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1. INTRODUCTION

The concept of a quasi-copula was introduced in [1] (for the bivariate case) and [17]
(for the multivariate case) in order to show that certain operations on univariate
distributions are derivable from operations on random variables defined on the same
probability space. Quasi-copulas have been used in probability theory (e. g. to ex-
press the pointwise best-possible bounds of nonempty sets of distribution functions:
see [13, 15, 20]) and fuzzy set theory (e. g. in aggregation processes: see for instance
[4, 7, 9, 11, 24]; in fact quasi-copulas constitute a special subclass of aggregation
operators – see for instance [23]).

A stronger concept than that of a quasi-copula is the concept of a copula, which
was introduced by A. Sklar in order to find the relationship between a distribution
function and their margins (see [12, 25, 26]). A copula is the restriction to [0, 1]n

(n ≥ 2) of a continuous multivariate distribution function whose univariate margins
are uniform on [0, 1]. Every copula is a quasi-copula, and there exist proper quasi-
copulas, i. e., quasi-copulas which are not copulas.

In the literature we cannot find a great variety of classes and families of multivari-
ate proper quasi-copulas (see [3, 5, 14, 21, 27]). Some types of quasi-copulas have
been obtained from certain hypotheses about their sections of a special type (see
[8, 10, 16, 19]). Our purpose is to follow this way in order to introduce and study
a new class of multivariate quasi-copulas, namely the quasi-copulas with quadratic
sections in one variable. In [22], we have studied the class of multivariate copulas
with quadratic sections in one variable. In this paper we extend our study to proper
quasi-copulas, providing examples of families which illustrate our results.
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2. PRELIMINARIES

We first establish some notation. The interval [0, 1] will be denoted by I. Given two
functions f1 and f2 with a common domain A, we write f1 ≤ f2 if f1(x) ≤ f2(x)
for all x in A. Let n ≥ 3 be a natural number. If u = (u1, . . . , un) is in In, u′ will
denote the point (u1, . . . , un−1) in In−1. We may also write u = (u′, un). The point
(a, . . . , a) ∈ Im will be denoted by am. Finally, If u, v ∈ In such that u ≤ v – i. e.,
uk ≤ vk holds for every k = 1, . . . , n –, then [u, v] denotes the n-box ×n

i=1[ui, vi]
in In.

Let n ≥ 2 be a natural number. An n-dimensional copula (briefly n-copula) is a
function C from In to I satisfying the following conditions:

(C1) For every u ∈ In, C(u) = 0 if at least one coordinate of u is equal to 0; and
C(u) = uk whenever all coordinates of u are equal to 1 except maybe uk;

(C2) VC([a, b]) =
∑

(−1)κ(c) · C(c) ≥ 0 for every n-box [a, b] in In, where the sum
is taken over all the vertices c of [a, b] (i. e., each ck is equal to either ak or
bk) and κ(c) is the number of indices k’s such that ck = ak.

The number VC([a, b]) is known as the C-volume of [a, b]; in this paper we also
consider the extension of this concept to other types of real-valued functions C on In.

An n-dimensional quasi-copula (briefly n-quasi-copula) is a function Q from In to
I satisfying condition (C1) for n-copulas and, in place of (C2), the weaker conditions:

(Q1) Q is non-decreasing in each variable;

(Q2) |Q(u)−Q(v)| ≤
n∑

i=1

|ui − vi| for all u,v ∈ In (1-Lipschitz condition).

See [6] for the case n = 2, and [2] for n > 2; see also [12].
Let a be a real-valued function defined on In. For every k = 1, . . . , n and

i1, . . . , ik ∈ N such that 1 ≤ i1 < · · · < ik ≤ n, ai1···ik
denotes the function de-

fined on Ik by ai1···ik
(ui1 , . . . , uik

) = a(v1, . . . , vn), where vj = uim if j = im for
some m = 1, . . . , k, and vj = 1 otherwise. The functions ai1···ik

are called as the
k-dimensional margins of the function a. If n ≥ 3 and k = 2, . . . , n, then the k-
dimensional margins of an n-quasi-copula (respectively n-copula) are k-quasi-copulas
(respectively k-copulas).

Let C be a real-valued function defined on In. For each k = 1, . . . , n and for
every v = (u1, . . . , uk−1, uk+1, . . . un) ∈ In−1, let fk,v be the function defined on I
by fk,v(uk) = C(u). The functions fk,v are called sections of the function C with
respect to the variable uk.

In the sequel, we will only consider – without loss of generality – sections with
respect to the last variable: all the results and examples in this paper about sections
with respect to the last variable can be extended to sections with respect to any
other variable.
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3. QUASI–COPULAS WITH QUADRATIC SECTIONS

An n-quasi-copula C is said to have quadratic sections in the last variable if there
exist three real-valued functions a, b and c defined on In−1 so that

C(u) = a(u′) · u2
n + b(u′) · un + c(u′) for all u ∈ In. (1)

In this section we characterize n-quasi-copulas with quadratic sections in the last
variable. In [22], we have characterized n-copulas with quadratic sections in the last
variable, for the case n ≥ 3 (for n = 2, see [18]). For our purpose, it is useful to
recall such characterization:

Theorem 1. A function C from In to I is an n-copula with quadratic sections in
the last variable if, and only if, C is a function of the form

C(u) = D(u′) · un + a(u′) · un(1− un) for all u ∈ In, (2)

where D is an (n−1)-copula and a is a function satisfying the following two conditions:

a(u1, . . . , ui−1, 0, ui+1, . . . , un−1) = a(1n−1) = 0 for all u′ ∈ In−1, i = 1, . . . , n−1;
(3)

and
|Va(J ′)| ≤ VD(J ′) for all (n−1)-boxes J ′ ⊂ In−1.

Theorem 1 – and also the following results in this paper – are valid for the case
n = 2 if we assume that the only 1-quasi-copula (which is also the only 1-copula)
is the identity function Id (Id(x) = x for every x ∈ I), and the a-volume of some
interval [u, v] is a(v)− a(u) for every real function a defined on I.

The following lemma and its corollary show that n-quasi-copulas with quadratic
sections in the last variable have a similar form to n-copulas with those sections.

Lemma 2. Let a, b and c be three real-valued functions defined on In−1, and C
the function defined by (1). Then, the following statements are equivalent:

(i) C satisfies condition (C1) and its margin C1···n−1 is an (n−1)-quasi-copula.

(ii) a(u1, . . . , ui−1, 0, ui+1, . . . , un−1) = a(1n−1) = 0 for all u′ ∈ In−1 and each
i = 1, . . . , n−1, c(u′) = 0 for all u′ ∈ In−1, and there exists an (n−1)-quasi-
copula D such that b = D − a.

P r o o f . If the function C defined by (1) satisfies condition (i), then the following
equalities hold for every u ∈ In: (a) C(1, . . . , 1, un) = a(1n−1) · u2

n + b(1n−1) · un +
c(1n−1) = un; (b) C(u′, 0) = c(u′) = 0; and (c) C(u1, . . . , ui−1, 0, ui+1, . . . , un) =
a(u1, . . . , ui−1, 0, ui+1, . . . , un−1)·u2

n+b(u1, . . . , ui−1, 0, ui+1, . . . , un−1)·un = 0 for all
i = 1, . . . , n−1. Hence we have that a(1n−1) = a(u1, . . . , ui−1, 0, ui+1, . . . , un−1) = 0
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for all u′ ∈ In−1 and each i = 1, . . . , n − 1. On the other hand, if we take D =
C1...n−1, then D(u′) = C(u′, 1) = a(u′) + b(u′) for all u′ ∈ In−1, which completes
the proof of the necessary condition. Similarly, the sufficient condition can be easily
proved. ¤

In the following corollary we replace a by −a, for convenience.

Corollary 3. If C is an n-quasi-copula with quadratic sections in the last variable,
then C is a function of the form (2), where D is an (n−1)-quasi-copula and a is a
function satisfying condition (3).

Observe that if a is the null function in (2) we obtain n-quasi-copulas with linear
sections in the last variable, a trivial case that might be excluded of our study: for
every (n−1)-quasi-copula (respectively copula) D it is immediate that the function
C given by C(u) = D(u′) · un (u ∈ In) is an n-quasi-copula (respectively copula).

In order to shorten the statements and the proofs of the following results, we
introduce some notation: If g is a function defined on Im, u ∈ Im and ui < vi ≤ 1 for
one index i = 1, 2, . . . ,m, then the subtraction g(u1, . . . , ui−1, vi, ui+1, . . . um)−g(u)
will be denoted by ∆gi(u).

The following theorem characterizes quasi-copulas with quadratic sections in the
last variable.

Theorem 4. A function C from In to I is an n-quasi-copula with quadratic sections
in the last variable if, and only if, C is a function of the form (2), where D is an
(n−1)-quasi-copula, a is a real-valued function satisfying condition (3), and the
following conditions hold whenever i ∈ {1, 2, . . . , n−1}, u′ ∈ In−1 and ui < vi ≤ 1:

(i) |a(u′)| ≤ min (D(u′), 1−D(u′)).

(ii) If ∆ai(u′) < 0, then −∆ai(u′) ≤ ∆Di(u′).

(iii) If ∆ai(u′) > ∆Di(u′), then (∆ai(u′) + ∆Di(u′))2 ≤ 4(vi − ui)∆ai(u′).

P r o o f . From Lemma 2 and Corollary 3, a function C is an n-quasi-copula with
quadratic sections in the last variable if, and only if, C is a function of the form
(2) – where D is an (n−1)-quasi-copula and a is a real-valued function satisfying
condition (3) – such that conditions (Q1) and (Q2) hold. Thus, if we assume the
necessary conditions provided by Corollary 3, we only need to prove that C satisfies
conditions (Q1) and (Q2) if, and only if, conditions (i), (ii) and (iii) hold whenever
i ∈ {1, 2, . . . , n−1}, u′ ∈ In−1 and ui < vi ≤ 1.

Since the Lipschitz condition (Q2) is equivalent to all the analogous Lipschitz
conditions in each variable together, then C satisfies both conditions (Q1) and (Q2)
if, and only if, the following condition holds for each i = 1, 2, . . . , n:

0 ≤ ∆Ci(u) ≤ vi − ui for all u ∈ In and vi ∈ I such that ui < vi. (4)
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Observe that ∆Cn(u) = (vn − un) [D(u′) + (1− vn − un)a(u′)] and, for each i =
1, 2, . . . , n−1, ∆Ci(u) = un∆Di(u′)+un(1−un)∆ai(u′). Thus, C satisfies condition
(4) for the case i = n if, and only if, 0 ≤ D(u′) + (1− vn − un)a(u′) ≤ 1 whenever
u′ ∈ In−1 and 0 ≤ un < vn ≤ 1, which is equivalent to requiring that condition (i)
holds for every u′ ∈ In−1. And C satisfies condition (4) for every i = 1, 2, . . . , n−1
if, and only if,

0 ≤ un∆Di(u′) + un(1− un)∆ai(u′) ≤ vi − ui (5)

whenever (u′, un) ∈ In and ui < vi ≤ 1. Observe that condition (5) holds trivially
when un = 0; and it also holds when un = 1, since ∆Di(u′) ≤ vi−ui. Let u′ ∈ In−1,
un ∈ (0, 1) and vi ∈ I be such that ui < vi. We consider three cases:

(I) If ∆ai(u′) < 0, then un∆Di(u′) + un(1− un)∆ai(u′) ≤ un∆Di(u′) ≤ vi − ui,
i. e., the second inequality in (5) holds; thus, condition (5) holds for every
un ∈ I if, and only if, −(1− un)∆ai(u′) ≤ ∆Di(u′) for every un ∈ (0, 1), i. e.,
−∆ai(u′) ≤ ∆Di(u′).

(II) If 0 ≤ ∆ai(u′) ≤ ∆Di(u′), then the first inequality in (5) holds trivially; and
the second one also holds, since un∆Di(u′) + un(1 − un)∆ai(u′) ≤ un(2 −
un)∆Di(u′) ≤ ∆Di(u′) ≤ vi − ui.

(III) If ∆ai(u′) > ∆Di(u′), then the first inequality in (5) holds trivially as in
case (II); and the second inequality holds for every un ∈ (0, 1) if, and only
if, the function h(un) = (∆ai(u′) + ∆Di(u′))un − ∆ai(u′)u2

n is less than or
equal to vi − ui for every un ∈ (0, 1). Observe that h is a concave quadratic
function with vertex in un0 = (∆ai(u′)+∆Di(u′)/(2∆ai(u′)). Since un0 is in
(0, 1) and h(un0) = (∆ai(u′) + ∆Di(u′))2/(4∆ai(u′)), we can conclude that,
for this case, condition (5) is satisfied for every un ∈ (0, 1) if, and only if,
(∆ai(u′) + ∆Di(u′))2 ≤ 4(vi − ui)∆ai(u′), which completes the proof. ¤

As a consequence of the previous theorem, we will be able to construct families
of proper n-quasi-copulas with quadratic sections in the last variable – and similarly
in the other variables – whenever n ≥ 3: see Section 4. However, we cannot find
proper bivariate quasi-copulas with quadratic sections, as the following result shows.

Corollary 5. Every bivariate quasi-copula with quadratic sections in one variable
is a copula.

P r o o f . Suppose, without loss of generality, that C is a bivariate quasi-copula
with quadratic sections in the second variable. Thus, from Theorem 4 we have that
C(x, y) = xy + a(x)y(1− y) for some real function a such that a(0) = a(1) = 0. Let
y, y′ ∈ I be such that y < y′. From conditions (ii) and (iii) of Theorem 4 we have
that |a(y′) − a(y)| ≤ y′ − y whenever a(y′) − a(y) < 0, and that |a(y′) − a(y)| =
a(y′)− a(y) > y′ − y does not hold; so |a(y′)− a(y)| ≤ y′ − y always holds. Hence,
from Theorem 2.2 in [18], we conclude that C is a copula. ¤

The following corollary constructs a family of n-quasi-copulas with quadratic
sections in the last variable from a non-trivial n-quasi-copula of that type.
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Corollary 6. Let C be an n-quasi-copula of the form (2) such that a is not the
null function, i. e., C is a non-trivial n-quasi-copula with quadratic sections in the
last variable. Then the function Cλ, with λ ∈ (0, 1), defined by

Cλ(u) = D(u′) · un + λ · a(u′) · un(1− un) for all u ∈ In, (6)

is also an n-quasi-copula with quadratic sections in the last variable.

P r o o f . We only have to prove that the function aλ = λ · a satisfies condi-
tions (i), (ii) and (iii) of Theorem 4 for every i ∈ {1, . . . , n−1}, u′ ∈ In−1 and
vi ∈ I such that ui < vi. Since a satisfies condition (i), it is immediate that aλ

also satisfies that condition. Suppose that (∆aλ)i(u′) = λ∆ai(u′) < 0. Then
∆ai(u′) < 0, whence −λ∆ai(u′) ≤ −∆ai(u′) ≤ ∆Di(u′), i. e., aλ satisfies con-
dition (ii). Finally, suppose that (∆aλ)i(u′) > ∆Di(u′). So we also have that
∆ai(u′) > ∆Di(u′), whence (∆ai(u′) + ∆Di(u′))2 ≤ 4(vi − ui)∆ai(u′). We need
to prove that (λ∆ai(u′) + ∆Di(u′))2 ≤ 4(vi − ui)λ∆ai(u′). From our hypothe-
ses, we have 4(vi − ui)λ∆ai(u′) ≥ λ(∆ai(u′) + ∆Di(u′))2. So it suffices to prove
that λ(∆ai(u′) + ∆Di(u′))2 ≥ (λ∆ai(u′) + ∆Di(u′))2. This inequality is equiv-
alent to the following λ(∆ai(u′))2 ≥ (∆Di(u′))2, which is trivially satisfied since
∆ai(u′) > λ∆ai(u′) > ∆Di(u′). ¤

The following two corollaries provide sufficient conditions – simpler than those of
Theorem 4 – to obtain n-quasi-copulas with quadratic sections in the last variable.

Corollary 7. Let C be a function of the form (2), where D is an (n−1)-quasi-
copula and a is a real-valued function satisfying condition (3). Suppose that for
every i = 1, 2, . . . , n−1, u′ ∈ In−1 and vi ∈ I such that ui < vi, we have that
conditions (i) and (ii) of Theorem 4 and the following condition (iv) hold:

(iv) If ∆ai(u′) > ∆Di(u′), then ∆ai(u′) ≤ vi − ui.

Then C is an n-quasi-copula with quadratic sections in the last variable.

P r o o f . Let i ∈ {1, 2, . . . , n−1}, u′ ∈ In−1 and vi ∈ I be such that ui < vi

and ∆ai(u′) > ∆Di(u′). Then (∆ai(u′) + ∆Di(u′))2 = (∆ai(u′))2 + (∆Di(u′))2 +
2∆ai(u′)∆Di(u′) < (∆ai(u′))2 + (∆ai(u′))2 + 2∆ai(u′)∆ai(u′) = 4(∆ai(u′))2 ≤
4(vi − ui)∆ai(u′), whence the proof follows. ¤

An application of Corollary 7 can be found in Example 2 of Section 4.

Corollary 8. Let C be a function of the form (2), where D is an (n−1)-quasi-
copula and a is a real-valued function satisfying condition (3). Suppose that the
following condition holds:

(v) |a(v′)− a(u′)| ≤ D(v′)−D(u′) for all u′,v′ ∈ In−1 such that u′ ≤ v′.
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Then C is an n-quasi-copula with quadratic sections in the last variable.

P r o o f . Let i ∈ {1, 2, . . . , n−1}, u′ ∈ In−1 and vi ∈ I such that ui < vi. Taking
v′ = (u1, . . . , ui−1, vi, ui+1, . . . , un) in condition (v) we have |∆ai(u′)| ≤ ∆Di(u′),
whence conditions (ii) and (iii) of Theorem 4 hold trivially. Taking u1 = 0 in (v)
we obtain that |a(v′)| ≤ D(v′) for all v′ ∈ In−1; and taking v′ = 1n−1 in (v) we
obtain |a(u′)| ≤ 1−D(u′), whence condition (i) of Theorem 4 holds and the proof
is completed. ¤

An application of Corollary 8 can be found in Example 1 of Section 4.

From its proof, it is clear that the sufficient condition in Corollary 8 is stronger
than that of Corollary 7. Both sufficient conditions are not necessary for the function
C given by (2) to be a quasi-copula. For instance, Example 2 in the next section
proves this fact for the strongest condition: specifically, we show that certain function
C is a quasi-copula by using Corollary 7, but that function C does not satisfy the
hypotheses of Corollary 8.

Finally, recall that condition (v) in Corollary 8 is a necessary condition for the
function C given by (2) to be a copula (see [22]).

4. EXAMPLES

In this section we provide some examples of families of proper multivariate quasi-
copulas with quadratic sections in the last variable. To obtain quasi-copulas with
quadratic sections in other variables, it suffices to permute the variables. The fol-
lowing example provides one of those families for every n ≥ 3.

Example 1. Let n ≥ 3. If D = Πn−1 – i. e., the product (n−1)-copula, which
is given by Πn−1(u′) = u1 · · ·un−1 – and a is the function defined by a(u′) =
(1−max1≤i≤n−1 ui) Πn−1(u′) for every u′ ∈ In−1, then the function C defined by
(2) can be expressed as follows:

C(u) = Πn(u)
[
1 + (1− un)

(
1− max

1≤i≤n−1
ui

)]
for all u ∈ In. (7)

Now we prove that C is an n-quasi-copula. The function a satisfies immediately
condition (3). And C satisfies condition (v) in Corollary 8 if, and only if,
∣∣∣∣Πn−1(v′)

(
1− max

1≤i≤n−1
vi

)
−Πn−1(u′)

(
1− max

1≤i≤n−1
ui

)∣∣∣∣ ≤ Πn−1(v′)−Πn−1(u′)

(8)
for every u′, v′ ∈ In−1 such that u′ ≤ v′. The inequality (8) is equivalent to the
following condition:

0 ≤ Πn−1(v′) · max
1≤i≤n−1

vi −Πn−1(u′) · max
1≤i≤n−1

ui ≤ 2(Πn−1(v′)−Πn−1(u′)).
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Since the first inequality in this expression holds trivially, we can conclude that C
satisfies condition (v) if, and only if,

Πn−1(u′)
(

2− max
1≤i≤n−1

ui

)
≤ Πn−1(v′)

(
2− max

1≤i≤n−1
vi

)

whenever 0n−1 ≤ u′ ≤ v′ ≤ 1n−1. This inequality is trivially satisfied when ui = 0
for some i = 1, 2, . . . , n−1. So we can assume ui > 0 for all i = 1, 2, . . . , n−1. Since
max1≤i≤n−1 vi = vk for some k = 1, 2, . . . , n−1 and the function f(x) = x(2− x) is
increasing on I, we have

Πn−1(u′)
(

2− max
1≤i≤n−1

ui

)
≤ Πn−1(u′)(2− uk) =

(
Πn−1(u′)/uk

)
uk(2− uk)

≤
(
Πn−1(v′)/vk

)
vk(2− vk) = Πn−1(v′) (2− vk)

= Πn−1(v′)
(

2− max
1≤i≤n−1

vi

)
.

So condition (v) holds and, from Corollary 8, we have that the function C defined by
(7) is an n-quasi-copula. Now, by using Corollary 6, we obtain a family {Cλ : λ ∈ I}
of n-quasi-copulas with quadratic sections in the last variable, namely:

Cλ(u) = Πn(u)
[
1 + λ(1− un)

(
1− max

1≤i≤n−1
ui

)]
for all u ∈ In.

If λ = 0, then Cλ is the product copula Πn. Now we prove that Cλ is a proper
n-quasi-copula for every λ ∈ (0, 1]. Let λ ∈ (0, 1] and n ≥ 3. From Theo-
rem 1, we only need to prove that there exists an (n−1)-box J ′ ⊂ In−1 such that
|Vλa(J ′)| > VΠn−1(J ′). Let r ∈ (0, 1) and let J = [r, 1]n−1. Then, |Vλa(J)| =
|(−1)n−1λa(rn−1)| = λ(1 − r)rn−1 and VΠn−1(J) = (1 − r)n−1. So |Vλa(J)| >
VΠn−1(J) if, and only if, λ > (1− r)n−2/rn−1. Since limr→1(1− r)n−2/rn−1 = 0, we
can conclude that |Vλa([r, 1]n−1)| > VΠn−1([r, 1]n−1) for some r ∈ (0, 1), as desired.

Example 1 – and the next Example 2 as well – shows that an n-quasi-copula of
the form (2) can be proper even though the (n−1)-quasi-copula D is not proper –
i. e., D is a copula. On the other hand, if D is a proper (n−1)-quasi-copula, then
every n-quasi-copula C of the form (2) is proper since its margin C12...n−1 = D is a
proper (n−1)-quasi-copula.

In the following example we introduce a family of proper 3-quasi-copulas. This
example illustrates the usefulness of Corollary 7.

Example 2. Let D = M (M is the pointwise upper bound 2-copula, i. e., M(x, y) =
min(x, y) for every (x, y) ∈ I2). Let a be the function defined on I2 by

a(x, y) =





2xy if max(x, y) ≤ 1/2,

1−min(x, y) if min(x, y) ≥ 1/2,

min(x, y) otherwise.
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And let C be the function defined by (2), i. e.,

C(x, y, z) = zM(x, y) + z(1− z)a(x, y) for all (x, y, z) ∈ I3. (9)

Observe that C does not satisfy condition (v) of Corollary 8: if 0 < x < y < y′ ≤ 1/2,
then |a(x, y′)− a(x, y)| = 2x(y′−y) > 0 = M(x, y′)−M(x, y). This fact also implies
that C is not a copula.

Next we show that C satisfies the hypotheses of Corollary 7 to prove that C is
a 3-quasi-copula. The function a satisfies trivially condition (3). Moreover, since
|a| = a and

min (M(x, y), 1−M(x, y)) =





min(x, y) if min(x, y) ≤ 1/2,

1−min(x, y) otherwise,

it is immediate that condition (i) of Theorem 4 holds. Observe that the functions a
and M are symmetric, i. e., a(x, y) = a(y, x) and M(x, y) = M(y, x) for all (x, y) ∈
I2. Thus, in order to prove the remaining two conditions in the hypotheses of
Corollary 7, it suffices to consider one of the variables, for instance the second one.
Hence we only need to prove that, for every x, y, y′ ∈ I such that y < y′, the following
conditions hold:

if a(x, y′)− a(x, y) < 0, then a(x, y)− a(x, y′) ≤ M(x, y′)−M(x, y); (10)

if a(x, y′)− a(x, y) > M(x, y′)−M(x, y), then a(x, y′)− a(x, y) ≤ y′ − y. (11)

However, instead of condition (11), we will prove a stronger – and simpler – condition,
namely:

if a(x, y′)− a(x, y) > 0, then a(x, y′)− a(x, y) ≤ y′ − y. (12)

After straightforward computations, it is easy to obtain that

a(x, y′)− a(x, y) =





2x(y′ − y) if max(x, y′) ≤ 1/2,

x(1− 2y) if max(x, y) ≤ 1/2 < y′,

0 if max(x, 1/2) < y,

y′ − y if y′ ≤ 1/2 < x,

1− y′ − y if y ≤ 1/2 < y′ ≤ x,

1− x− y if y ≤ 1/2 < x < y′,

y − y′ if 1/2 < y < y′ ≤ x,

y − x if 1/2 < y ≤ x < y′.
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Thus, the cases where a(x, y′)−a(x, y) < 0 and a(x, y′)−a(x, y) > 0 are respectively
shown in the following expressions:





1− y′ − y if y ≤ 1/2 ≤ 1− y < y′ ≤ x,

1− x− y if y ≤ 1/2 ≤ 1− y < x < y′,

y − y′ if 1/2 < y < y′ ≤ x,

y − x if 1/2 < y < x < y′,

and 



2x(y′ − y) if 0 < x ≤ 1/2, y′ ≤ 1/2,

x(1− 2y) if 0 < x ≤ 1/2, y < 1/2 < y′,

y′ − y if y′ ≤ 1/2 < x,

1− y′ − y if y < 1− y′ < 1/2 < y′ ≤ x,

1− x− y if y < 1− x < 1/2 < x < y′.

Since

M(x, y′)−M(x, y) =





y′ − y if y ≤ 1/2 ≤ 1− y < y′ ≤ x or 1/2 < y < y′ ≤ x,

x− y if y ≤ 1/2 ≤ 1− y < x < y′ or 1/2 < y < x < y′,

it is immediate that condition (10) holds. And with respect to the five cases where
a(x, y′)−a(x, y) > 0, it is easy to check that a(x, y′)−a(x, y) ≤ y′−y: for instance, if
0 < x ≤ 1/2 and y < 1/2 < y′, then a(x, y′)−a(x, y) = x(1−2y) ≤ (1−2y)/2 < y′−y.
Hence condition (12) holds, and the function C defined by (9) is a proper 3-quasi-
copula. Finally, from Corollary 6, we obtain a family {Cλ : λ ∈ I} of 3-quasi-copulas
with quadratic sections in the last variable, namely:

Cλ(x, y, z) = zM(x, y) + λz(1− z)a(x, y) for all (x, y, z) ∈ I3.

An analogous argument to that used for the 3-quasi-copula C = C1 proves that Cλ

is a proper 3-quasi-copula for every λ ∈ (0, 1) (but C0 is a 3-copula).
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lated Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), CA: IMS Lecture
Notes – Monograph Series Number 28), Hayward 1996, pp. 233–243.
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[21] J. A. Rodŕıguez-Lallena and M. Úbeda-Flores: Compatibility of three bivariate quasi-
copulas: Applications to copulas. In: Soft Methodology and Random Information
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[22] J.A. Rodŕıguez-Lallena and M. Úbeda-Flores: Multivariate copulas with quadratic
sections in one variable. To appear.
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