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UNIVARIATE CONDITIONING OF COPULAS

Radko Mesiar, Vladiḿır Jágr, Monika Juráňová

and Magda Komorńıková

The univariate conditioning of copulas is studied, yielding a construction method for
copulas based on an a priori given copula. Based on the gluing method, g-ordinal sum
of copulas is introduced and a representation of copulas by means of g-ordinal sums is
given. Though different right conditionings commute, this is not the case of right and
left conditioning, with a special exception of Archimedean copulas. Several interesting
examples are given. Especially, any Ali–Mikhail–Haq copula with a given parameter λ > 0
allows to construct via conditioning any Ali–Mikhail–Haq copula with parameter µ ∈ [0, λ].
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1. INTRODUCTION

Bivariate truncation of copulas was introduced and studied by Charpentier and Juri
[3] in the framework of bivariate conditioning of (bivariate) copulas, see also [8, 9]
showing a prominent role of the strict members of Clayton family of copulas. Re-
cently, n-ary extensions of truncation were discussed in [1]. In this paper, we discuss
the univariate conditioning of bivariate copulas. Though our approach is based on
the representation of 2-increasing aggregation functions by means of copulas given
in [5, 6], it turns out that the formula for univariate conditioning is a special case
of Charpentier–Juri truncation. However, observe that while our formula can be
applied to any copula, the approach introduced in [3] deals with copulas having
strictly increasing horizontal and vertical sections only. Observe, that these re-
strictions can be relaxed, see [4]. When studying copulas invariant with respect to
univariate conditioning, also some nonstrict Archimedean copulas should be con-
sidered, especially the Fréchet–Hoeffding bound W . Note that the class of copulas
invariant with respect to univariate conditioning is larger than the class of bivariate
truncation-invariant copulas.

The paper is organized as follow. In the next section, the univariate conditioning
is introduced and some examples are given. Section 3 is devoted to the representation
of conditional copulas by means of a generalization of gluing construction recently
introduced [13]. In Section 4, the relations among left and right conditioning are
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considered, including the case of Archimedean copulas conditioning. Finally, some
concluding remarks are given.

2. UNIVARIATE CONDITIONING OF COPULAS

Recall that a (bivariate) copula C : [0, 1]2 → [0, 1] is a function with annihilator 0
(C(x, 0) = C(0, x) = 0 for all x ∈ [0, 1]), neutral element 1 (C(x, 1) = C(1, x) = x
for all x ∈ [0, 1]) satisfying the 2-increasing property (supermodularity) C(x ∨ y) +
C(x∧y) ≥ C(x)+C(y) for all x, y ∈ [0, 1]2, where ∨ and ∧ are the standard lattice
operations on [0, 1]2, see [14, 12]. An aggregation function A : [0, 1]2 → [0, 1] is a
nondecreasing function such that A(1, 1) = 1 and A(0, 0) = 0, see [2]. Hence copulas
are 2-increasing aggregation functions with neutral element 1.

Note that copulas can be understood as bivariate distribution function of a ran-
dom vector Z = (X,Y ) with marginals uniformly distributed over [0, 1], C(x, y) =
Pr(X ≤ x, Y ≤ y). Let g : [0, 1] → [0, 1] be a continuous nondecreasing function
satisfying g(0) = 0, g(1) > 0.

For a given copula C, evidently the function AC,g : [0, 1]2 → [0, 1] given by

AC,g(x, y) =
C(x, g(y))

g(1)
(1)

is a 2-increasing aggregation function with annihilator 0, and with continuous mar-
gins ϕ, η : [0, 1] → [0, 1], ϕ(x) = C(x,g(1))

g(1) and η(y) = g(y)
g(1) . Due to [6], there is a

copula D such that
AC,g(x, y) = D(ϕ(x), η(y)).

Consequently, D(u, v) = AC,g(ϕ(−1)(u), η(−1)(v)). Here the pseudo-inverse ϕ(−1) :
[0, 1] → [0, 1] is given by ϕ(−1)(x) = sup {t ∈ [0, 1] | ϕ(t) < x}, and similarly η(−1) :
[0, 1] → [0, 1] is given by η(−1)(x) = sup {t ∈ [0, 1] | η(t) < x}, see [10]. Observe that
ϕ depends on C and g(1) = α ∈]0, 1] only and that g(η(−1)(v)) = g(g(−1)(g(1)v)) =
g(1)v, and thus

D(u, v) =
C(ϕ(−1)(u), g(η(−1)(g(1)v)))

g(1)
=

C(ϕ(−1)(u), αv)
α

.

The previous formula shows that the copula D depends on the a priori given
copula C and the constant α ∈]0, 1[ only, and formally it can be therefore seen
as the copula of the conditional distribution of (X,Y ) given that Y ≤ α, see [3].
Evidently, if α = 1, then D = C.

Definition 1. Let C : [0, 1]2 → [0, 1] be a copula and α ∈]0, 1[. The copula
C(α) : [0, 1]2 → [0, 1] given by

C(α)(u, v) =
C(ϕ(−1)(u), α v)

α
,
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where ϕ(−1)(u) = sup {t ∈ [0, 1] | C(t, α) < α u} is called right α-conditional copula
of C. Similarly, the copula

C[α](u, v) =
C(α u, η(−1)(v))

α
,

where η(−1)(v) = sup {t ∈ [0, 1]|C(α, t) < α v}, is called left α-conditional copula
of C.

Analogously, C[α] can be seen as the copula of the conditional distribution of
(X,Y ) given that X ≤ α.

Example 1.

(i) Consider the Fréchet–Hoeffding bound W given by W (x, y) = max {0, x + y − 1}.
For α ∈]0, 1[,

ϕ(−1)(u) = sup {t ∈ [0, 1]|t + α− 1 < α u} = 1− α + α u

and thus

W(α)(u, v) =
W (1− α + α u, α v)

α
=

max {0, α u + α v − α}
α

= W (u, v),

i. e., W is invariant with respect to α-conditioning for each α ∈]0, 1[.

(ii) Ali–Mikhail–Haq copula C : [0, 1]2 → [0, 1] with parameter λ = 1 is given by

C(x, y) =
x y

1 + (1− x) (1− y)
.

Let α ∈]0, 1[, then

ϕ(−1)(u) =
u (2− α)

1 + u (1− α)

Cα(u, v) =
C

(
u (2−α)

1+u (1−α) , α v
)

α
=

u v

1 + α
2−α (1− u) (1− v)

,

i. e., all members of Ali–Mikhail–Haq family with parameter µ ∈ [0, 1] can
be obtained by its conditioning (for the limit member one should take the
pointwise limit). In general, starting from an Ali–Mikhail–Haq copula C with
parameter λ > 0, any Ali–Mikhail–Haq copula with parameter µ ∈]0, λ] can be
obtained by conditioning. Due to the continuity of the Ali–Mikhail–Haq family
in parameter, also the boundary case µ = 0 can be obtained as limα→0+ Cα.

(iii) Conditioning of a symmetric copula need not be symmetric (and vice versa).
For example, for a singular copula with support on segments connecting points(
0, 1

2

)
with

(
1
2 , 1

)
, and

(
1
2 , 0

)
with

(
1, 1

2

)
(i. e., the strongest copula with diag-

onal section δ(x) = max {0, 2x− 1} = δW (x)), the conditional copula C( 3
4 ) is

a singular copula with support on segments connecting the points
(
0, 2

3

)
with(

1
3 , 1

)
, and

(
1
3 , 0

)
with

(
1, 2

3

)
. Evidently, C is symmetric while C( 3

4 ) not.

Note that the conditioning based on α and β commutes.
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Proposition 1. For any copula C and α, β ∈]0, 1[,
(
C(α)

)
(β)

=
(
C(β)

)
(α)

= C(αβ).

P r o o f . Denote ϕα(x) = C(x,α)
α , ϕα β(x) = C(x,α β)

α β and ϕα, β(x) = Cα(x,β)
β . Then

the equality
(
C(α)

)
(β)

= C(α β) is equivalent to ϕα, β ◦ ϕα = ϕα β . To see the last
equality, it holds

ϕα, β ◦ ϕα(x) = ϕα, β

(
C(x, α)

α

)
=

Cα

(
C(x,α)

α , β
)

β
=

C
(
ϕα

(
C(x,α)

α

)
, α β

)

α β

=
C

(
sup

{
t ∈ [0, 1]|C(t,α)

α < C(x,α)
α

}
, α β

)

α β
=

C(x, α β)
α β

= ϕα β(x).

Similarly, the equality
(
C(β)

)
(α)

= C(α β) can be shown. ¤

Remark 1. There is also a probabilistic proof of Proposition 1. Indeed, the copula
C(α) is linked to joint distribution function F(α), F(α)(x, y) = C(x,αy)

α (compare (1)),
while the copula (C(α))(β) is linked to joint distribution function (F(α))(β)(x, y) =
F(α)(x,βy)

β = C(x,α βy)
α β = F(α β)(x, y).

3. G–ORDINAL SUMS AND CONDITIONING

Recently, a gluing construction method for copulas was introduced in [13].

Proposition 2. Let n ∈ N, 0 = a0 < a1 < . . . an = 1, and C1, . . . , Cn be copulas.
Then the function C : [0, 1]2 → [0, 1] given by

C(x, y) = ai−1y + (ai − ai−1)Ci

(
x− ai−1

ai − ai−1
, y

)
if x ∈ [ai−1, ai]

is a copula.

Note that C(ai, y) = ai y = Π(ai, y) for i = 0, 1, . . . , n. Similarly to the ordinal
sum of copulas, gluing methods can be introduced also for an infinite number of
intervals (and copulas), the result being both a construction method and a repre-
sentation.

Theorem 1. A function C : [0, 1]2 → [0, 1] is a copula if and only if there is a
disjoint system (]aj , bj [)j∈J of nonempty open subintervals of [0, 1] (thus J is at
most countable) and a system (Cj)j∈J of copulas such that for each Cj , j ∈ J , and
for each x ∈]0, 1[ there is yx,j ∈]0, 1[ such that Cj(x, yx,j) 6= xyx,j (copulas with no
trivial product vertical section), so that

C(x, y) =

{
ajy + (bj − aj)Cj

(
x−aj

bj−aj
, y

)
if x ∈]aj , bj [,

xy otherwise.
(2)
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P r o o f . The sufficiency is trivial, following the same ideas as in [13]. To see the
necessity, denote S = {x ∈ [0, 1] | C(x, y) = xy for all y ∈ [0, 1]}. Evidently, S is a
closed subset of [0, 1] containing as trivial members 0 and 1. Then the complement
[0, 1]\S is an open (possibly empty) subset of [0, 1] and hence there is a disjoint
system (]aj , bj [)j∈J such that S =

⋃
j∈J ]aj , bj [.

For j ∈ J , define Cj : [0, 1]2 → [0, 1] by

Cj(x, y) =
C(aj + (bj − aj)x, y)− ajy

bj − aj
.

Then Cj is a copula and the representation (2) of C is immediate. Moreover, Sj =
{x ∈ [0, 1] | Cj(x, y) = xy for all y ∈ [0, 1]} = {0, 1} is trivial for all j ∈ J . ¤

Note that the construction (2) can be applied to any system (Cj)j∈J of copulas,
still yielding a copula C. This construction will be called g-ordinal sum (gluing
ordinal sum), with notation C = g − (〈aj , bj , Cj〉 | j ∈ J). Formally, J can be also
empty and then C = Π is the product copula. Observe that g-ordinal sums belongs
to patchwork techniques for copulas studied recently by [7]. Moreover, the idea of
g-ordinal sums (based on the product copula Π) is similar to the idea of ordinal
sums based on M , or W -ordinal sums based on W , see [11]. In all cases, the first
step is based on the set of all elements x of [0, 1] for which the vertical sections of
copula C coincide with the vertical section of the background copula. Note that
Durante, Saminger-Platz and Sarkoci [7] have used the construction (2) as a rect-
angular patchwork with the notation 〈(aj , bj , Cj)〉Πj∈J . To stress the representation
part (2) and its relationships with ordinal sums based on M and W , we prefer to
call (2) a g-ordinal sum. Based on Theorem 1, it is not difficult to show the next
results.

Corollary 1. A nontrivial g-ordinal sum copula C with all summands equal to
Cj , Cj = C is necessarily the product copula, C = Π. Moreover, a g-ordinal sum
copula C is PQD (positive quadrant dependent, see [12]) if and only if all summands
Cj are PQD.

Corollary 2. A g-ordinal sum copula C is absolutely continuous if and only if all
its summands Cj are absolutely continuous. The same holds for singular copulas,
but additionally we should require that the intervals ([aj , bj ])j∈J form a covering of
the unit interval [0,1].

Based on ([13], Theorem 3.2) one can show the next result.

Proposition 3. Let C = g − (〈aj , bj , Cj〉 | j ∈ J), then Spearmann rho

ρC =
∑

j∈J

(bj − aj)2ρCj .

Similarly, for Kendall tau we have

τC =
∑

j∈J

(bj − aj)2τCj .

g-ordinal sums are well compatible with the conditioning of copulas.
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Theorem 2. Let C = g − (〈aj , bj , Cj〉 | j ∈ J) be a g-ordinal sum copula and
α ∈]0, 1[. Then C(α) = g − (

〈
aj , bj , Cj(α)

〉
| j ∈ J).

P r o o f . The proof is based on the commuting of pseudo-inverse operation and
increasing affine transform. It holds C(α)(aj , y) = ajy for all j ∈ J, y ∈ [0, 1],
and similarly C(α)(bj , y) = bjy. Due to C(aj , y) = ajy we have that, for a fixed
α ∈]0, 1[, ϕ(−1)(ai) = sup {t ∈ [0, 1] | C(t, α) ≤ αai} = c ≤ ai and C(c, α) = αai.
However, then the volume VC([c, ai] × [0, α]) = 0, i. e., C(c, y) = C(ai, y) = aiy for
all y ∈ [0, 1]. Similarly, C(α)(bj , y) = bjy, y ∈ [0, 1], j ∈ J . Consequently, C(α) can
be represented as a g-ordinal sum, C(α) = g− (〈aj , bj , Dj〉 | j ∈ J) for some copulas
Dj , j ∈ J .

For x ∈ [0, 1]\⋃
j∈J ]aj , bj [, C(x, y) = C(α)(x, y) = g − (

〈
aj , bj , Cj(α)

〉
| j ∈

J)(x, y) = xy. If x ∈]ak, bk[ for some k ∈ J , and C(x, α) = C(ak, α) = akα,
evidently C

(
x−ak

bk−ak
, α

)
= 0 and C(α)(x, y) = g− (

〈
aj , bj , Cj(α)

〉
| j ∈ J)(x, y) = aky.

Finally, if x ∈]ak, bk[ for some k ∈ J and C(x, α) > αxk, i. e., C
(

x−ak

bk−ak
, α

)
> 0,

then ϕ(−1)(x) = sup
{

t ∈ [0, 1] | C(t,α)
α < x

}
∈ [ak, bk] and thus, for all y ∈ [0, 1]

C(α)(x, y) =
C(ϕ(−1)(x), αy)

α
= aky +

(bk − ak)Ck

(
ϕ(−1)(x)−ak

bk−ak
, αy

)

α

= aky +
(bk − ak)Ck

(
ϕ

(−1)
k

(
x−ak

bk−ak

)
, αy

)

α

= aky + (bk − ak)Ck(α)

(
x− ak

bk − ak
, y

)

= g − (
〈
aj , bj , Cj(α)

〉
| j ∈ J)(x, y),

where ϕ
(−1)
k (u) = sup

{
t ∈ [0, 1] | C(t,α)

α < u
}

.

Thus, the proof is complete. ¤

4. LEFT AND RIGHT CONDITIONING OF COPULAS

As already shown in Proposition 1, (C(α))(β) = (C(β))(α) = C(α β). Similarly we can
show (C[α])[β] = (C[β])[α] = C[α β]. Moreover, C(α)(x, y) = C[α](y, x) whenever the
copula C is symmetric (then C(α) need not be symmetric, in general).

However, the left and the right conditioning of copulas do not commute, in gen-
eral. This can be checked easily in the Cuadras–Augé family, taking as C any of its
proper (not boundary) member. Moreover, this example shows also that (C[α])(β) as
well as (C(β))[α] differs from Charpentier–Juri [3] conditioning C[α, β], also in cases
when all conditional copulas are well-defined (the first two copulas are always de-
fined, while so is the third one only for copulas with strictly increasing horizontal
and vertical sections, excluding the boundary sections).
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Example 2. Let C = M
1
2 Π

1
2 be the Chadras–Angé copula with parameter 1

2 .
Then C(α) = g−(〈0,

√
α,C〉), C[α](x, y) = C(α)(y, x), (C(α))[β] = C( α

β2 ) if α ≤ β2 and

(C(α))[β] = C[ β√
α

] if α > β2. Similarly, (C[β])(α) = C[ β

α2 ] if β ≤ α2 and (C[β])(α) =

C[ α√
β

] if β > α2. Thus (C( 1
4 ))[ 12 ] = C while (C[ 12 ])( 1

4 ) = C
(
√

2
4 )

. Moreover, applying
Charpentier–Juri approach [3], when copula C[α,β] is related to the distribution
function F (x, y) = C(βx,αy)

C(β,α) , C(β, α) > 0, we have in our case C[α,β] = C
( α2

β2 )
if α ≤

β and C[α,β] = C
( β2

α2 )
if α ≥ β . Hence C[ 14 , 1

2 ] = C( 1
4 ).

We introduce another example of a copula C for which the right and the left
conditioning do not commute.

Example 3. Let C : [0, 1]2 → [0, 1] be a singular copula with support on seg-
ments connecting points

(
0, 1

2

)
with

(
1
2 , 1

)
, and

(
1
2 , 1

2

)
with (1, 0). Then C(0.5) =

W, C[0.5] = M (the upper Fréchet–Hoeffding bound), and thus (C(0.5))[0.5] = W 6=
M = (C[0.5])(0.5).

Nevertheless, for strict Archimedean copulas we have the next important result
connecting the left and right types of univariate conditioning of copulas.

Theorem 3. Let C : [0, 1]2 → [0, 1] be a strict Archimedean copula, i. e., there is
a decreasing convex bijection f : [0, 1] → [0,∞] such that

C(x, y) = f−1(f(x) + f(y)). (3)

Then for any α, β ∈]0, 1[, it holds:

(i) C(α) = C[α]

(ii) (C[α])(β) = (C(β))[α] = C(α β).

P r o o f .

(i) Recall that C(α)(u, v) =
C(σ(−1)(u),αv)

α ,

where σ(−1)(u) = sup
{

t ∈ [0, 1] | C(t,α)
α < u

}
. Due to (3), C(t,α)

α = f−1(f(t)+f(α))
α

and thus σ−1(u) = f−1(f(αu)− f(α)). Consequently,

C(α)(u, v) =
f−1 (f(αu) + f(αv)− f(α))

α
. (4)

Observe that the family (Cα) given in (4) is, in general, a new parametric
family of copulas (up to special case of invariant copulas).

Similarly, C[α](u, v) = f−1(f(αu)+f(αv)−f(α))
α , i. e., C(α) = C[α].

(ii) This is a corollary of (i) and Proposition 1. ¤
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Example 4. For λ ≥ 1, the function fλ : [0, 1] → [0,∞] given by fλ(x) =
(

1−x
x

)λ

is an additive generator of a copula Cλ. The family
(
(Cλ)(α)

)
α∈[0,1]

is given by

(Cλ)(α)(u, v) =
1

α +
√((

1−αu
u

)λ +
(

1−αv
v

)λ − (1− α)λ
) 1

λ

for α > 0, and the limit member

(Cλ)(0) = lim
α→0+

(Cλ)(α)

is the Clayton copula with parameter λ,

(Cλ)(0)(u, v) = (u−λ + v−λ − 1)−
1
λ .

Remark 2.

(i) As already shown in Example 2, for any symmetric copula C it holds C[α](x, y) =
C(α)(y, x), compare also Theorem 3 (i). However, (C[α])(β) = (C(β))[α] need
not hold for symmetric copulas in general, see Example 2.

(ii) Observe that also for non-strict copula C generated by an additive generator
f , it can be shown that

C[α](u, v) = C(α)(u, v) = f (−1) (min(f(0), f(αu) + f(αv)− f(α))), α ∈]0, 1[.

(iii) For any Archimedean copula C generated by an additive generator f , the
copulas C[α] = C(α), α ∈]0, 1[, are again Archimedean and they are generated
by an additive generator fα : [0, 1] → [0,∞] given by

fα(x) = f(αx)− f(α).

Compare [8], Proposition 3.2 for extreme tail dependence copulas.
Consequently, for an associative copula C, also C(α) is associative for all α ∈]0, 1[.

To be more precise, if C = (〈aj , bj , Cj〉 | j ∈ J) is an ordinal sum with Archimedean
summands Cj generated by additive generators fj , j ∈ J , then

C(α) =
(〈

aj

α
,
bj

α
,Cj

〉
| j ∈ J, bj ≤ α)

)
,

if α ∈ [0, 1]\⋃
j∈J ]aj , bj [, and if α ∈]ak, bk[ for some k ∈ J , then

C(α) =
(〈ak

α
, 1, C∗k

〉
,

〈
aj

α
,
bj

α
,Cj

〉
| j ∈ J, bj < α

)
,

where C∗k = (Ck)“ α−ak
bk−ak

”.
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5. CONCLUDING REMARKS

We have studied a new method for constructing copula families from any given 2-
copula C. This method preserves some special classes of copulas. Indeed, if C is
absolutely continuous (singular, associative), then, for each α ∈]0, 1[, also C(α) is
absolutely continuous (singular, associative). As a by-product, we have introduced
the concept of g-ordinal sums, which is closely related to conditioning. Indeed, for
any g-ordinal sum C = g − (〈aj , bj , Cj〉 | j ∈ J) and any α ∈ [0, 1]\⋃

j∈J ]aj , bj [ it
holds

C[α] = g −
(〈

aj

α
,
bj

α
,Cj

〉 ∣∣∣ j ∈ J, bj ≤ α

)
.

Especially, if αk = 0 for some k ∈ J , then C[βk] = Ck.
In our next investigation, we aim to discuss copulas invariant with respect to

conditioning, i. e., copulas such that C(α) = C (C[α] = C) for all α ∈]0, 1[.
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