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George Klir, Ivan Kramosil, Tomáš Kroupa,
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with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4, Czech Republic,
e-mail:myris@myris.cz. — Sole agent for all “western” countries: Kubon & Sagner, P.O.
Box 34 01 08, D-8 000 München 34, F.R.G.

Published in February 2009.

c© Institute of Information Theory and Automation of the AS CR, Prague 2009.

http://www.utia.cas.cz
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/451.html


KYBERNE T IKA — VOLUME 4 5 ( 2 0 0 9 ) , NUM B ER 1 , PAGES 1 5 – 3 2

NON–FRAGILE CONTROLLERS
FOR A CLASS OF TIME–DELAY NONLINEAR SYSTEMS

Luboḿır Bakule and Manuel de la Sen

The paper deals with the synthesis of a non-fragile state controller with reduced design
complexity for a class of continuous-time nonlinear delayed symmetric composite systems.
Additive controller gain perturbations are considered. Both subsystems and interconnec-
tions include time-delays. A low-order control design system is first constructed. Then,
stabilizing controllers with norm bounded gain uncertainties are designed for the control
design system using linear matrix inequalities (LMIs) for both delay-independent and delay-
dependent stability approaches. The main result shows that when such a non-fragile low-
order controllers are implemented into each local controller of the decentralized controller
for the global system, the global closed-loop systems are globally asymptotically stable.

Keywords: decentralized control, large scale complex systems, nonlinear systems, contin-
uous-time systems, delay, reduced-order systems

AMS Subject Classification: 93A14, 93A15, 93B51, 93C10, 93D15

1. INTRODUCTION

Modern control design approaches assume that the stable controller designed off-line
will be implemented exactly. Unfortunately, this is not the case in practice. Even
small implementation changes in controller parameters may destabilize the close-loop
system. Sources of controller parameter uncertainties include finite word length, in-
herent imprecision in analog-digital and digital-analog conversions, finite resolution
measuring equipments, round-off errors in numerical computations, etc. The im-
portance of fragility, i. e. sensitivity of controller parameters for small changes, is
underlined in large scale complex systems when implementing low-cost low-order
local controllers. It motivates the development of new control design methods which
include the solution of the fragility problem mainly for large scale complex systems.
Symmetric composite systems represent an important class of these systems.

1.1. Prior work

Recent papers starting with [10, 11, 17] point out the possible fragility of robust
controllers. To cope with this difficulty, several types of controller uncertainties
have been considered. Fragility within an additive uncertainty for state feedback
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controllers is considered in [25], while [18] extends this issue on H∞ robust state
feedback control for time-delayed systems. A multiplicative uncertainty for H∞
controllers is considered in [30]. A guaranteed cost control approach is studied
in [33]. LMI results for H∞ state feedback controller for both types of controller
uncertainties are dealt in [22]. Digital controller implementation and fragility issues
studies [16]. [4] deals with resilient output stabilization. The most complete recent
exposition on this issue is presented in [20]. It includes also the stabilization of
nonlinear systems [24].

The motivation for studying plants possessing features of symmetric composite
systems arises in very different application areas. Real world system examples can be
found in parallel systems such as flow splitting parallel reactors with combined pre-
cooling [14], electric power systems operating in parallel [6], industrial manipulators
with several degrees of freedom [27], flexible structures [26], space crystal furnace
[12], homogeneous interconnected systems such as seismic cables [13], or the problem
of formations of vehicles in cyclic pursuit which has been solved using circulant matri-
ces in [21]. Relevant references on applications are presented in [12, 13, 14, 21, 26, 27].
Relevant theoretic results are presented in [1, 2, 3, 7, 8, 15, 19, 29, 31, 32]. Low-order
control design for delayed uncertain symmetric composite systems is considered in
[7, 8, 14, 15, 19, 29, 31, 32].

One of the new open research directions is the inclusion of the fragility issues
into the solution of the resilient stabilization for a class of symmetric composite
systems. The present paper mainly extends the results on the fragility with additive
uncertainties for centralized control design in [18, 20, 22, 25], and [24]. It extends also
the results on the low-order fragile and also non-fragile control design for linear or
uncertain symmetric composite systems with nominally linear parts in [2, 3, 4, 7, 31]
on continuous-time nonlinear delayed symmetric composite systems.

The preliminary version of this paper was published in [5].

1.2. Outline of the paper

This paper presents the synthesis of a non-fragile state controller with additive per-
turbations and reduced design complexity for a class of continuous-time nonlinear
delayed symmetric composite systems when considering both delay-independent and
delay-dependent cases. The paper presents first the construction of a low-order con-
trol design system. Then the delay-independent stability and the delay-dependent
stability of the overall system, the reduced control design system, and their rela-
tion are studied. The non-fragile state controller design is performed by using well
known LMIs for the reduced control design system. Finally, it is proved that when
such a controller is implemented into each subsystem, then the resulting non-fragile
decentralized controllers globally asymptotically stabilize the overall system. The
proposed method originally contributes with an essential reduction of control design
complexity when considering non-fragile controllers for this class of systems.
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2. PROBLEM FORMULATION

2.1. Subsystem and interconnections

Consider a nonlinear symmetric composite system consisting of N ≥ 2 subsystems,
where the ith subsystem is described as follows

ẋi(t) = Axi(t) + Adixdi(t) + Bui(t) + hi(t, xi) + hdi(t, xdi) + szi(t)
xi(to) = Φi(to) ∀ to ∈ [−d, 0] i = 1, . . . , N N ≥ 2

(1)

where xi(t), ui(t), and szi(t) are n-, m-, and ps-dimensional vectors of the subsystem
states, control inputs, and interconnection inputs, respectively. Φi(to) is a given
initial function. The interconnections are described in the form

szi(t) =
N∑

j=1,i 6=j

(Lijyzj(t) + hij(t, yzj) + Ldijydzj(t) + hdij(t, ydzj)) (2)

where yzj(t) is the pz-dimensional vector of the interconnection output from the
subsystem j which is related to the state vector in the form

yzj(t) = Czxj(t) ydzj = Cdzxdj(t) (3)

xdj(t) = xj(t−d), d denotes a point time delay. Further, the notation vd(t) = v(t−d)
is used for any signal or vector v(t) throughout this manuscript. The interconnection
matrices Lij , Ldij have the following structure

Lii = Lp Ldii = Ldp

Lij = Lq Ldij = Ldq (i 6= j)
(4)

A,Ad, B,Cz, Cdz, Lp, Lq, Ldp, and Ldq are constant nominal matrices.

Assumption 1. The nonlinearities hi(t, ·), hij(t, ·), hdi(t, ·), hdij(t, ·) are uncer-
tain arbitrarily time-varying piecewise-continuous functions belonging to a class of
piecewise-continuous real functions H(∗) as follows

Hi
def= {hi(t, ·) : Rn → Rn|hi(t, ·)T hi(t, ·)
≤ α2xT

i HT
p Hpxi} ⊂ Dp

Hij
def= {hij(t, ·) : Rn → Rn|hij(t, ·)T hij(t, ·)
≤ α2xT

j HT Hxj} ⊂ D

Hdi
def= {hdi(t, ·) : Rn → Rn|hdi(t, ·)T hdi(t, ·)
≤ σ2xT

diH
T
dpHdpxdi} ⊂ Ddp

Hdij
def= {hdij(t, ·) : Rn → Rn|hdij(t, ·)T hdij(t, ·)
≤ σ2xT

djH
T
d Hdxdj} ⊂ Dd

(5)

over the domains of continuity Dp, D, Ddp,Dd, where Hp,H,Hdp,Hd are given
constant matrices and α > 0, σ > 0 are given scalars.
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Assumption 2. Suppose that the structure of the unknown nonlinear intercon-
nections has the form

hi(t, xi) = e(t, xi)Hpxi(t) +
N∑

j=1,j 6=i

e(t, xj)Hxj(t)

hdi(t, xdi) = ed(t, xdi)Hdpxdi(t) +
N∑

j=1,j 6=i

ed(t, xdj)Hdxdj(t)

(6)

where e(t, xi) ∈ [−1, 1] and ep(t, xdi) ∈ [−1, 1], for all i.
The goal is to find a non-fragile decentralized state controller with additive norm-

bounded uncertainties globally asymptotically stabilizing the system (1) – (5). The
controller is composed of N local identical controllers of the form

ui(t) = (K + ∆Ki(t))xi(t) i = 1, . . . , N (7)

where xi(t) is the n-dimensional controller state of the subsystem i. ∆Ki(t) =
DFi(t)E are controller gain perturbations, where D and E are given constant ma-
trices. F(·)(t) are unknown arbitrarily time-varying Lebesgue measurable functions
satisfying F(·)(t)T F(·)(t) ≤ I. K is the controller matrix to be determined. Note
that this matrix is identical for all subsystems, thus one can take advantage of the
symmetric structure of the large scale composite system to reduce the control design
complexity.

2.2. Compacted description

Let the compacted description of the system (1) – (6) be as follows

ẋ(t) = Ax(t) + Adxd(t) + Bu(t) + h(t, x) + hd(t, xd)

x(to) = Φ(to) ∀ to ∈ [−d, 0]
(8)

where x(t), u(t) are nN -, mN -dimensional vectors of the system states and control
inputs, respectively. Φ(to) is a given initial function. The nominal matrices are
defined as follows

A = (Aij) Aii = A + LpCz Aij = LqCz

Ad = (Adij) Adii = Ad + LdpCz Adij = LdqCdz

B = diag(B, . . . , B)

(9)

The admissible nonlinearities h(t, x) and hd(t, xd) in (6) are uncertain piecewise-
continuous functions satisfying the following inequalities

H
def= {h(t, ·) : RNn → Rn|h(t, ·)T h(t, ·)

≤ α2xT H
T
Hx} ⊂ D

Hd
def= {hd(t, ·) : RNn → Rn|hd(t, ·)T hd(t, ·)

≤ σ2xT
d H

T

d Hdxd} ⊂ Dd

(10)
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From Assumption 1, the bounding matrices H and Hd are N block-partitioned
matrices defined as follows

H = diag(H1, . . . , HN ) Hi = (H · · ·H Hp H · · ·H)

Hd = diag(Hd1, . . . , HdN ) Hdi = (Hd · · ·Hd Hdp Hd · · ·Hd)
(11)

with Hp located at the ith position in Hi. Analogously, the same location holds for
the position of the Hdp in Hdi.

Consider the non-fragile stabilizing controller for the system (8) – (11) in the form

u(t) = (K + ∆K(t))x(t) = diag(K + ∆K1(t), . . . ,K + ∆KN (t))x(t) (12)

which is a compacted equivalent description of (7), where ∆K(t) = DF (t)E are
controller gain perturbations. D = diag(D, . . . ,D) and E = diag(E, . . . , E) are
constant matrices. F (t) = diag(F1(t), . . . , FN (t)) are unknown arbitrarily time-
varying Lebesgue measurable functions satisfying F (t)T F (t) ≤ I.

2.3. The problem

The goal is to derive a complexity-reduced procedure for designing a non-fragile
globally asymptotically stabilizing decentralized state controller (7) with additive
gain perturbations for a class of nonlinear state-delayed symmetric composite sys-
tems (1) – (6).
Consider two cases as follows

– delay-independent stability approach
– delay-dependent stability approach

3. SOLUTION

3.1. System transformation

The system (8) has the bounding matrices H, Hd which have the structure of sym-
metric composite systems. This structural feature can be exploited by using the
transformation of states to get two reduced order models. Consider

x̃(t) = Tx(t) (13)

by using the nN × nN nonsingular matrix T = G−1.
Suppose a real sn × sn matrix T (n, s) in the form

T (n, 1) = I

T (n, s) =


I 0 . . . 0 I
0 I . . . 0 I
...

...
. . .

...
...

0 0 . . . I I
−I −I . . . −I I

 s > 1
(14)
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where I denotes here n × n identity matrix. Then T is defined through

T (i) = diag[T (n,N − i)I, . . . , I] ∈ RNn×Nn

G = T (0)T (1) · · ·T (N − 1) i = 0, . . . , N − 1
(15)

The constructive way of how to use this transformation is presented in [31].

Lemma 1. Consider the matrix H by (11) and any given J = diag[Jo, . . . , Jo],
where J, Jo are nN × nN , n × n matrices Then, the following equalities

G−1HG = diag(Hs, . . . ,Hs, Hc)

GT HG = diag(2Hs, 6Hs, . . . , N(N − 1)Hs, NHc)

G−1J(G−1)T = diag
(1

2
Jo,

1
6
Jo, . . . ,

1
N(N − 1)

Jo

)
GT JG = diag(2Jo, . . . , N(N − 1)Jo, NJo)

(16)

hold, where Hs = Hp − H and Hc = Hs + NH.

Applying now the transformation (13) on the system (8), we get the system

˙̃x(t) = Ãx̃(t) + Ãdx̃d(t) + B̃u(t) + h̃(t, x̃) + h̃d(t, x̃d)

x̃(to) = Φ̃(to) ∀ to ∈ [−d, 0]
(17)

where

Ã = diag(As, . . . , As, Ac)

Ãd = diag(Ads, . . . , Ads, Adc)

B̃ = diag(B, . . . , B, B)

h̃(t, x̃) = diag(hs(t, x̃1), . . . , hs(t, x̃N−1), hc(t, x̃N ))

h̃d(t, x̃d) = diag(hds(t, x̃d1), . . . , hds(t, x̃d,N−1), hdc(t, x̃dN ))

(18)

The individual elements of diagonal blocks in (18) are given as follows (when drop-
ping a subsystem index)

As = A + (Lp − Lq)Cz

Ac = As + NLqCz

Ads = Ad + (Ldp − Ldq)Cdz

Adc = Ads + NLdqCdz

hs(t, x̃i) = e(t, x̃i)(Hp − H)x̃i(t)

hc(t, x̃N ) = hs(t, x̃N ) + e(t, xN )NHx̃N (t)

hds(t, x̃di) = ed(t, x̃di)(Hdp − Hd)x̃di(t)

hdc(t, x̃dN ) = hds(t, x̃dN ) + ed(t, x̃dN )NHdx̃dN (t)

(19)
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The transformation (13) yields the relation xi = x̃i − x̃N for i = 1, . . . , N − 1 and
xN = x̃N −

∑N−1
i=1 x̃i. It is evident that the trajectory of the ith subsystem can be

described by the system

˙̂xi(t) = Âix̂i(t) + Âdix̂di(t) + B̂û(t) + ĥi(t, x̂i) + ĥdi(t, x̂di)

x̂i(to) = Φ̂i(to) ∀ to ∈ [−d, 0] i − 1, . . . , N − 1
(20)

where x̂i = (x̃T
i , x̃T

N )T , ûi = (ũT
i , ũT

N )T , Âi = diag(As, Ac), Âdi = diag(Ads, Adc),
B̂ = diag(B, B). The nonlinear terms are ĥi(t, x̂i) = diag(hs(t, x̃i), hc(t, x̃N )),
ĥdi(t, x̂di) = diag(hds(t, x̃di), hdc(t, x̃dN)). Therefore, the dynamics of the original
overall system can be described by the subsystem model (20) consisting of two
parts operating in parallel. A “subsystem state” x̂i and the “average state” x̂N .
The system (20) has identical structure for all subsystems i = 1, . . . , N − 1. All
phenomena encountered in the whole system can be studied by means of the model
(20). It leads finally to two systems of order n. To simplify the notation, denote
xs(t) a generic state for any x̂i(t) in (20) and xc(t) = xN (t). We get the systems

ẋs(t) = Asxs(t) + Adsxds(t) + Bu(t) + hs(t, xs) + hds(t, xds)

x̂s(to) = Φ̂s(to) ∀ to ∈ [−d, 0]
ẋc(t) = Acxc(t) + Adcxdc(t) + Bu(t) + hc(t, xc) + hdc(t, xdc)

x̂c(to) = Φ̂c(to) ∀ to ∈ [−d, 0]

(21)

where xds(t) = xs(t − d) and xdc(t) = xc(t − d). The transformation T in (13) is
non-singular. Its application on the system (8) results in the system (17) with block
diagonal structure where the first N −1 blocks are identical. This fact is reflected in
(20). The generic system (21) is directly based on (20). It means that the dynamic
properties of (8) and (21) are equivalent.

Note that each subsystem state of the closed-loop system can be thought as
the closed-loop system consisting of the plants (21) and the controller u(t) = (K +
∆K(t))x(t) = (K+DF (t) E)x(t) simultaneously stabilizing both these plants. D,E
are given constant matrices, while F (t) is the uncertainty matrix.

3.2. Reduced control design system

The control design for the systems (21) belongs to the problem of simultaneous
stabilization. The structure of the plants (21) has a specific structure, where the
difference between both systems in simply given by the differences between Ac −As.
Adc − Ads, hc(t, x̃N ) − hs(t, x̃N ), and hdc(t, x̃dN − hds(t, x̃dN ) as follows from (19).
It offers to use the specific structure of the systems (21) to construct a single system
which includes both of these plants as their particular cases. The motivation for such
a construction is that the control design methods for a single system are available,
while the solution of the problem of simultaneous stabilization is less developed.
Moreover, the state dimension of a single system is n, while the system (21) has the
dimension 2×n. It leads to an additional reduction of the control design complexity.
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Define the matrix
N

2
LqCz = Ha

N

2
LdqCdz = Hda (22)

Construct the n-dimensional system as follows

ẋm(t) = Amxm(t) + Admxdm(t) + Bum(t) + hm(t, xm) + hdm(t, xdm) (23)

where the matrices are defined by the expressions

Am = A + LpCz +
(N

2
− 1

)
LqCz Adm = Ad + LdpCz +

(N

2
− 1

)
LdqCdz

(24)
The admissible nonlinearities in (23) are piecewise-continuous real functions satisfy-
ing the following inequalities

Hm
def= {hm(t, ·) : R2n → Rn|hm(t, ·)T hm(t, ·)
≤ α2xT

mHT
mHmxm} ⊂ Dm

Hdm
def= {hdm(t, ·) : R2n → Rn|hdm(t, ·)T hdm(t, ·)
≤ σ2xT

dmHT
dmHdmxdm} ⊂ Ddm

(25)

where Hm = |Hp|+0.5(N −1)|H|+ |Ha| and Hdm = |Hdp|+0.5(N −1)|Hd|+ |Hda|.
Consider a non-fragile stabilizing controller for the system (24) – (26) in the form

um(t) = (K + ∆Km(t))xm(t) (26)

where ∆Km(t) = DFm(t) E are controller gain perturbations. D,E are given con-
stant matrices. Fm(t) are unknown arbitrarily time-varying Lebesgue measurable
functions satisfying Fm(t)T Fm(t) ≤ I.

The closed-loop system (23) – (26) has the form

ẋm(t) = (Am+BK+DFm(t) E)xm(t)+Admxd(t)+hm(t, xm)+hdm(t, xdm).
(27)

The gain matrix K can be determined by the procedure which follows. Note
that D,E are given constant matrices, while the uncertainty is included in an un-
known time-varying matrix Fm(t) with known bounds. Therefore, the procedures
for designing K must include this gain perturbation so that the resulting closed-loop
system is asymptotically stable for all admissible gain perturbations.

3.3. Stability analysis

The motivation for the stability analysis is the evaluation of the performance between
the overall open-loop system and the reduced control design open-loop system. The
results are subsequently used is the synthesis of controllers in the closed-loop systems.
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3.3.1. Delay-independent stability

The robust delay-independent stability of the system (23) as introduced for instance
in [20], can be established by using the Lyapunov–Krasovskii functional as follows

V (t, xm) = xm(t)T Pxm(t) +
∫ t

t−d

xm(s)T Qxm(s) ds (28)

where P ∈ Rn×n and Q ∈ Rn×n are symmetric positive definite matrices.
Using the results of the Lyapunov theory, the requirements on negative definite-

ness of the derivative of (28) along the trajectories of the system (23) leads to the
following result [20]. Denote X = P−1, γ = α−2, η = σ−2.

Theorem 1. Given symmetric matrices P > 0, Q > 0, then the system (23) with
um = 0 is robustly delay-independent stable if

min γ, η

s.t. X > 0

Y (Am) =


AmX + XAT

m XW XHm I Adm

• −W 0 0 0
• • −γI 0 0
• • • −I 0
• • • • −W + ηHT

dmHdm

 < 0

(29)

exists, where W = ω−1Q, X = ωP−1 are matrices, while ω > 0, γ = α−2, η = σ−2

are scalars.

Note that the symbol • in (29) and later on denotes standard symmetric terms
used in LMIs.

The subsequent results compares delay-independent stability and robustness is-
sues among the systems (8), (21), and (23) in order to evaluate their performance
relations.

Theorem 2. The system (8) is robustly delay-independent stable if and only if
both systems (21) are robustly delay-independently stable.

P r o o f . Consider the Lyapunov–Krasovskii functional for the system (8) as follows

V (t, x) = x(t)T Px(t) +
∫ t

t−d

x(s)T Qx(s) ds (30)

where P = diag(P, . . . , P ), Q = diag(Q, . . . , Q). Therefore P ∈ RNn×Nn and Q ∈
RNn×Nn are symmetric positive definite matrices.

Denote Y (A) the matrix with the same structure as the matrix Y (Am) when
substituting Am → A, Adm → Ad, Hm → H, Hdm → Hd and X = diag(X, . . . , X).
Applying the standard Lyapunov theory with the Lyapunov function (30) to the
system (8), we get the LMI stability condition of Theorem 1 with the matrix Y (A).
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Denote analogously Y (As) and Y (Ac) through testing negative definiteness of the
matrix Y (Am) when considering the system (21), respectively. Taking into account
the transformation T = diag(T, T, T, T, T ), we get the relation

T
T
Y (A)T = diag[2Y (As), . . . , N(N − 1)Y (As), NY (Ac)] (31)

Hence, the assertion of Theorem 2 follows immediately. ¤

Theorem 3. Given the systems (21) and (23). If the system (23) is robustly delay-
independent stable, then the systems (21) are robustly delay-independent stable.

P r o o f . Suppose that the system (23) is delay-independent stable. This system
includes both systems (21) as two particular cases by construction. The construction
leads to the relations

hm(t, xm) = hs(t, xm) + e(t, xm)Haxm(t)
= hc(t, xm) − e(t, xm)Haxm(t)

hdm(t, xdm) = hds(t, xdm) + ed(t, xdm)Hdaxdm(t)
= hc(t, xdm) − ed(t, xdm)Hdmxdm(t)

(32)

where hs, hc, hds, hdc are given by (19), while Ha,Hda are defined by (22). Con-
sider two particular cases of nonlinearities such as e(t, xm) = ed(t, xdm) = 1 and
e(t, xm) = ed(t, xdm) = −1. It leads directly, when taking into account (11), to the
relations (32).

The subsequent result is concerned with the robust delay-independent stability of
the system (8) provided that the system (23) is robustly delay-independently stable.

¤
Corollary 1. Suppose that the system (23) is robustly delay-independent stable.
Then the system (8) is robustly delay-independent stable.

P r o o f . The assertion follows immediately from Theorem 2 and Theorem 3. ¤

3.3.2. Delay-dependent stability

The robust delay-dependent stability of the system (23) as presented for instance in
[20], can be established by using the Lyapunov–Krasovskii functional as follows

Vd(t, xm) = xm(t)T Pxm(t) +
∫ t

t−d

xm(s)T Qxm(s) ds + W1 + W2 + W3

W1 =
∫ t

t−d

r1h
T
m(s)hm(s) ds +

∫ t

t−d

∫ t

t+θ

r1h
T
dm(s)hdm(s) dsdθ

W2 =
∫ t

t−d

∫ t

t+θ

r2[xT
m(s)AT

mAmxm(s) dsdθ

W3 =
∫ t

t−d

∫ t

t+θ−d

r3[xT
m(s)AT

dmAdmxm(s) dsdθ

(33)
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where P ∈ Rn×n, Q ∈ Rn×n are symmetric positive definite matrices and r1, r2, r3

are positive scalars.
Using the results of the Lyapunov theory, the requirements on negative definite-

ness of the derivative of (33) along the trajectories of the system (23) leads to the
following result [20].

Theorem 4. Given the system (23), symmetric matrices P > 0, Q > 0 and positive
scalars r1, r2, r3, d

∗. The system (23) with um = 0 is robustly delay-dependent stable
for all d ∈ (0, d∗] if

min γ, η

s.t. X > 0, R > 0, ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0

Yd(Am) =



W XAT
m XAT

dm Adm XHT
m 0 0 0

• −ε1I 0 0 0 0 0 0
• • −ε2I 0 0 0 0 0
• • • −ε3I 0 0 0 0
• • • • −γI 0 0 0
• • • • • −R XHT

dm 0
• • • • • • −ηI 0
• • • • • • • −ε4I


< 0

(34)

exists, where
X = P−1 R = P−1QP−1 ε1 = (d∗r1)−1 ε2 = (d∗r2)−1

ε3 = (d∗[r−1
1 + r−1

2 + r−1
3 ])−1 γ = α−2 η = σ−2 ε4 = −d∗r3

W = (Am + Adm)X + X(Am + Adm)T

(35)

Remark 1. Theorem 4 holds for non-zero delay d. Zero delay requires to redefine
the matrix Yd(Am) in (34) so that Adm is zero and Am +Adm → Am. Note that the
solution of decentralized robust stabilization by using dynamic output feedback for
a class of nonlinear interconnected systems with zero delay is presented in [23].

The subsequent result compares delay-dependent stability and robustness issues
among the systems (8), (21), and (23) in order to evaluate their performance rela-
tions.

Theorem 5. The system (8) is robustly delay-dependent stable if and only if the
systems (21) are both robustly delay-dependent stable.

P r o o f . Consider the Lyapunov–Krasovskii functional for the system (8) as follows

V d(t, x) = x(t)T Px(t) +
∫ t

t−d

x(s)T Qx(s) ds + W 1 + W 2 + W 3

W 1 =
∫ t

t−d

r1h
T
(s)h(s) ds +

∫ t

t−d

∫ t

t+θ

r1h
T

d (s)hd(s) dsdθ

W 2 =
∫ t

t−d

∫ t

t+θ

r2[xT (s)A
T
Ax(s) dsdθ

(36)
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W 3 =
∫ t

t−d

∫ t

t+θ−d

r3[xT (s)A
T

d Adx(s) dsdθ

where P = diag(P, . . . , P ), Q = diag(Q, . . . , Q). Therefore P ∈ RNn×Nn and Q ∈
RNn×Nn are symmetric positive definite matrices and r1, r2, r3 are positive scalars.

Denote Y d(A) the matrix with the same structure as the matrix Yd(Am) when
substituting Am → A, Adm → Ad, Hm → H, Hdm → Hd, X = diag(X, . . . , X), and
R = diag(R, . . . , R). Applying the standard Lyapunov theory with the Lyapunov
function (36) to the system (8), we get the LMI stability condition of Theorem 4
with the matrix Y d(A). Denote analogously Y d(As) and Y d(Ac) the matrix with the
structure of Yd(Am) when considering the first and the second systems in (21), re-
spectively. Taking into account the transformation T d = diag(T, T, T, T, T, T, T, T ),
we get the relation

T
T

d Y d(A)T d = diag[2Y (As), . . . , N(N − 1)Y (As), NY (Ac)] (37)

Hence, the assertion of Theorem 5 follows immediately. ¤

Theorem 6. If the system (23) is robustly delay-independent stable, then the
systems (21) are robustly robustly delay-dependent stable.

P r o o f . Suppose that the system (23) is delay-dependent stable. This system in-
cludes the systems (21) as two particular cases by construction. The proof continues
in the same way of reasoning as the proof of Theorem 3. ¤

The subsequent result concerns the robust delay-dependent stability of the system
(8) assuming that of the system (23).

Corollary 2. Suppose that the system (23) is robustly delay-dependent stable.
Then the system (8) is robustly delay-dependent stable.

P r o o f . The assertion follows immediately from Theorem 5 and Theorem 6. ¤

3.4. Control design

3.4.1. Delay-independent control design

The robust delay-independent stability of the closed-loop system (23), (26) can be
established by the inclusion of the system (27) into the test (29). The system
(27) includes gain perturbations which are manipulated into the LMI format given
by Theorem 7.8 in [20]. The resulting convex optimization problem presents the
following lemma using LMIs.
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Lemma 2. Given the system (23), perturbation matrices D,E in the controller
(26), and symmetric matrices P > 0 and Q > 0. Suppose there exist positive scalars
γ and η, matrices X = XT > 0 and M so that the problem

min γ, η

s.t. X > 0, M

Yc(Am) =



Wm XW WHT
m I Adm BD ηWET

• −W 0 0 0 0 0
• • −γI 0 0 0 0
• • • −I 0 0 0
• • • • Wh 0 0
• • • • • −ηI 0
• • • • • • −ηI


< 0

(38)

has a feasible solution. The block matrices in (38) are defined as Wm = AmX +
XAT

m + BM + MT BT and Wh = −W + HT
dmHdm by using the variables X = P−1

and W = Q.
The nominal controller gain matrix is given by

K = MX−1 (39)

Then the system (23) is robustly delay-independently stabilized by the controller
(26) with the gain matrix (39).

Lemma 2 is concerned with the control design method which is convenient for
direct computations of resilient controller gain matrix. The following theorem states
the main result when considering the delay-independent approach.

Theorem 7. Consider the non-fragile state controller design for a nonlinear de-
layed symmetric composite system defined by equations (1) – (6) with additive per-
turbations (7). Construct the reduced control design system defined by equations
(23) – (25). Select the matrix K satisfying (38) – (39) for the system (23) – (25) and
use it in (7). Then the overall closed-loop system (1) – (7) is globally asymptotically
stable.

P r o o f . Consider the closed-loop system (1) – (7) rewritten into the global form
(8) – (12). Consider also the closed-loop system (23) – (26). Suppose that the gain
matrix K leads to a feasible solution of the problem (38). This matrix is used in
the controller (7), (12), and also (26). As a result, the closed-loop system (23) –
(26) is robustly delay-independently stable. To verify this property according to
Theorem 1, we simply substitute the matrix Am by the the term Am + BK +
B∆Km. A controller is synthesized according to Lemma 2 when applying standard
manipulations eliminating uncertainty Fm(t) in ∆Km given by (26) and by using the
slack variable KX = M in (39). Substituting the matrix A in (9) by the matrix Ac

defined by blocks Acii = Aii+BK+B∆Kii and Acij = Aij , eliminating uncertainties
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F(t) in (7), and using the scalars γ, η obtained from Lemma 2. The stability problem
for the overall system (1) – (7) is reduced on the test of the matrix inequality

Y c(Ac) =



W c X W W H
T

I Ad B D ηW E
T

• −W 0 0 0 0 0
• • −γI 0 0 0 0
• • • −I 0 0 0
• • • • Wh 0 0
• • • • • −ηI 0
• • • • • • −ηI


< 0 (40)

where W c = Ac X + X A
T

c + B M + M
T
B

T
and Wh = −W + ψH

T

d Hd. X =
diag(X, . . . ,X),M = diag(M, . . . ,M), and Wh = diag(Wh, . . . ,Wh). Applying now
the transformation T c = diag(T, T, T, T, T, T, T ) to the quadratic form
T

T

c Y c(Ac)T c, Theorems 3 and 2 applied on the closed-loop system (1) – (7), the
result is proved. ¤

3.4.2. Delay-dependent control design

The robust delay-dependent stability of the closed-loop system (23), (26) can be
established by the inclusion of the system (27) into the test (34). The system (27)
includes gain perturbations which are manipulated into the LMI format in a similar
way as in the delay-independent case. The resulting convex optimization problem
presents the following lemma using LMIs.

Lemma 3. Given the system (23), perturbation matrices D,E in the controller
(26), symmetric matrices P > 0, Q > 0 and positive scalars r1, r2, r3, d

∗. Suppose
there exist positive scalars ε1, ε2, ε3, ε4, γ, η > 0, and symmetric matrices X > 0,
R > 0 and M so that the problem

min γ, η

s.t. X > 0, R > 0, M, ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0,

Ydc(Am)=



Wd XAT
m XAT

dm Adm XHm 0 0 0 BD ηXET

• −ε1I 0 0 0 0 0 0 0 0
• • −ε2I 0 0 0 0 0 0 0
• • • −ε3I 0 0 0 0 0 0
• • • • −γI 0 0 0 0 0
• • • • • −R XHT

dm 0 0 0
• • • • • • −ψI 0 0 0
• • • • • • • −ε4I 0 0
• • • • • • • • −ηI 0
• • • • • • • • • −ηI


<0

(41)
has a feasible solution. The block matrix Wd means Wd = (Am +Adm)X +X(Am +
AT

dm) +BM +MT BT , while X,R, ε1, ε2, ε3, ε4, d
∗, γ, η are defined in (35). The gain

matrix is given by
K = MX−1 (42)
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Then the system (23) is robustly delay-dependently stabilized by the controller (26)
with the gain matrix (42).

The following theorem states the main result when considering the delay-dependent
approach.

Theorem 8. Consider the non-fragile state controller design with additive pertur-
bations (7) for a nonlinear delayed symmetric composite system defined by equations
(1) – (6). Construct the reduced control design system defined by equations (23) –
(25). Select the matrix K satisfying (41) – (42) for the system (23) – (25) and use
it in (7). Then the overall closed-loop system (1) – (7) is globally asymptotically
stable.

P r o o f . The way of reasoning is identical with the proof of Theorem 7 when using
Lemma 3 instead of Lemma 2. Considering given X,M, γ, η, ε1, . . . , ε4 by (35), the
stability problem for the overall system reduced in this case on the test of the matrix
inequality

Y dc(Ac)=



W d X A
T

X A
T
d Ad X H 0 0 0 B D ηX E

T

• −ε1I 0 0 0 0 0 0 0 0
• • −ε2I 0 0 0 0 0 0 0
• • • −ε3I 0 0 0 0 0 0
• • • • −γI 0 0 0 0 0

• • • • • −R X H
T
d 0 0 0

• • • • • • −ψI 0 0 0
• • • • • • • −ε4I 0 0
• • • • • • • • −ηI 0
• • • • • • • • • −ηI


<0

(43)
where W d = (A + Ad)X + X(A + Ad)T + B M + M

T
B

T
X = diag(X, . . . ,X), M =

diag(M, . . . ,M), and R = diag(R, . . . , R). Applying now the transformation T dc =
diag(T, T, T, T, T, T, T, T, T, T ) to the quadratic form T

T

dcY dc(Ac)T dc, Theorems 5
and 6, and Corollary 2 applied on the closed-loop system (1) – (7), the result is
proved. ¤

4. CONCLUSION

The main paper contribution consists of a new method of the low-order non-fragile
control design for a class of nonlinear delayed symmetric composite systems. Par-
ticular structural properties of this class of large scale systems are used for the
construction of low-order design systems. The non-fragile controller is designed for
the design system to guarantee the global asymptotic stability of the closed-loop de-
sign system. The controller is used as a set of local identical controllers in the overall
system. Both delay-independent and delay-dependent control design methods are
presented. The stability analysis is performed by discussion the stabilization of low
complexity systems which guarantee that of the overall system.
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