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COMPOSITE CONTROL
OF THE n–LINK CHAINED MECHANICAL SYSTEMS

Jiř́ı Zikmund

In this paper, a new control concept for a class of underactuated mechanical system is
introduced. Namely, the class of n-link chains, composed of rigid links, non actuated at the
pivot point is considered. Underactuated mechanical systems are those having less actu-
ators than degrees of freedom and thereby requiring more sophisticated nonlinear control
methods. This class of systems includes among others frequently used for the modeling
of walking planar structures. This paper presents the stabilization of the underactuated
n-link chain systems with a wide basin of attraction. The equilibrium point to be stabilized
is the upright inverted and unstable position.

The basic methodology of the proposed approach consists of various types of partial
exact linearization of the model. Based on a suitable exact linearization combined with
the so-called “composite principle”, the asymptotic stabilization of several underactuated
systems is achieved, including a general n-link. The composite principle used herein is
a novel idea combining certain fast and slow feedbacks in different coordinate systems to
compensate the above mentioned lack of actuation.

Numerous experimental simulation results have been achieved confirming the success of
the above design strategy. A proof of stability supports the presented approach.
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1. INTRODUCTION

Effective control of underactuated systems is still an open problem. This paper deals
with a new control strategy that can be used for a class of underactuated systems.
The classification of simple underactuated systems can be found in [12]. The system
under interest, a mechanical chain actuated in every joint except the pivot, consists
of n-links connected by rotary or prismatic joints.

The control problem for this class of systems is very popular within the control
community for its complex non-linear behavior and numerous control strategies that
have been applied. Typically, two different problems are solved. The first problem
investigates how to swing up such a given system (e. g. the Acrobot, or (3, 4, . . . )-
link inverted pendulum) from an arbitrary initial position to their inverted position
and stabilize them [1, 7]. The second main area concerns the control of their motion
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along its unstable equilibrium manifold [2, 5, 6, 11]. These approaches usually take
advantage of different kind of switching schemes of the controllers thereby trying to
extend their domain of attraction. The so-called composite control introduced here
is the effective way how to stabilize such a system in its unstable inverted equilibrium
and track the system around it. Practically the same set of linearizing coordinates as
in [9] is used. Compared to [9], our approach does not require an invertibility of the
coordinates transformation and generalizes the stability conditions and controller
design.

The contribution of this paper is as follows. The stabilization of the inverted
unstable equilibrium of the n-link system from a wide range of initial conditions
without any switching scheme is developed. The control algorithm based on maxi-
mum and partial exact linearization of the n-link system dynamics has been derived
in opposition to [9] where approximate linearization is chosen. That kind of control
is called “composite” since the control strategy is a combination of two controllers
computed from two partially exactly linearized coordinate systems. Both control
terms act simultaneously. These two controllers are shown to provide local asymp-
totic stability and are easy to tune. In contrast to the standard control methods
available for the control and stabilization of this class of underactuated systems, the
stabilization law presented herein provides a large domain of attraction and does
not include any switching scheme.

The paper is organized as follows. The modeling of the systems under interest is
briefly presented in Section 2. Section 3 is devoted to the well-known partial exact
linearization method. Section 4 presents the principle of the composite control and
includes all necessary proofs. Throughout the paper, the theory is tested on the
special case of the 2-link (Acrobot) example. In Section 5, some numerical results
are given for the 2-link and 4-link systems.

Fig. 1. n-link mechanical underactuated systems:
from 2-link inverted pendulum

to 5-link planar walking robot.
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2. DYNAMIC MODEL OF n–LINK CHAINED SYSTEM

Simple n-link mechanical systems are studied, which consist of a chain of connected
rigid, massless links. First of all, a set of generalized coordinates has to be chosen
which completely describes the system. Let q1 be the absolute coordinate defining
the orientation of the systems in the Cartesian frame and relative positions are
described by the configuration variables qi.

The system is attached to a fixed pivot reference by the angle q1. The second
angular position q2 corresponds to chosen centre-joint of the system. Its properties
and function will be shown in the sequel, for this moment it is supposed to be the
joint possessing the most power controlling a movement of the center of mass. For
instance, for a walking robot, q2 will represent the relative position of the hips. All
joints (rotary or prismatic) between the links are actuated except the pivot point
and can be numerated from pivot point, except the q2 corresponding to centre-
joint. All relative-angle position is described by the configuration variables qi and
all connections are supposed to be frictionless. Example of such a system is presented
in Figure 2.

Fig. 2. Systems with prismatic and rotary joints, and notation.

To model these systems, the Lagrangian approach is being used. To do so, the
Lagrangian equation is the difference between the kinetic and the potential energy:

L(q, q̇) = K − V =
1
2
q̇T D(q)q̇ − V (q), (1)

where q denotes the n-dimensional configuration vector and D(q) is the inertia ma-
trix; K is the kinetic energy and V is the potential energy of the system.

For independent external forces u = (0, τ2, τ3, . . . , τn)T applied to the system, the
Euler–Lagrange equations are the following




d
dt

∂L
∂q̇1

− ∂L
∂q1

...
d
dt

∂L
∂q̇n

− ∂L
∂qn


 = u =




0
τ2

...
τn


 . (2)
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Systems under our interest have n − 1 nonzero parts of input vector, that means
they have fewer actuators then degrees of freedom. Systems having this property
are called underactuated [8]. Equations (2) lead to a dynamic equation in the form

D(q2, . . . , qn)q̈ + C(q, q̇)q̇ + G(q) = u (3)

where

D(q) =




d11(q2, . . . , qn) · · · d1n(q2, . . . , qn)
...

. . .
...

dn1(q2, . . . , qn) · · · dnn(q2, . . . , qn)


 ∈ Rn×n is the inertia matrix,

C(q, q̇) =




c11(q, q̇) · · · c1n(q, q̇)
...

. . .
...

cn1(q, q̇) · · · cnn(q, q̇)


 ∈ Rn×n contains Coriolis and centrifugal terms,

and G(q) = (g1(q), . . . , gn(q))T ∈ Rn contains gravity terms.

Fig. 3. Acrobot.

Example 1. 2-link system with rotary joints (Acrobot): the dynamic model in
the form (3) is easily obtained using the method of Lagrange

D(q) =
(

θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2

θ2 + θ3 cos q2 θ2

)

C(q, q̇) =
(
−θ3 sin q2q̇2 −θ3 sin q2q̇2 − θ3 sin q2q̇1

θ3 sin q2q̇1 0

)
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G(q) =
(
−θ4g sin q1 − θ5g sin (q1 + q2)

−θ5g sin (q1 + q2)

)

where θi are constant coefficients

θ1 = m1l
2
1 + m2l

2
1

θ2 = m2l
2
2

θ3 = m2l1l2

θ4 = m1l1 + m2l1

θ5 = m2l2

The system has a second-order nonholonomic constraint and a kinetic symmetry
(that means the inertia matrix does not depend on variable q1).

3. PARTIAL EXACT LINEARIZATION OF NONLINEAR SYSTEMS

The partial linearization method is based on the state transformation into a new
system of coordinates that display linear dependence between some auxiliary out-
puts and new inputs introduced via a suitable feedback transformation. A detailed
exposition on this topic may be found in [4].

From the theoretical point of view, a mechanical system dynamics is described
by a 2n-dimensional state space (q, q̇), (3). Static state feedback linearization of a
suitable output function with relative degree r yields a linear subsystem of dimen-
sion r. The relative degree1 of the output function is defined as the number, how
many times we have to differentiate this function before the any components τi of
input vector u appears explicitly. In other words, maximum feedback linearization
requires a so-called linearizing output function with maximal relative degree; then
the problem is how to find it.

In the sequel, two methods of the partial exact linearization are presented for the
class of system under interest.

First, it was shown in [8] that 2-body underactuated systems with input τ2 can
be partially linearized by the feedback

τ2 =
(

d11 −
d12d21

d11

)
v +

(
f2 −

d12f1

d11

)
(4)

into the normal form

q̈1 = J(q)v + R(q, q̇)
q̈2 = v, (5)

where J(q) = −d11/d12 and R(q, q̇) = −f2/d12 are composed of the corresponding
parts in matrices D(q) and F (q, q̇) = C(q, q̇)q̇+G(q) in (3). This so-called collocated
linearization (4) refers to a control that linearizes the actuated variable and its non-
collocated version [8] refers to linearizing the passive degree of freedom.

1Definition of the relative degree is consistent with linear systems theory.
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Notice that the feedback (4) is globally defined since (dii > 0) on the configuration
manifold Q. It can easily be generalized to the n-link chained systems which are
nonactuated at the pivot point.

q̈1 =
n∑

k=2

Jk(q2, . . . , qn)vk + R(q, q̇)

q̈2 = v2

...
q̈n = vn (6)

where Jk = (d1,k/d1,1), d1,k are the entries in the first row of inertia matrix D.
Later on, in [3, 10] was shown that if the generalized momentum conjugate to the

cyclic variable q1 is not conserved (as it is the case of systems under consideration),
then there exists a set of outputs that defines a one-dimensional exponentially stable
zero dynamics.

That means it is possible to find a set of functions y(q, q̇) with relative degree 3
that transforms the original system (3) by a local transformation z = T (q, q̇)

ξ1 = t1(q, q̇)
ξ2 = t2(q, q̇) = y

ξ3 = t3(q, q̇) = ẏ

ξ4 = t4(q, q̇) = ÿ

ξ5 = q3

ξ6 = q̇3 (7)
...

ξ2n−1 = qn

ξ2n = q̇n

into the new partially input/output linear system (8) with unobservable nonlinear
dynamics of order 1. Some transformations t1(q, q̇) have to be arbitrarily chosen
independently from t2(q, q̇), t3(q, q̇) and t4(q, q̇), dim(t1(q, q̇)) = 1 (in case of n-DOF
systems dim(t1(q, q̇)) = 1).

ξ̇1 = ψ1(ξ) + ψ2(ξ)u
ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = α(ξ)u + β(ξ) = w



ξ̇5

ξ̇6

...
ξ̇2n−1

ξ̇2n




=




ξ̇6

0
...

ξ̇2n

0




+




0
v3

...
0
vn




.
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More generally, for n-link mechanical systems, nonactuated at the pivot, there are
two independent functions having relative degree 3. The first candidate is

σ =
∂L
∂q̇1

=
n∑

k=1

d1,k(q2, . . . , qn)q̇k (8)

while its associated normalized 1-form

dω = dq1 +
n∑

k=2

d1,k(q2, . . . , qn)
d1,1(q2, . . . , qn)

dqk (9)

and leads to the second function p2(q) having relative degree 3 with respect to v2 and
relative degree 2 with respect to vk; k = 3, . . . , n. See [3] for details. This function
p2(q) can be computed as follows

p2 = q1 +
∫

d1,2(q2, . . . , qn)
d1,1(q2, . . . , qn)

dq2 (10)

which leads to

ṗ2 =
σ

d1,1(q2, . . . , qn)
+

n∑

k=3

βk(q2, . . . , qn)q̇k, (11)

where

βk(q2, . . . , qn) =
∫

∂

∂qk

d1,2(τ, q3, . . . , qn)
d1,1(τ, q3, . . . , qn)

dτ − d1,k(q2, . . . , qn)
d1,1(q2, . . . , qn)

. (12)

Example 2. In case of the Acrobot, there are two independent functions with
relative degree 3

σ =
∂L
∂q̇1

= (θ1 + θ2 + 2θ3 cos q2)q̇1 + (θ2 + θ3 cos q2)q̇2,

p = q1 −
q2

2
− 2θ2 − θ1 − θ2√

(θ1 + θ2)2 − 4θ3

arctan

(√
θ1 + θ2 − 2θ3

θ1 + θ2 + 2θ3
tan

q2

2

)

that transform the system into the form (8). The zero dynamics is used to investigate
the internal stability when the corresponding output is forced to zero. For the
special cases y = Kp or y = Kσ the resulting zero dynamics is only critically stable.
However, considering the output function y = K1p(q) + K2σ(q, q̇), where K1, K2

are the real coefficients, one gets the following zero dynamics

ṗ +
K1

K2d11
p = 0 (13)

which is asymptotically stable whenever K1/K2 is positive.
The maximum linearizations defined above are either only locally defined with

many complex singular points, or yield a critically stable zero dynamics with tractable
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Fig. 4. Singularities s(q) = 0 and possible regular set of the coordinate change (14)

of the Acrobot. Function yCOM (q) is the vertical position of the center of gravity.

singular points. Our main result takes advantage of the linearization of the output
y = σ. The corresponding linearizing transformation will be shown to have quite
limited singularities. The set of these singular points is displayed in Figure 4. The
singularities occur when the Acrobot’s center of gravity passes through xg = 0 which
can obviously be excluded in all reasonable physical situations. To be more specific,
using the set of functions with maximal relative degree, the following transformation

T : ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈ (14)

can be defined. Notice, that the following relation

ṗ = d11(q2)−1σ (15)

holds, d11(q2) being the corresponding element of the inertia matrix D in (3). Ap-
plying (14), (15) to (3) we obtain the Acrobot’s dynamics in the partially linearized
form

ξ̇1 = d11(q2)−1ξ2

ξ̇2 = ξ3 (16)
ξ̇3 = ξ4

ξ̇4 = α(q, q̇)τ2 + β(q, q̇) = w

with the new coordinates ξ and the input w being well defined wherever α(q, q̇) 6= 0.
To determine the region where such a transformation can be applied, let us express
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it in an explicit way. Namely, straightforward computations show that

ξ =




ξ1

ξ2

ξ3

ξ4


 = T (q1, q2, q̇1, q̇2) :=




T1

T2

T3

T4


 , (17)




T1

T3

T2

T4


 =




p(q1, q2)
θ4g sin q1 + θ5g sin(q1 + q2)

Φ2(q1, q2)
[

q̇1

q̇2

]


 , (18)

where p is given by (10) and Φ2 by (23) later on. Further, denote the inverse
transformations

φ =
[

φ1(ξ1, ξ3)
φ2(ξ1, ξ3)

]
, such that (19)

T1(φ1(ξ1, ξ3), φ2(ξ1, ξ3)) = ξ1

T3(φ1(ξ1, ξ3), φ2(ξ1, ξ3)) = ξ3.
(20)

It holds by (17,18) that

∂[ξ1, ξ3, ξ2, ξ4]T

∂[qT , q̇T ]T
=

[
Φ1(q1, q2) 0
Φ3(q, q̇) Φ2(q1, q2)

]
, (21)

where q := [q1, q2]T , Φ3(q, q̇) is a certain (2× 2) matrix of smooth functions whereas

Φ1(q1, q2) =




1 θ2+θ3 cos q2
θ1+θ2+2θ3 cos q2

θ4g cos q1+
θ5g cos(q1 + q2)

θ5g cos(q1 + q2)


 , (22)

Φ2(q1, q2) =




θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2

θ4g cos q1+
θ5g cos(q1 + q2)

θ5g cos(q1 + q2)


 . (23)

Further, it obviously holds for (19), (20) that

∂φ(ξ1, ξ3)
∂[ξ1, ξ3]T

= Φ−1
1 (q1, q2) =

1
s(q)




θ5g cos(q1 + q2) − θ2+θ3 cos q2
θ1+θ2+2θ3 cos q2

−θ4g cos q1−
θ5g cos(q1 + q2)

1


 , (24)

where
s(q) := detΦ1 =

detΦ2

d11(q)
(25)

= gd−1
11 (q)

(
(θ1 + θ3 cos q2)θ5 cos(q1 + q2)− (θ2 + θ3 cos q2)θ4 cos q1

)
.
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Moreover, the coordinate change (17) is locally invertible at each point where

s(q) 6= 0. (26)

For any n-link systems unactuated in the pivot, define σ = ∂L/∂q̇1. From the
first equation of (2)

d
dt

∂L
∂q̇1

− ∂L
∂q1

= 0 (27)

where the Lagrange function

L(q, q̇) = K − V =
1
2
q̇T D(q2, . . . , qn)q̇ − V (q) (28)

has a kinetic symmetry with respect to q1, i. e. ∂K
∂q1

= 0. Then, for systems that
are underactuated in the pivot point, one can easily see that function σ can be
differentiated three times before explicit dependence on any input arises. In the
next, σ will be the only function used for the maximum exact linearization, t2(q, q̇)
in (8), due to the occurrence of a complex singular set attached to p. Nevertheless,
the useful structural properties of function p will be used through the choice of
t1(q, q̇) = p in (8) which completes the transformation set (8).

4. COMPOSITE CONTROL

Maximum linearization is only locally defined and the output function y = Kσ will
be used below since the set of singular points attached to the linearization problem is
much less complex than the set of singular points obtained when linearizing output
is y = K1p+K2σ. Thus, the asymptotic stability of the zero dynamics is lost and it
requires another control layer for the full stabilization. Nevertheless we gain a large
domain of attraction to the equilibrium excluding any singular point.

To be more specific, the two-scale control combines the control of the horizontal
position xg of the center of mass of the whole system with the control of the angular
positions of each link qi. All stable inverted positions correspond to xg = 0, when
the center of the gravity is exactly above the pivot point. Moreover, the upright
inverted position has all relative angular positions qi equal to 0 too. Thanks to the
relation σ̇ = −1/

∑
mixg the stabilization of the center of gravity is obtained by

stabilizing σ. The system in the stable inverted position has the coordinates (σ, σ̇, σ̈)
equal to zero and xg = 0. After reaching a neighborhood of the inverted position
the influence of a second control loop, originally much slower then the first one,
starts to have a decisive effect and controls the angular coordinates to the desired
positions. During the stabilization of the angular positions, the first control loop
ensures the stability of the overall system by keeping the center of gravity at zero.
Finally, the center of gravity is at zero and all angular coordinates are at the desired
position (in case of upright inverted position these are qi = 0). The existence of
unlimited combinations of angular positions qi corresponding to xg = 0 makes these
simultaneous controls possible.
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Example 3. In the case of 2 links with rotary joints and unactuated pivot point
there is one input u = (0, τ2) only. Coordinates transformation (8) defined as
t1(q, q̇), t2(q, q̇) = p(q), σ(q, q̇) leads to

ξ1 = p(q)
ξ2 = σ(q, q̇)
ξ3 = σ̇(q)
ξ4 = σ̈(q, q̇), (29)

and the relation p = d−1
11 σ yields the partially linearized form

ξ̇1 = d−1
11 (T−1(ξ))ξ2

ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = w. (30)

Recall, that d11(T−1(ξ)) is the appropriate entry of the inertia matrix D (3). Denote
d11(T−1(ξ))−1 = µ(t), µ(t) can be considered as a bounded uncertainty with

amin ≤ µ(t) ≤ amax, (31)

where the bounds amin, amax are positive reals given by the lower and upper limits of
the corresponding part d11 of inertia matrix in (3) and can be computed as follows

amin =
1

m2(l1 + l2)2 + m1l21 + I1 + I2

amax =
1

m2(l1 − l2)2 + m1l21 + I1 + I2
. (32)

Therefore, the first equation of (30) can be replaced by ξ̇1 = µ(t)ξ2 where µ(t)
satisfies (31). Based on this, the main result of this paper formulated by the following
theorem gives a constructive way how to stabilize such a system.

Theorem 1. Consider the system (30). Define the following feedback

w = −K1ξ1 −Θ3K2ξ2 −Θ2K3ξ3 −ΘK4ξ4, (33)

where any K1 > 0 and K2,3,4 such that the polynomial s3 + K4s
2 + K3s + K2 is

Hurwitz. Then, there exists a sufficiently large Θ > 0 such that the feedback (33)
globally stabilizes the system (30).

Before proving Theorem 1, note that when Θ is large enough then σand p repre-
sent the fast and the slow parts of the system dynamics.
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P r o o f . First, let us transform linearly the system (8) into new coordinates ξ =
(ξ1, ξ2, ξ3, ξ4) defined as follows

ξ1 =
K1

Θ3K2
ξ1 ; ξ2 = ξ2 +

K1

Θ3K2
ξ1 ; ξ3 = Θ−1ξ3 ; ξ4 = Θ−2ξ4 . (34)

Denote K(t) = µ(t) K1
Θ3K2

. In this new coordinates the system (8) takes the form

ξ̇1 = K(t)
(
ξ1 − ξ2

)
(35)

d
dt




ξ2

ξ3

ξ4


 = ΘA




ξ2

ξ3

ξ4


−K(t)




ξ1 − ξ2

0
0


 . (36)

Consider the following Lyapunov function V (ξ) for the system (35), (36) defined as
follows

V (ξ) =
1
2
(ξ

2

1) + [ξ2, ξ3, ξ4]S[ξ2, ξ3, ξ4]
T (37)

where the positive definite symmetric matrix S is the solution of the Lyapunov
matrix equation

AT S + SA = −I (38)

A =




0 1 0
0 0 1

−K2 −K3 −K4


 ; S := (sij)i,j=1,2,3. (39)

Further, denote ξ̃ = [ξ2, ξ3, ξ4]T and compute the full-time derivative of V (ξ) along
the trajectories (35), (36):

dV (ξ)
dt

= −K(t)ξ
2

1 + K(t)ξ1ξ2 + ˙̃
ξT Sξ̃ + ξ̃S

˙̃
ξT

= −K(t)ξ
2

1 + K(t)ξ1ξ2 +


ΘA




ξ2

ξ3

ξ4







T

Sξ̃ + [ξ2, ξ3, ξ4]SΘA




ξ2

ξ3

ξ4




−K(t)[ξ1 − ξ2, 0, 0]Sξ̃ −K(t)ξ̃T S



−ξ1 − ξ2

0
0




= −K(t)ξ
2

1 −Θ(ξ
2

2 + ξ
2

3 + ξ
2

4) + K(t)ξ1ξ2

−2K(t)(s11ξ2 + s21ξ3 + s31ξ4)(ξ1 − ξ2). (40)

In other words, we have shown that

dV (ξ)
dt

= −K(t)ξ
2

1 −Θ(ξ
2

2 + ξ
2

3 + ξ
2

4) + K(t)(ξ1ξ2(1− s12) + ξ1ξ3(−2s21)

+ξ1ξ4(−2s31) + ξ
2

2(2s11) + ξ2ξ3(2s21) + ξ2ξ4(s31)) (41)
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where K(t) is given by

K(t) = µ(t)
K1

Θ3K2
. (42)

Thus,

aminK1

Θ3K2
≤ K(t) ≤ amaxK1

Θ3K2
(43)

where amin, amax are given by (32), in particular amax > amin > 0. Denote

Kmax =
amaxK1

K2
; Kmin =

aminK1

K2
(44)

then obviously

Kmax ≥ Kmin ≥ 0. (45)

Therefore, it holds

dV (ξ)
dt

= −Kmin

Θ3
ξ
2

1 −Θ(ξ
2

2 + ξ
2

3 + ξ
2

4) +
Kmax

Θ3

∣∣ξ1ξ2(1− s12)− 2s21ξ1ξ3

−2s31ξ1ξ4 + 2s11ξ
2

2 + 2s21ξ2ξ3 + 2s31ξ2ξ4

∣∣. (46)

Note, that by construction, Kmin, Kmax, s11, s21, s31 are fixed and independent on
Θ. Therefore

dV (ξ)
dt

≤ −
(

Kmin

3Θ3
ξ
2

1 +
Θ
3

ξ
2

2 −
|1− s11||ξ1||ξ2|

Θ3

)

−
(

Kmin

3Θ3
ξ
2

1 +
Θ
2

ξ
2

3 −
2|s21||ξ1||ξ3|

Θ3

)

−
(

Kmin

3Θ3
ξ
2

1 +
Θ
2

ξ
2

4 −
2|s31||ξ1||ξ4|

Θ3

)

−
((

Θ
3
− 2|s11|

)
ξ
2

2 +
Θ
2

ξ
2

3 −
2|s21||ξ2||ξ3|

Θ3

)

−
(

Θ
3

ξ
2

2 +
Θ
2

ξ
2

4 −
2|s31||ξ2||ξ4|

Θ3

)

each of these terms is a negative definite quadratic form with respect to two its
arguments for Θ ≥ 0 large enough. Indeed, e. g. first of them has the matrix

[
ξ1 ξ2

]
[

−Kmin
3Θ3 + |1−s11|

2Θ3

+ |1−s11|
2Θ3 −Θ

3

] [
ξ1

ξ2

]
. (47)

This symmetric matrix has always negative trace
(
−Kmin

3Θ3 − Θ
3

)
and its determinant

is
(

Kmin
5Θ2 − (1−s11)

2

4Θ6

)
, i. e. it is obviously positive for Θ4 ≥ 3(1−s11)

2

2Kmin
. By analogy,
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one can treat remaining terms, i. e. the overall expression is a negative definite
quadratic form of arguments (ξ1, ξ2, ξ3, ξ4) . The standard version of the Lyapunov
method for exponential stability, see e. g. Khalil [4], finishes the proof. 2

The proof made above for 2-links system can easily be extended to the n-link case
as follows. Any system having the mentioned properties (i. e. having n−1 actuators
and nonactuated at pivot point) can be rewritten using (4), (8) into the following
triangular-like form

ξ̇1 = −d−1
11 ξ2 +

n∑

k=3

fk(ξ1, ξ2, . . . , ξn)ξ2k

ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = w

ξ̇5 = ξ6 (48)
ξ̇6 = v3

...
...

ξ̇2n−1 = ξ2n

ξ̇2n = vn

where (ξ5, . . . , ξ2n) is a linear subsystem of dimension (2n−4) having (n−2) inputs.
The right hand side in the first equation results from (12), in particular f3, . . . , fn

are suitable smooth functions.

Theorem 2. Consider the n-link system (49). Let (n−2) controllers (v3(ξ), . . . , vn(ξ))
be chosen exponentially to stabilize the (2n− 4) dimensional linear subsystem with
ξ1 = ξ2 = ξ3 = ξ4 = 0. Then for any K1 > 0 and K2,3,4 such that the polynomial
s3 + K4s

2 + K3s + K2 is Hurwitz, the feedback w = −K1ξ1 −Θ3K2ξ2 −Θ2K3ξ3 −
ΘK4ξ4 with sufficiently large Θ and the above feedbacks (v3(ξ), . . . , vn(ξ)) locally
stabilize the system (49).

P r o o f . By assumptions of Theorem 2, the linear part ξ5, . . . , ξn of the triangular-
like system

ξ̇1 = −d−1
11 ξ2 + f(ξ5, . . . , ξn)

ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = −K1ξ1 −Θ3K2ξ2 −Θ2K3ξ3 −ΘK4ξ4

ξ̇5 = ξ6 (49)
ξ̇6 = v3

...
...
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ξ̇n−1 = ξb

ξ̇n = vn

can easily be stabilized by a set of linear feedbacks vi = Ki1ξ2i−1 + Ki2ξ2i, i =
3, . . . , n where Ki1,Ki2 < 0. It was shown in [4] that the asymptotic stability of the
origin of the full closed-loop system follows from the asymptotic stability of its zero
dynamics associated to (q3, . . . , qn)

ξ̇1 = −d−1
11 ξ2

ξ̇2 = ξ3 (50)
ξ̇3 = ξ4

ξ̇4 = −K1ξ1 −Θ3K2ξ2 −Θ2K3ξ3 −ΘK4ξ4.

More precisely, the origin of (49) with the above vi’s is asymptotically stable if
the origin of (50) is asymptotically stable. The stability of (50) is guaranteed by
Theorem 1. 2

Note that function f(ξ5, . . . , ξn) in (49) has a form
∑n

i=1 fi(ξ1, ξ3, . . . , ξn−1) · ξ2i

where the last variable ξ2i represents a multiplication by angular velocities qi. To
eliminate the influences of f(ξ5, . . . , ξn) the velocities of the fully linearized actuated
coordinates (q3, . . . , qn) have to be limited. Corresponding “slow” controllers are
inferior with respect to “fast” control that stabilizes the subsystem (ξ1, . . . , ξ4).

5. SIMULATION RESULTS

Examples in this section illustrate how the proposed control law locally stabilizes the
systems under consideration. Two systems from our class of underactuated systems
are chosen: the Acrobot presented below and the 4-links robot with rotary joints.
The role of the center point of n-link system is presented as well.

Properties of the Acrobot are demonstrated below. The Figures 5 and 6 present
its stabilization for a wide range of initial positions. Next, Figure 7 shows the
influence of tuning a factor Θ in (33), and the last one Figure 8 shows the asymptotic
stabilization into the upright position from a set of close initial conditions.

The dynamical model of the 4-link shown in Figure 9 is easily obtained via the
Lagrange method but it is much larger than the model of the Acrobot and it is not
extensively presented here.

The stabilizing controls w and (v3, v4) fulfill the conditions of Theorem 4 to
asymptotically stabilize the 4-link system around its equilibrium point and provide
the asymptotical stabilization in a neighborhood of its inverted position.

The control w can be expressed as a combination of the linearized inputs v2, v3, v4,
where v2 = q̈2, as

ξ̇4 =
d4σ

dt4
= h1(ξ) + h2(ξ)v2 + h3(ξ)v3 + h4(ξ)v4 = w. (51)
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Fig. 5. Stabilization of the 2-link system with rotary joints from

q(0) = (0.4; 2), q̇(0) = (0; 0). The controller (33) has been taken as

w = −200ξ1 − 6Θ3ξ2 − 12Θ2ξ3 − 8Θ1ξ1, Θ = 3.

Fig. 6. Stabilization of the 2-link system with rotary joints from q(0) = (π/2; 0),

q̇(0) = (0; 0). The controller (33) is w = −200ξ1 − 6Θ3ξ2 − 12Θ2ξ3 − 8Θ1ξ1, Θ = 3.

Equation (51) can be solved either in v2, v3 or v4, depending on the selection of the
centre joint q2. For instance,

v2 =
1

h2(q, q̇)
(w − h1(q, q̇)− h3(q, q̇)v3 − h4(q, q̇)v4)

and acts at the center-joint. In this case v3 = −K31ξ5−K32ξ6, v4 = −K31ξ7−K32ξ8

and w conforms to Theorem 1. Figure 10 shows the stabilization of such a system
having the center-joint in the first actuated joint.

For example, a planar walking biped represented as a 4-link mechanical chain
unactuated in the pivot point has the centre-joint in its hips, the place where the most
important control effects are expected. Stabilization of such a system is presented
in the next simulations, Figures 11, 12. In opposition to the previous case, q, the
numbering of new angular coordinates q̃ is different. In this case q̃2 = q3 and q̃3 = q2.
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Fig. 7. Stabilization of the 2-link system with rotary joints from q(0) = (0.4; 2),
q̇(0) = (0; 0). The controller (33) is w = −200ξ1 − 6Θ3ξ2 − 12Θ2ξ3 − 8Θ1ξ1,

a) Θ = 2.8, b) Θ = 3.0, c) Θ = 3.2.
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Fig. 8. Stabilization of the 2-link system with rotary joints, trajectories of
the centre of gravity for: a) fixed q1 = 0.4 and q2 = (1.4; 1.7; 2.0);

b) q1 = (0.15; 0.35; 0.55) and q2 = 2.0; q̇(0) = (0; 0).

Fig. 9. 4-link system with rotary joints unactuated in the pivot point.

One can easily see that ṽ2 = v3 in (51). The function σ and corresponding states
ξ2, ξ3, ξ4 are independent of this choice, however the function p is dependent on it.
The choice of the center-joint allows to locate the control w into the desired actuated
joint and simplifies the notation of dynamic equations.

6. CONCLUSION

The presented work is the part of the complex problem of efficient control of the
underactuated mechanical systems. The derived control law stabilizes some of these
systems around the inverted position or, more generally, around any other inverted
angular configuration.

By a simple tuning of the linear controller the fast convergence with realistic de-
mands on input torque was obtained. Moreover, it does not implement any switching
scheme as elsewhere. In the case of stabilization, the controllers are not difficult to
tune. Due to singularities it is still not possible to use this control as the global one,
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Fig. 10. Stabilization of the 4-link system with centre-joint

between the first and the second link.

Fig. 11. Stabilization of 4-link system with centre-joint between second and third link.
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Fig. 12. Step-like stabilization of the 4-link system.

but tractable structural singularities allow to constrain the system inside a suitable
domain that excludes any singular points. Therefore only local stability is guaran-
teed as it is standard for non-linear systems. That is due to the local character of
coordinate change. Nevertheless, as was presented on Acrobot’s case (Figure 4), the
set where transformations and consequently the stability holds include almost all
physically reasonable states. The main advantage of the new approach therefore lies
in a substantial extension of the domain of attraction.

The theoretical results illustrated here on the simple systems that do represent
a walking structure can be extended to a broad range of underactuated mechani-
cal systems. Stabilization and asymptotic tracking around an equilibrium point is
the first step to asymptotic trajectory tracking around more general walking like
reference trajectories, that will be the subject of further research.

(Received April 18, 2008.)
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