPN will also contain only
controlled siphons. Since, assuming that all the uncontrolled minimal siphons of the
given OPN are initially non-empty, step 2 of the Controller Design Algorithm makes
all the siphons of all the PSNs controlled siphons, the desired result follows. ¤

Since having no uncontrolled siphons for a Petri net ensures deadlock free oper-
ation, Theorem 1 also implies the following result.

Corollary 1. Assuming that all the uncontrolled minimal siphons of the given
OPN are initially non-empty, the Controller Design Algorithm given above produces
a controlled OPN which is deadlock free.

Remark 1. It has been accepted that the number of minimal siphons in a Petri
net is exponential with its size [10]. Furthermore, the computational burden to iden-
tify each minimal siphon also increases at least with the square of the Petri net size
[10]. Therefore, since each PSN is much smaller than the OPN, it is much easier
to identify the minimal siphons of each PSN compared to identifying the minimal
siphons of the OPN. Hence, it is easier to design a controller using the proposed
approach, compared to the centralized approach. Furthermore, the proposed ap-
proach produces a decentralized controller, since each control place is connected to
the transitions of a given PSN only. Therefore, it may be easier to implement this
controller, especially when each PSN corresponds to a different part of a large-scale
system, where communication between such parts may be costly. In case when such
communication is impossible, the proposed approach directly produces a controller
which satisfies this communication constraint. On the other hand, an uncontrolled
minimal siphon of a particular PSN may not actually be a part of an uncontrolled
minimal siphon of the EPN. In this case, the controller designed for the OPN may
unnecessarily restrict certain firings. Therefore, there is a trade-off between ease
of design and implementation on the one hand and the performance of the con-
trolled system on the other hand. Such a trade-off, however, always exits in any
decentralized controller design approach.

4. EXAMPLE

Consider the OPN shown in Figure 1, which is overlappingly decomposed into two
PSNs, as shown in Figure 3. The corresponding EPN is shown in Figure 4. Disjoint
PSNs are shown in Figure 5.

Consider the first PSN shown in Figure 5(a). This PSN has three minimal siphons:
S1

1 = {p1, p4, p5, p6a}, S2
1 = {p2, p3, p5}, and S3

1 = {p2, p4, p5}. Among those, only
S3

1 is an uncontrolled siphon. To make this siphon a controlled siphon, we add the
control place p1

c . The output and input transitions of this control place are found
by using (2) and (3) as: p1

c• = {t2}, •p1
c = {t4}. The initial marking of this control

place, on the other hand, is determined by (4) as mc
10

(p1
c) = 0. The controlled PSN

is shown in Figure 6(a).
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a b

(a) (b)

Fig. 5. (a) First PSN; (b) Second PSN.

Next, consider the second PSN shown in Figure 5(b). This PSN has also three
minimal siphons: S1

2 = {p6b, p7, p10, p11}, S2
2 = {p8, p9, p11}, and S3

2 = {p8, p10, p11}.
S1

2 is initially empty. Therefore, according to step 2 of the Controller Design Al-
gorithm, we assume a token in p6b, i. e., we change the initial marking vector as
m20(p6b) = 1. Then, however, S1

2 becomes a controlled siphon. Hence, there is no
need to add a control place for S1

2 . S2
2 is already a controlled siphon. S3

2 , however,
is an uncontrolled siphon. To make S3

2 a controlled siphon, we add the control place
p2

c . The output and input transitions of this control place are found by using (2)
and (3) as: p2

c• = {t8}, •p2
c = {t10}. The initial marking, on the other hand, is

determined by (4) as mc
20

(p2
c) = 0. The controlled PSN is shown in Figure 6(b).

Once we obtain the necessary control places for each disjoint PSN as above, using
step 3 of the Controller Design Algorithm, we apply those to the OPN. The resulting
controlled OPN is shown in Figure 2. In this example, our decentralized controller
design approach produces the same controller as the centralized design approach.
However, it was easier to obtain the controller using the decentralized approach,
since we considered only two PSNs, each containing only 6 places and 5 transitions,
compared to the overall OPN, which contains 11 places and 10 transitions.

Using the MATLAB program developed in [24] on a personal computer with
1 GB RAM and a Core2Due microprocessor running at 1800 MHz, it took 516
milliseconds to find all the minimal siphons for the OPN. On the other hand, it
took 46 and 32 milliseconds to find all the minimal siphons for the first and the
second PSN, respectively. Therefore, the ratio of the computational time (to find
the minimal siphons) of the proposed approach to that of the centralized approach is
(46 + 32)/516 = 0.1512. That is, the proposed approach is about seven times faster
than the centralized approach, as far as identifying the minimal siphons (which is
the main computational burden) is concerned.
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C

1
C

a b

(a) (b)

Fig. 6. (a) First controlled PSN; (b) Second controlled PSN.

5. CONCLUSION

We have presented a decentralized structural controller design approach for discrete-
event systems modelled by Petri nets. The proposed approach uses overlapping de-
compositions and produces a decentralized controller which avoids deadlock, when-
ever it exists. In this approach, the given Petri net model is first overlappingly
decomposed into a number of Petri subnets and is expanded to obtain disjoint Petri
subnets. A structural controller is then designed for each Petri subnet to avoid
deadlock. The obtained controllers are finally applied to the original Petri net.
As explained in Remark 1, the proposed approach significantly reduces the com-
putational burden to design the controller. For example, for the example system
considered in Section 4, we found that the proposed approach is about seven times
faster than the centralized approach. In general, more savings in the computational
time is possible for more complex systems. Furthermore, the controller obtained by
the proposed approach is decentralized. This controller, as opposed to a centralized
controller, requires no communication between subsystems. Therefore, it is easier to
implement this controller in general.

Although we have considered controller design for deadlock prevention, the ap-
proach of overlapping decompositions may also be used in structural controller de-
sign to enforce liveness, boundedness, and/or reversibility. Furthermore, similar
approaches may also be developed for special types of Petri nets.

(Received March 28, 2008.)
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[17] A. İftar: Decentralized estimation and control with overlapping input, state, and
output decomposition. Automatica 29 (1993), 511–516.
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[21] M. Ikeda and D.D. Šiljak: Overlapping decompositions, expansions, and contractions
of dynamic systems. Large Scale Systems 1 (1980), 29–38.
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