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This paper considers the problem of determining linear relations from data affected
by additive noise in the context of the Frisch scheme. The loci of solutions of the Frisch
scheme and their properties are first described in the algebraic case. In this context two
main problems are analyzed: the evaluation of the maximal number of linear relations com-
patible with data affected by errors and the determination of the linear relation actually
linking the noiseless data. Subsequently the extension of the Frisch scheme to the identifi-
cation of dynamical systems is considered for both SISO and MIMO cases and the problem
of its application to real processes is investigated. For this purpose suitable identification
criteria and model parametrizations are described. Finally two classical identification prob-
lems are mapped into the Frisch scheme, the blind identification of FIR channels and the
identification of AR + noise models. This allows some theoretical and practical extensions.
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1. INTRODUCTION

The search for connections between observations (“laws of nature”) is at the basis
of the development of scientific knowledge and can be traced back at least some
thousand years as shown, for instance, by the large amount of clay tablets concerning
the so-called astronomical diaries compiled by the Mesopotamian astronomers. This
search for knowledge is characterized by two basic steps, the necessity of performing a
quantification of observations, i. e. the transformation of observations into numerical
entities and the subsequent extraction of relations between the obtained values, to
be used for interpretation, prediction, control or other purposes. If we observe n
different variables

x1, x2, . . . , xn (1)

and denote with
x1i, x2i, . . . , xni (2)

the values that these variables assume at the ith observation, the search for a law
describing the behavior of the process that has generated the observations is the
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search for a mathematical relation

f(x1, x2, . . . , xn) = 0 (3)

satisfied by every set of observations, i. e. such that, for every i,

f(x1i, x2i, . . . , xni) = 0. (4)

Even assuming that the considered process is actually governed by a law of the
type (3), the observations will never satisfy, in all practical situations, relation (4)
because of the errors that will be inevitably introduced during the quantification
step (e. g. noise in analog systems, finite number of possible values and noise in
digital environments etc.). The deduction of the law behind the observations is
thus a problem that does not admit any solution because the observations will not
satisfy, in general, any relation. All procedures leading to the extraction of abstract
relations from real data rely, in fact, on modified observations. This modification
process should be carried out on the basis of the exact knowledge of the nature of
the errors since it can affect, in a very substantial way, the final result.

As a simple example to illustrate this point, let us assume the existence of a linear
relation, described by the scalars α1, α2, . . . , αn, linking the variables (1):

α1x1 + α2x2 + · · ·+ αnxn = 0. (5)

The same relation can be described also, when αi 6= 0, by means of the equivalent,
asymmetric relation

xi = β1 x1 + · · ·+ βi−1 xi−1 + βi+1 xi+1 + · · ·+ βn xn (6)

where βj = −αj/αi. Let us assume also that only one of the observations, xki is
affected by zero-mean additive errors. By denoting with x̂ji the true values, with
x̃ji the observation errors and with xji the actual observations, these quantities will
be linked by the relations

xji = x̂ji for j 6= k (7)
xki = x̂ki + x̃ki. (8)

This is the well known context of the least squares and we can easily find the op-
timal and asymptotically unbiased solution (Gauss–Markov theorem) by means of
the least squares algorithm. Note, however, that this can be done if and only if
we actually know which variable is affected by observation errors since, from a ge-
ometrical point of view, we perform an orthogonal projection of the vector of the
N noisy observations [xk1 xk2 . . . xkN ]T on the (hyper)plane defined by the vectors
of noiseless observations [xj1 xj2 . . . xjN ]T (j 6= k) and substitute [xk1 xk2 . . . xkN ]T

with its orthogonal projection. If we remain in this context (a single observation is
affected by errors) but with no a priori information about which of the variables is
noisy, the problem cannot be solved. In fact it is impossible to select the correct
solution among the n possible ones that can be obtained by considering as affected
by errors in turn x1, x2, . . . , xn. Moreover, if the errors are not restricted to a single
variable, none of these n solutions will be, even asymptotically, correct.

This elementary example outlines two basic points:



The Frisch Scheme in Algebraic and Dynamic Identification Problems 587

1. The extraction of models from data affected by errors requires an intermediate
step consisting in the deduction of new data from the available ones. The
model will then be deduced from these new data, not from the original ones.

2. In absence of precise information on the errors it is possible to formulate dif-
ferent assumptions, each leading, in general, to extract different sets of data
from the observations and, consequently, to different models.

Every systematic procedure to deduce a model (or a family of models) from data
affected by errors is defined as a “scheme” [29, 30]. Many different schemes have
been investigated and described in the literature. None of these schemes can be
considered, per se, as superior to any other; what changes is simply the set of as-
sumptions. As a consequence, the results that can be obtained by applying different
schemes to the same set of data depend essentially on the “distance” between the
assumptions behind the scheme and the actual situation; all other claims are related
more to faith than to science. A very complete analysis of the assumptions behind
different schemes has been proposed by Kalman in [29, 30, 31].

The content of this paper falls inside the Errors-in-Variables (EIV) context that
assumes the presence of additive noise on all variables. This is a challenging environ-
ment that has seen an increasing amount of research only during the last decades.
One of the appealing features of the models that can be deduced in EIV contexts
concerns their intrinsic capability of relying on a limited set of a-priori assump-
tions [41, 42]. This feature suggests the use of EIV models in applications like, for
instance, diagnosis, where the interest is focused on a realistic description of a pro-
cess rather than on other aspects, like prediction. For a complete overview on EIV
identification see [37] and the references therein.

This paper concerns the scheme proposed by the Nobel prize Ragnar Frisch in
1934 [17] and its application to the problem of deducing linear relations from noisy
observations concerning both algebraic processes (this term is used here to denote
static processes that can be described by sets of relations linking measures performed
at the same time) and dynamic processes (i. e. processes described by difference
equations). The Frisch scheme is an interesting compromise between the great gen-
erality of the EIV environment and the possibility of performing real applications.
Moreover, the Frisch scheme encompasses some other important schemes like, for
instance, Least Squares and the Eigenvector Method and plays, consequently, an
important role also from a conceptual point of view.

The Frisch scheme does not lead, at least in the algebraic case, to a single solution
but to a whole family of solutions compatible with a given set of noisy observations.
This fact has often diverted the attention towards simpler schemes leading to a
single solution so that the smart environment proposed by Frisch has not received,
for many decades, the attention that it deserved.

As it will be shown in the following, the analysis of the Frisch scheme leads to
two separate loci of solutions, one in the parameter space and the other in the space
of the noise variances; of course the points of these loci are linked by well defined
relations. Some fundamental results [29, 31] describe these maps as well as the shape
of the loci in the parameter space under specific conditions. Unfortunately, however,
the locus of solutions in the parameter space can be easily defined only when the data
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are compatible with a single linear relation; in all other cases the performed analyses
have evidentiated the extremely complex structure of this locus, that prevents its
practical use [3]. The investigation of the properties of the locus of solutions in the
noise space has, on the contrary, offered a key for a deeper analysis that shows that
this locus does never degenerate and enjoys some consistent properties [19, 20].

A problem of great importance in the econometric field consists in determining
the maximal number of linear relations compatible with a given set of noisy data.
The importance attributed to this problem is due to the fact that its solution is
considered as linked to the extraction of the maximal information from the data
[35]. The solution of this problem in the context of the Frisch scheme has been
possible only by making reference to the properties of the locus of solutions in the
noise space [21]; other approaches have led to the computation of an upper bound
for this number [43].

When the data are generated by a linear time-invariant dynamic process and
the Frisch context is used for its identification, it is necessary to consider the loci
of solutions under the constraints imposed by the time shift properties of dynamic
systems [5]. It can be surprising to discover that, in this respect, the dynamic case
can be seen as a subcase of the algebraic one and that the shift properties of dynamic
systems lead (in general) to a unique solution [2, 8, 39]. Moreover this solution is
linked to the solution of the maximal corank problem in the algebraic case.

All previous statements are true when the assumptions behind the Frisch scheme
are exactly fullfilled and this can be assumed, at most, only in asymptotic conditions.
In all practical cases this cannot be achieved not only because real data sets are
necessarily limited but also because of a whole series of violations due to non linearity,
non stationarity etc. The development of Frisch identification procedures requires
thus the introduction of suitable criteria [4, 10, 13]. The Frisch scheme in the
identification of dynamic processes enjoys some peculiarities that make it particularly
suitable for the solution of specific problems like filtering and fault detection and
isolation [9, 25].

The purpose of this paper is to outline some results obtained in the analysis of
the Frisch scheme in its original algebraic context and, in particular, to discuss the
solution of the problem of determining the maximal number of linear relations com-
patible with a given set of noisy data. Other relevant topics of this analysis concern
the properties of the loci of the Frisch solutions in the noise and parameter spaces
as well as the possibility of obtaining single solutions. This discussion is carried out
in Section 2. The second part of the paper regards the extension of the original
algebraic environment to the dynamic one, where it is shown how the Frisch scheme
can lead, differently from the algebraic case, to a single solution. This topic and
the associated algorithms required for the application to real processes are discussed
in Section 3, first in the SISO case and then in the MIMO one. Section 4 recalls
how some classical problems can be mapped into a dynamical Frisch identification
problem and how this can lead to extend the limits of previous approaches. The
cases mentioned in this section concern the blind identification of FIR transmission
channels and the identification of noisy autoregressive models. Some concluding
remarks are finally reported in Section 5.
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2. THE FRISCH SCHEME IN THE ALGEBRAIC CASE

2.1. Estimating linear relations from noisy data:
statement of the problem

Consider the linear algebraic process (5); by denoting with X the N × n matrix
whose rows contain the N observations (2)

X =




x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

...
x1N x2N . . . xnN


 , (9)

relation (5) can be written in the form

X A = 0 (10)

where
A =

[
α1 α2 . . . αn

]T
. (11)

In the more general case of q linear relations between the variables, A will be a (n×q)
matrix with columns given by the q sets of coefficients describing the q = n−rankX
independent linear relations linking the data. Relation (10) can be rewritten also by
substituting X with

Σ =
XT X

N
(12)

i. e., under the assumption of null mean value of the variables, with the sample
covariance matrix of the data. In absence of noise and in presence of linear relations
Σ will be singular and positive semidefinite

Σ ≥ 0. (13)

Every solution, A, with maximal rank, of the equation

ΣA = 0 (14)

is a basis of kerΣ. When the data are corrupted by noise, rankX = n, no linear
relations are compatible with the observations and Σ is positive definite

Σ > 0. (15)

In situations of this kind, linear relations can be extracted only by modifying X or
Σ, i. e. the data.

2.2. Assumptions behind estimation schemes

If no assumptions are introduced, any set of noisy data is compatible with any
solution. The assumptions usually introduced on the errors (noise) to restrict the
number of admissible solutions are the following:
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1. The noise is additive; every observation is the sum of an unknown exact part
x̂i, and of a noise term x̃i:

xi = x̂i + x̃i (16)

2. The mean value of x̂i and x̃i is null:

N∑

t=1

x̂it = 0,
N∑

t=1

x̃it = 0. (17)

3. The sequences of noise samples are orthogonal to the sequences of noiseless
variables:

N∑

t=1

x̃it x̂jt = 0 ∀ i, j. (18)

Under these assumptions:

X = X̂ + X̃ (19)
X̂T X̃ = 0 (20)
Σ = Σ̂ + Σ̃ (21)

Σ > 0 (22)
Σ̃ ≥ 0 or Σ̃ > 0 (23)

Σ̂ ≥ 0 and det Σ̂ = 0. (24)

The problem of determining linear relations compatible with noisy data can be
formulated as follows:

Problem 1. (Kalman [29, 30]) Given a sample covariance matrix of noisy obser-
vations, Σ, determine positive definite or semidefinite noise covariance matrices Σ̃
such that

Σ̂ = Σ− Σ̃ ≥ 0 and det Σ̂ = 0. (25)

Any basis of ker Σ̂ will describe a set of linear relations compatible with the data
and with assumptions (16) – (18).

2.3. The Frisch scheme

This scheme, proposed by Ragnar Frisch in 1934 [17], is based on assumptions (16) –
(18) and on the further assumption of mutual independence of the noise sequences

N∑

t=1

x̃it x̃jt = 0 ∀ i 6= j. (26)

As a consequence of (26), the sample covariance matrix of the noise will be diagonal.
By introducing the suffix n to denote the dimension of square matrices, we will thus
have

Σ̃n = diag
[
σ̃2

1 , . . . , σ̃2
n

]
≥ 0 or > 0 (27)
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where σ̃2
1 , . . . , σ̃2

n are the sample variances of the noise terms x̃1, . . . , x̃n. Every
positive definite or semidefinite diagonal matrix Σ̃n such that

Σ̂n = Σn − Σ̃n ≥ 0 and det Σ̂ = 0 (28)

is a solution of the Frisch scheme. The corresponding point P = (σ̃2
1 , . . . , σ̃2

n) ∈ Rn

can be considered as an admissible solution in the noise space while the parameters
αi in (5) or βi in (6) define the associate solution in the parameter space.

It can be observed that the set of parameters (5) or (6) refers only to the case of
dimker Σ̂n = 1. A solution in the noise space can, however, be associated also with
noise covariance matrices Σ̃n such that dimker Σ̂n > 1 that correspond to multiple
independent linear relations between the columns (rows) of Σ̂n. The maximal di-
mension of ker Σ̂n will be denoted in the following as MaxcorF (Σn) (maximal corank
of Σn under the assumptions of the Frisch scheme) [30].

2.3.1. Properties of the solutions in the noise space

A problem of great importance in the analysis of the properties and in the application
of the Frisch scheme concerns the description of the loci of the solutions in the noise
and parameter spaces. While the locus of the solutions in the parameter space has
nice properties only in a well defined case (compatibility of the data with a single
linear relation under the assumptions of the Frisch scheme, i. e. MaxcorF (Σn) = 1),
the locus of the solutions in the noise space is the same in every situation and is
described by the following theorem [5].

Theorem 1. All admissible solutions in the noise space lie on a convex (hy-
per)surface S(Σn) whose concavity faces the origin and whose intersections with
the coordinate axes are the points (0, . . . , σ̃2

i , . . . , 0) corresponding to the n least
squares solutions (see Figure 1).

σ̃2
2σ̃2

1

σ̃2
3

S(Σ′3)

S(Σ′′3)

Fig. 1. Loci S(Σ3) of admissible noise points for n = 3 and different amounts of noise.
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Definition 1. (Guidorzi [19]) The (hyper)surface S(Σn) will be called singularity
(hyper)surface of Σn because its points define noise covariance matrices Σ̃n associ-
ated with singular matrices Σ̂n.

A problem of great relevance concerns the conditions under which a covariance
matrix is compatible with more linear relations i. e. the evaluation of MaxcorF (Σn).
A fundamental result concerning this problem is the following [30].

Theorem 2. MaxcorF (Σn) = 1 if and only if all entries of Σ−1
n are positive or

can be made positive (Frobenius-like according to the definition of Kalman [30]) by
changing the sign of some variables.

Under the conditions of Theorem 2, the locus of solutions in the parameter space
is described by the following theorem that shows the great relevance of the n least
squares solutions (that correspond, as is well known, to the assumption that only
one variable is affected by errors):

Theorem 3. When MaxcorF (Σn) = 1, the coefficients α1, . . . , αn of all linear
relations compatible with the Frisch scheme lie (by normalizing one of the coefficients
to 1) inside the simplex whose vertices are defined by the n least squares solutions
(see Figure 2).

Other important properties of the loci of solutions in the noise and parameter
spaces are described by the following theorems.

Theorem 4. When MaxcorF (Σn) = 1 the points of the simplex of solutions in the
parameter space are linked by a one-to-one relation (isomorphism) to the points of
S(Σn).

Theorem 5. (Schachermayer and Deistler [36]) When MaxcorF (Σn) > 1, S(Σn)
is nonuniformly convex.

Theorem 6. (Guidorzi [21]) All points of S(Σn) where corank (Σn) = k (k > 1)
are accumulation points for those where corank (Σn) = k − 1.

2.3.2. Computation of MaxcorF (Σn)

Despite its simple formulation, the problem of determining the maximal number
of linear relations compatible with a set of noisy data in the context of the Frisch
scheme remained unsolved for many years. One of the reasons is probably due to the
focus of many researches on the locus of the solutions in the parameter space and to
the practical impossibility of describing this locus, when MaxcorF (Σn) > 1, except
than in elementary cases. An upper bound to MaxcorF (Σn) has been given in [43];
geometric conditions to evaluate MaxcorF (Σn) have, instead, been given in [21] on
the basis of the analysis of the properties of the locus of noise space solutions.
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0 1 2 3 4 5 6
0

1

2

3 α1

α2

Fig. 2. Loci of admissible parameters for n = 3 and different amounts of noise.

Define, to this purpose, the singularity (hyper)surface S(Σn/r) as the locus of the
points (σ̃2

1 , . . . , σ̃2
r) ∈ Rr such that

Σn − diag
[
σ̃2

1 , . . . , σ̃2
r , 0, . . . , 0

]
≥ 0 (29)

and Σr as the sample covariance matrix of the first r variables. Then the following
geometric relations hold:

Theorem 7. (Guidorzi and Stoian [28]) S(Σn/r) lies always under or on S(Σr)
(see Figure 3).

Theorem 8. (Guidorzi [21]) MaxcorF (Σn) ≥ q if and only if S(Σn−q+1) ∩
S(Σn/n−q+1) 6= {0} for every subset of n−q+1 variables, i. e. for every permutation
of the data leading to different subgroups in the first n− q + 1 positions.

Theorem 8 allows the straightforward formulation of an algorithm for computing
MaxcorF (Σn) by testing whether it is ≥ 2, 3, . . . until the required conditions are
no longer satisfied.

Remark 1. The existence of common points between different singularity hyper-
surfaces can be easily and efficiently verified by relying on the radial parametrization
of these surfaces described in [26]. This parametrization will be recalled in the sub-
section concerning the identification of multivariable systems.
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0 2 4
0

1

2

3

S(Σ3/2)

S(Σ2)

Fig. 3. Common points between S(Σ2) and S(Σ3/2) in

a (3× 3) covariance matrix with MaxcorF (Σ3) = 2.

2.4. Computation of a single solution in the context of the Frisch
scheme

The properties of the loci of solutions in the noise and parameter spaces show that,
given a (sample) data covariance matrix Σn it is impossible to discriminate any solu-
tion (i. e. any decomposition of Σ) against any other, unless additional information
(e. g. noise variance ratios) is available. It is however possible to take advantage of
the differences between data belonging to two finite sequences and estimate, under
some conditions, the linear relation actually linking the noiseless data. For this pur-
pose we will introduce some abstract definitions and conditions that will eventually
lead to algorithms appliable in real cases.

2.4.1. Complete sets of data for the Frisch scheme

The definitions and properties that follow concern the asymptotic case (infinite se-
quence of data).

Definition 2. (Guidorzi [19]) Two noise-free data covariance matrices of the same
linear algebraic process, Σ̂1 and Σ̂2 are defined as independent if

dim ker Σ̂1 = dim ker Σ̂2 = dim ker
(
Σ̂1 − Σ̂2

)
= 1. (30)

Property 1. If Σ̂1 and Σ̂2 are independent there exists a unique (modulo scaling)
vector A satisfying the conditions

Σ̂1 A = Σ̂2 A =
(
Σ̂1 − Σ̂2

)
A = 0. (31)

Definition 3. (Guidorzi [19]) Two noisy data covariance matrices of the same
linear algebraic process, Σ1 > 0 and Σ2 > 0 are defined as independent if

dim ker
(
Σ1 − Σ2

)
= 1. (32)
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Theorem 9. (Guidorzi [19]) Two independent noisy covariance matrices, Σ1 and
Σ2, satisfy the following conditions under the Frisch scheme

dim ker
(
Σ1 − Σ̃

)
= dim ker

(
Σ2 − Σ̃

)
= 1 (33)

(
Σ1 − Σ2

)
A =

(
Σ1 − Σ̃

)
A =

(
Σ2 − Σ̃

)
A = 0, (34)

where A = [α1 α2 . . . αn]T defines the process model (5) and Σ̃ ≥ 0 is a diagonal
matrix satisfying the conditions

Σ1 − Σ̃ ≥ 0, det (Σ1 − Σ̃) = 0, (35)
Σ2 − Σ̃ ≥ 0, det (Σ2 − Σ̃) = 0. (36)

Theorem 10. (Guidorzi [19]) Among all points common to the hypersurfaces of
admissible noise points associated with the independent noisy covariance matrices
Σ1 and Σ2, one and only one point is mapped, according to Σ1 and Σ2, into the
same point of the parameter space (see Figures 4 and 5).

Corollary 1. The Frisch scheme leads to a unique solution determined by every
pair of independent noisy data covariance matrices of the process.

Corollary 2. Two independent noisy data covariance matrices of a process con-
stitute a complete set of data for the Frisch scheme.

σ̃2
2σ̃2

1

σ̃2
3

S(Σ1)
S(Σ2)

•

Fig. 4. Admissible noise points (n = 3).

2.4.2. Determination of the Frisch solution from real data

In all practical cases, even when two data sets are available, it is worthless testing
whether they meet the independence conditions. Theorem 10, however, allows defin-
ing a consistent criterion to search for solutions even when the intersection between
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0 0.3 0.6 0.9 1.2
0

1

2

3

4

•

Fig. 5. Admissible model parameters (n = 3).

S(Σ1) and S(Σ2) does not contain any point mapped, by Σ1 and Σ2 into the same
point of the parameter space.

Criterion 1. (Guidorzi and Diversi [23]) Consider a pair of covariance matrices
Σ1 and Σ2 and their loci of solutions, S(Σ1), S(Σ2) in the noise space. The best
approximation of the actual noise variances will be given by the point P ∈ S(Σ1) ∩
S(Σ2) that minimizes the Euclidean norm of the distance between the parameter
vectors A′ and A′′ associated to P by Σ1 and Σ2.

Remark 2. Criterion 1 is consistent since the cost function f(P ) = ‖A′ − A′′‖2
annihilates when Σ1 and Σ2 are independent.

Remark 3. Once that the minimum of f(P ) has been found, two solutions, A′

and A′′ will be available and their distance is a measure of the reliability of the
procedure. Their mean value can be taken as problem solution.

Remark 4. It can be observed that the outlined procedure can be applied even
when the simplexes associated with Σ1 and Σ2 do not share common points.

Example 1. Two independent sets of noise-free data, concerning N = 100 obser-
vations of 3 variables are characterized by the sample covariance matrices

Σ̂1 =
X̂T

1 X̂1

N
=




3 12 −12
12 56 −52

−12 −52 50




Σ̂2 =
X̂T

2 X̂2

N
=




14 18 −37
18 36 −54

−37 −54 101


.
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Σ̂1 and Σ̂2 have rank 2 and are associated with the same linear relation described
by α1 = 2, α2 = 0.5 and α3 = 1. A Monte Carlo simulation of 100 runs has been
performed by generating, in every run, two independent sets of three Gaussian white
sequences and by adding these sequences to the noise-free data in order to obtain
the noisy ones. The results are reported in Table 1.

Table 1. True and estimated values of the coefficients α1 and α2.

α1 α2

true 2 0.5
estim. 1 2.0320± 0.1437 0.4945± 0.0610
estim. 2 2.0305± 0.1424 0.4802± 0.0724

3. THE FRISCH SCHEME IN THE DYNAMIC CASE

3.1. The SISO case

The extension of the Frisch scheme to the identification of dynamical processes can
rely on some properties that, differently from the algebraic case, lead to a single
solution also when a single sequence of data is available. To allow a simpler formula-
tion of the problem, the SISO case will be firstly considered while the identification
of MIMO systems will be treated only in a second time.

Consider a dynamic SISO system of order n described by the input-output model

ŷ(t + n) =
n∑

k=1

αk ŷ(t + k − 1) +
n+1∑

k=1

βk û(t + k − 1) (37)

where û(t) denotes the input at time t and ŷ(t) the output. Consider also noisy
input/output observations, u(t) and y(t) given by

u(t) = û(t) + ũ(t) (38)
y(t) = ŷ(t) + ỹ(t) (39)

where ũ(t) and ỹ(t) are white processes with zero mean, mutually uncorrelated and
uncorrelated with û(t) (see Figure 6).

Define now the Hankel matrices

Xk(y) =




y(1) . . . y(k)
y(2) . . . y(k + 1)

...
. . .

...
y(N) . . . y(k + N − 1)


 , (40)

Xk(u) =




u(1) . . . u(k)
u(2) . . . u(k + 1)

...
. . .

...
u(N) . . . u(k + N − 1)


 , (41)
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û(t) ŷ(t)

ũ(t) ỹ(t)

u(t) y(t)

+ +

System

Fig. 6. The dynamic Frisch scheme context.

the matrix of input/output samples

Xk =
[
Xk+1(y) Xk+1(u)

]
(42)

and the sample covariance matrices Σk given by

Σk =
XT

k Xk

N
=

[
Σ(yy) Σ(yu)
Σ(uy) Σ(uu)

]
. (43)

Denoting with σ̃2∗
u and σ̃2∗

y the variances of ũ(t) and ỹ(t) and with P ∗ the point

P ∗ =
(
σ̃2∗

y , σ̃2∗
u

)
, (44)

the previous assumptions establish that, when N →∞

Σk = Σ̂k + Σ̃∗k (45)

where
Σ̃∗k = diag

[
σ̃2∗

y Ik+1, σ̃2∗
u Ik+1

]
. (46)

The identification problem, in the context of the Frisch scheme, consists in deter-
mining the order and the parameters of model (37), or of any equivalent state-space
model, and the additive noise variances σ̃2∗

y , σ̃2∗
u on the basis of the knowledge of the

noisy sequences u(·), y(·) or, equivalently, of the sequence of increasing-dimension
matrices Σk for k = 1, 2, . . . .

Model (37) implies, for every input sequence persistently exciting of order n + 1,
the nonsingularity of Σ̂1, . . . , Σ̂n−1 and the singularity of Σ̂k for k ≥ n. For any
value of k (lower, equal or larger than n), a point P = (σ̃2

y, σ̃2
u) belonging to the first

orthant of the noise space, defines an admissible solution if and only if

Σk − Σ̃k ≥ 0 (47)

dim ker
(
Σk − Σ̃k

)
= 1, (48)
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where Σ̃k is the noise covariance matrix defined by P

Σ̃k = Σ̃k(P ) = diag [σ̃2
y Ik+1, σ̃2

u Ik+1]. (49)

The corresponding solution in the parameter space, θ(P ) = [α1(P ), . . . , αn(P ),−1,
β1(P ), . . . , βn+1(P )]T , is univocally defined by ker (Σk − Σ̃k), i. e. by the relation

Σ̂k(P ) θ(P ) =
(
Σk − Σ̃k(P )

)
θ(P ) = 0. (50)

Theorem 11. (Beghelli et al. [5]) For every k > 0 all admissible points define a
convex curve S(Σk) in the first quadrant of the noise plane R2 with a concavity facing
the origin. The point P ∗ = (σ̃2∗

y , σ̃2∗
u ) associated with the actual noise variances

belongs to all curves S(Σk) when k ≥ n and θ(P ∗) is the true parameter vector, θ∗.

Theorem 12. (Beghelli et al. [5]) If i and j are integers with j > i, then S(Σj)
lies under or on S(Σi).

Remark 5. S(Σk) partitions the noise space R2 into the regions of the points
σ+ associated with positive definite matrices Σ̂k = Σk − Σ̃+ and of the points σn

associated with non definite and negative definite matrices Σ̂k = Σk − Σ̃−. These
regions lie under and over S(Σk) respectively.

Remark 6. Note that the dimension of the noise space is always equal to the
total number of inputs and outputs (two for the SISO case) i. e. to the number of
variables, like in the algebraic case. The dimension of the parameter space depends
also on the order of the process.

Remark 7. Theorem 11 can be considered as a corollary of Theorem 8 since,
because of the well-known shift property of dynamical systems, MaxcorF Σk = k −
n + 1 when k ≥ n.

Remark 8. (Diversi et al. [10]) The well-known Koopmans–Levin method, de-
scribed in [34, 16], assumes that the ratio of the variances of the input and output
noises is a priori known. It can be easily shown that this approach leads to a solution
belonging to the set described by Theorem 11. Denote with η the ratio σ̃2∗

y /σ̃2∗
u and

define

Σ̃∗n = σ̃2∗
u Σ̃η

n, where Σ̃η
n =

[
η In+1 0

0 In+1

]
. (51)

The knowledge of η implies that Σ̃∗n is known up to the scalar σ̃2∗
u . In the Koopmans–

Levin method, the parameter vector θ is obtained by computing the minimal value
of λ that satisfies the relation

(Σn − λ Σ̃η
n) θ = 0. (52)

The solution is
λ∗ = min eig

(
Σn (Σ̃η

n)−1
)
, (53)
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Fig. 7. Singularity curves for increasing-order models.

or, equivalently
1
λ∗

= max eig
(
Σ−1

n Σ̃η
n

)
. (54)

Relation (54) is indeed preferable since it yields the solution also when Σ̃∗n is singular.
Note that solutions (53) and (54) satisfy the conditions

Σn − λ∗ Σ̃η
n ≥ 0, dim ker

(
Σn − λ∗ Σ̃η

n) = 1 (55)

which correspond to the Frisch conditions (47) and (48), so that λ∗ = σ̃2∗
u . It can

also be noted that this solution coincides with the Total Least Squares one.

Example 2. Figure 7 shows the curves S(Σ1), . . . . . . ,S(Σ5) for data generated
by the third order system

ŷ(t + 3) = 0.4 ŷ(t + 2)− 0.3 ŷ(t + 1)− 0.1 ŷ(t) + 0.2 û(t + 2)− 0.38 û(t + 1) + 0.58 û(t)

for input and output measures corrupted by white noises with variances σ2∗
u = 0.05

and σ2∗
y = 0.05. The geometric properties described by Theorems 11 and 12 can be

easily observed.

3.2. Frisch identification of real processes and model selection criteria

The key property described by Theorem 11 holds only when the (asymptotic) proper-
ties assumed for the additive noise sequences (mutual orthogonality and orthogonal-
ity with the input/output sequences) hold, i. e. when ũ(·) and ỹ(·) are uncorrelated
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Fig. 8. Singularity curves for increasing-order models and real data.

white sequences with infinite length. In all other cases no common point between
different curves can be observed. Similar consequences follow from violations on the
linearity and time-invariance assumptions. Moreover, the algorithms that can be
developed to estimate a single solution from real data can exhibit robustness and
reliability problems that require the development of suitable criteria.

Example 3. The process considered is a natural gas reservoir converted to stor-
age operations. The model orientation considers as input the total amount of in-
jected/extracted gas and as output the mean reservoir pressure. The process exhibits
a non stationary behavior because of the volume variations due to water encroach-
ing. The actual amount of noise on the measures is modest, the sampling interval (1
month) is excessive with respect to the dynamics of the gas inside the porous rock
but acceptable with respect to water dynamics. Figure 8 clearly shows the absence
of common points between the different curves.

The number of criteria that can be developed is relatively large. Many of them,
however, are not endowed with sufficient robustness degrees for real applications. As
an example, it is possible to cite the selection criterion based on the minimal radial
distance between two adjacent curves or, more generally, hypersurfaces. It is easy
to show that such a criterion can select any point by properly scaling the data and
insensitivity to data scaling is just one of the requirements for possible criteria.

The criteria described in the following exhibit a good robustness and are based
on different properties.

3.2.1. The shifted relation criterion [4, 10]

This criterion is based on the following rank deficiency property of the matrices
Σ̂k(P ∗) for k ≥ n:
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1. If k ≥ n the dimension of the null space of Σ̂k(P ∗) and, consequently, the
multiplicity of its least eigenvalue, is equal to (k − n + 1);

2. For k > n all linear dependence relations between the columns of the matrices
Σ̂k(P ∗) are described by the same set of coefficients θ∗.

When k = n, ker Σ̂n(P ∗) = im θ∗ while when k = n + 1

ker Σ̂n+1(P ∗) = im
[
θ
′
θ
′′ ]

, (56)

where θ
′

= [ 0 α1 . . . αn − 1 0 β1 . . . βn+1 ]T (57)

θ
′′

= [α1 . . . αn − 1 0 β1 . . . βn+1 0 ]T . (58)

Consider now the intersections P ′ = (σ̃2′
y , σ̃2′

u ), P ′′ = (σ̃2′′
y , σ̃2′′

u ) of a line from the
origin with S(Σn) and S(Σn+1), so that

σ̃2′
y

σ̃2′
u

=
σ̃2′′

y

σ̃2′′
u

, (59)

and define the cost function

J(P ′, P ′′) = trace
(
[θ
′
(P ′) θ

′′
(P ′)]T Σ̂n+1(P ′′) [θ

′
(P ′) θ

′′
(P ′)]

)
, (60)

where θ
′
(P ′), θ

′′
(P ′) have been constructed with the entries of θ(P ′). This function

exhibits the following properties:

J(P ′, P ′′) ≥ 0 (61)
J(P ′, P ′′) = 0 ⇔ P ′ = P ′′ = P ∗. (62)

It is thus possible to perform the identification by searching, on S(Σn), for the
solution that minimizes (60).

3.2.2. The covariance-matching criterion [9]

Consider the residual γ(t) of the EIV process

γ(t) = α1 y(t) + · · ·+ αn y(t + n− 1)− y(t + n) + β1 u(t) + · · ·+ βn+1 u(t + n) (63)

that can also be written as

γ(t) = α1 ỹ(t) + · · ·+ αn ỹ(t + n− 1)− ỹ(t + n) + β1 ũ(t) + · · ·+ βn+1 ũ(t + n), (64)

i. e., as the sum of two MA processes driven by the white noises ỹ(t) and ũ(t).
Because of the assumptions on ỹ(t) and ũ(t), the autocorrelations of γ(t), rγ(k) =
E [γ(t) γ(t− k)], are given by

rγ(0) = σ̃2∗
y

n+1∑

i=1

α2
i + σ̃2∗

u

n+1∑

i=1

β2
i (65)

rγ(k) = σ̃2∗
y

n−k+1∑

i=1

αi αi+k + σ̃2∗
u

n−k+1∑

i=1

βi βi+k for k = 1, . . . , n (66)

rγ(k) = 0 for k > n (67)
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where αn+1 = −1. Define now, for every point P = (σ̃2
y, σ̃2

u) of S(Σn) the vector

rk(P ) = [ rγ(0, P ) rγ(1, P ) . . . rγ(k, P )]T , (68)

with entries computed by means of (65) – (67) using the variances (σ̃2
y, σ̃2

u) and the
parameters θ(P ). Compute also, by means of the available data and θ(P ), the
sample vector

r̄k(P ) = [ r̄γ(0, P ) r̄γ(1, P ) . . . r̄γ(k, P )]T , (69)

where

r̄γ(k, P ) =
1

N − k + 1

N+n∑

t=n+k

γ(t) γ(t + k). (70)

Since, for N →∞

rk(P ∗) = r̄k(P ∗) = [ rγ(0) rγ(1) . . . rγ(k)]T , (71)

the following covariance-matching cost function can be considered

J(P ) = ‖rk(P )− r̄k(P )‖2 , (72)

where the theoretical statistical properties of γ(t) are compared with those computed
from the data.

The identification problem can thus be solved by minimizing J(P ) along S(Σn).
The estimate accuracy of the covariance matching criterion has been analyzed in [38].

3.2.3. A criterion based on high-order Yule–Walker equations [13]

Define the regressor vector

ϕ(t) = [y(t− n) . . . y(t− 1) − y(t) u(t− n) . . . u(t) ]T (73)

and the q × 1 vector of delayed inputs

ϕh
u(t) = [u(t− n− q) . . . u(t− n− 1) ]T . (74)

Consider then the q × (2n + 2) matrix

Σh = E [ ϕh
u(t) ϕT (t)]. (75)

It is easy to show that
Σh = E [ ϕ̂h

u(t) ϕ̂T (t)], (76)

where
ϕ̂(t) = [ ŷ(t− n) . . . ŷ(t− 1) − ŷ(t) û(t− n) . . . û(t) ]T (77)

ϕ̂h
u(t) = [ û(t− n− q) . . . û(t− n− 1) ]T . (78)

Since ϕ̂T (t) θ∗ = 0 it follows that

Σh θ∗ = 0. (79)
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Relation (79) represents a set of high-order Yule–Walker equations that could be
directly used to estimate the parameter vector θ∗. This approach can also be seen
as an instrumental variable method that uses delayed inputs as instruments. The
search for the point P ∗ on S(Σn) can be performed by means of the cost function

J(P ) = ‖Σh θ(P )‖22 = θT (P )(Σh)T Σh θ(P ) (80)

that exhibits the following properties

J(P ) ≥ 0 (81)

J(P ∗) = 0. (82)

The application of the described or of other possible criteria can be performed by
minimizing their value on the singularity curve associated with the selected model
order. This can be performed by using standard search algorithms and by selecting
a suitable stop threshold. The efficiency of practical implementations can take great
advantage from parametrizations of the curves that allow to perform the search by
computing only a very limited number of points, like the radial parametrization
described in the multivariable identification subsection.

3.3. The MIMO case

The extension of Frisch identification techniques to the MISO case is straightforward;
this is not the case for MIMO processes that face conceptual and practical congruence
problems not present in the single-output case.

3.3.1. The multivariable identification problem

The MIMO (purely) dynamic systems considered in this section are described by
the input-output model

P (z) ŷ(t) = Q(z) û(t), (83)

where û(t) ∈ Rr, ŷ(t) ∈ Rm and P (z), Q(z) are (m ×m) and (m × r) left coprime
polynomial matrices in the unitary advance operator z. By selecting a minimal
parametrization [18], model (83) can be partitioned into the set of m relations

ŷi(t + νi) =
m∑

j=1

νij∑

k=1

αijk ŷj(t + k − 1) +
r∑

j=1

νi∑

k=1

βijk ûj(t + k − 1) (84)

where the integers νi (i = 1, . . . ,m) that appear in (84) and describe the structure
of the model are the observability invariants of the system. The integers νij are
completely defined by these invariants through the relations

νij = νi for i = j (85)

νij = min (νi + 1, νj) for i > j (86)

νij = min (νi, νj) for i < j . (87)
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For a complete description of the properties of the scalars {νi, αijk, βijk} see [18].
The order of system (84) is given by

n =
m∑

i=1

νi ; (88)

νM will denote, in the following, the maximal observability index, i. e.

νM = maxi {νi, i = 1, . . . ,m} . (89)

In an errors-in-variables context, the noise-free signals û(t) and ŷ(t) linked by model
(84) are not directly accessible and only the noisy observations

u(t) = û(t) + ũ(t) (90)
y(t) = ŷ(t) + ỹ(t) , (91)

are available. In this paper the additive noises ũ(t) and ỹ(t) satisfy the following
assumptions.

1. The processes ũ(t) and ỹ(t) are zero-mean, mutually uncorrelated white noise
sequences, with unknown covariance matrices Σ̃∗u = diag [σ̃2∗

u1
, . . . σ̃2∗

ur
] and

Σ̃∗y = diag [σ̃2∗
y1

, . . . σ̃2∗
ym

];

2. The processes ũ(t) and ỹ(t) are uncorrelated with the the noise-free signal û(t).

The EIV MIMO identification problem can be stated as follows: given N noisy
input-output observations u(·), y(·), estimate the noise covariance matrices Σ̃∗u, Σ̃∗y
and the coefficients αijk, βijk of model (84).

3.3.2. Properties of EIV MIMO systems

Consider the Hankel matrix

Hk(ŷi) =




ŷi(1) . . . ŷi(k)
ŷi(2) . . . ŷi(k + 1)

...
...

ŷi(N) . . . ŷi(k + N − 1)




, (92)

and the analogous matrices Hk(yi), Hk(ỹi), Hk(ûi), Hk(ui) and Hk(ũi). Define also
the multi-index kM = (k1, . . . , km+r) and the matrix

Ĥ(kM ) =
[
Hk1(ŷ1) . . .Hkm(ŷm) Hkm+1(û1) . . .Hkm+r (ûr)

]
.

Relations (84) can be used to write an overdetermined set of linear equations in
the unknowns αijk and βijk. In fact, by considering the multi-index νM = (ν1 +
1, . . . , νm + 1, νM , . . . , νM ), relations (84) imply that

Ĥ(νM )Θ = 0 , (93)
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where
Θ =

[
θ1 θ2 · · · θm

]
, (94)

and

θi =
[
αi11 · · · αi1νi1 0 · · · 0︸ ︷︷ ︸

(ν1+1−νi1)

| · · · | (95)

|αii1 · · · αiiνi − 1 | · · · |αim1 · · · αimνim 0 · · · 0︸ ︷︷ ︸
(νm+1−νim)

|

|βi11 · · · βi1νi 0 · · · 0︸ ︷︷ ︸
(νM−νi)

| · · · |βir1 · · · βirνi 0 · · · 0︸ ︷︷ ︸
(νM−νi)

]T
.

By defining the covariance matrix Σ̂(νM ) as

Σ̂(νM ) =
1
N

Ĥ(νM )T Ĥ(νM ) =




Σ̂(ŷ1ŷ1) Σ̂(ŷ1ŷ2) . . . Σ̂(ŷ1ûr)

Σ̂(ŷ2ŷ1) Σ̂(ŷ2ŷ2) . . . Σ̂(ŷ2ûr)
...

...
. . .

...
Σ̂(ûrŷ1) Σ̂(ûrŷ2) . . . Σ̂(ûrûr)




, (96)

equation (93) implies that
Σ̂(νM )Θ = 0 . (97)

Define now the point P ∗ as

P ∗ =
(
σ̃2∗

y1
, . . . σ̃2∗

ym
, σ̃2∗

u1
, . . . σ̃2∗

ur

)
; (98)

the assumptions of noise additivity and independence at the basis of the Frisch
scheme lead, for N →∞, to the decomposition

Σ
(
νM

)
= Σ̂

(
νM

)
+Σ̃∗

(
νM

)
, (99)

where

Σ̃∗(νM ) = diag
[
σ̃2∗

y1
Iν1+1, . . . , σ̃

2∗
ym

Iνm+1, σ̃2∗
u1

IνM
, . . . , σ̃2∗

ur
IνM

]
. (100)

Consider now the generic subsystem i described by relation (84), the multi-index

νM
i = (νi1, . . . , νi + 1, . . . , νim, νi, . . . , νi) (101)

and the ith set of parameters

ηi =
[
αi11 . . . αii1 . . . αiiνi − 1 . . . αimνim βi11 . . . βi1νi . . . βir1 . . . βirνi

]T ; (102)

then
Σ̂(νM

i ) ηi =
[
Σ(νM

i )− Σ̃∗(νM
i )

]
ηi = 0. (103)

By defining the relation between multi-indices

kM < hM if ki < hi for i = 1, . . . ,m + r , (104)

it is possible to state the following theorems whose proofs can be carried out along
the lines considered in [5, 21] for the MISO case.
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Theorem 13. For every structure ξ = (ν1, . . . , νm), the admissible noise-space
solutions associated with the ith subsystem, i. e. the locus of points (σ̃2

1 , . . . σ̃2
m+r)

such that
Σ̂(νM

i ) = Σ(νM
i )− Σ̃(νM

i ) ≥ 0 , (105)

is a convex hypersurface S(Σ(νM
i )) belonging to the first orthant of Rm+r whose

concavity faces the origin (singularity hypersurface).

Theorem 14. (the onion theorem) If kM
i and hM

i are multi-indices with hM
i > kM

i ,
then S(Σ(hM

i )) lies under S(Σ(kM
i )).

Theorem 15. All hypersurfaces S(Σ(kM
i )), (i = 1, . . . ,m) with kM

i > νM
i have

the single common point P ∗ corresponding to the actual variances of the noise on
the data.

Theorems 13, 14 and 15 give a picture of the multivariable case similar to the
pictures of the SISO and MISO cases. The existence of a single point (exact noise
variances) common to the singularity hypersurfaces associated with the different
subsystems, allows to solve the MIMO identification problem in a way similar to the
SISO and MISO cases, by computing, in a congruent way, the parameters of every
subsystem, defined by the kernels of the matrices Σ̂(νM

i ).
This, unfortunately, is no longer true in all real cases concerning limited sequences

of data and/or real data that do not fulfill exactly the assumptions of the Frisch
scheme. The solution of this problem [22, 27] has required the introduction of
new parametrizations of the Frisch singularity surfaces that associate models to all
directions in the noise space.

3.3.3. Radial parametrization for Frisch singularity hypersurfaces [26]

Radial parametrizations can be used effectively in both algebraic and dynamic cases
for computing the points of S(Σn) and also to perform fast searches on S(Σn) to
minimize a given cost function. It is important to note that such a minimization
can be performed by computing only the points requested by the adopted search
procedure. The same procedure can also be used for the direct computation of the
distance between two singularity hypersurfaces along a given direction.

Radial parametrizations will be first described for the algebraic case and then
extended to the dynamic one.

Let ξ = (ξ1, . . . , ξn) be a generic point in the first orthant of Rn; the intersection,
P = (σ̃2

1 , . . . , σ̃2
n), between the straight line through the origin and ξ with S(Σn)

satisfies the conditions

Σn − Σ̃n ≥ 0, dim ker
(
Σn − Σ̃n) = 1 (106)

and
λP = ξ with λ > 0. (107)
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It follows that

det
(

Σn −
1
λ

Σ̃ξ
n

)
= 0 (108)

where
Σ̃ξ

n = diag
[
ξ1, . . . , ξn

]
. (109)

Relation (108) is equivalent (Σn > 0) to

det
(
λ I − Σ−1

n Σ̃ξ
n

)
= 0 (110)

so that the solution compatible with condition (106) is given by

P =
ξ

λM
(111)

with
λM = max eig

(
Σ−1

n Σ̃ξ
n

)
. (112)

The points of S(Σn) associated with straight lines from the origin can thus be
obtained by computing Σ−1

n and the intersection between any line and S(Σn) by
means of (111) and (112).

These results define a parametrization of singularity hypersurfaces that asso-
ciates their points with the sheaf of lines from the origin in the first orthant. The
parametrization of the singularity hypersurfaces associated with the dynamic case
can be performed in the same way by considering the block-structure of Σ̃n associ-
ated with dynamical models.

Consider, for this purpose, the point ξ belonging to the first orthant of Rm+r; the
intersection between the straight line from the origin to ξ and S(Σ(νM

i )) is given by

P =
ξ

λM
(113)

with
λM = max eig

(
Σ(νM

i )−1 Σ̃ξ(νM
i )

)
(114)

where

Σ̃ξ(νM
i ) = diag

[
ξ1Iνi1 , . . . , ξiIνi+1, . . . , ξmIνim , ξm+1Iνi , . . . , ξm+rIνi

]
. (115)

3.3.4. EIV MIMO identification

The identification of real processes requires, as in the SISO or MISO cases, the
definition of suitable selection criteria since the common point described by Theorem
15 will no longer exist. The criteria described for the SISO (or MISO) case, as well
as others, could be applied to every subsystem and this would lead to a complete
parametrization of the multivariable model.

It must however be noted that a procedure of this kind would lead to an incon-
gruent solution because the identification of the different subsystems would lead to
the estimation of (slightly) different points in the noise space and the corresponding
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variances would be different and characterized by different ratios. As a consequence,
the obtained model would be no longer associated with a single point in the noise
space but with a set of points and this constitutes a serious limit to the congruence
of the model and to some of its possible applications like, for instance, filtering.

The solution of this problem can be obtained by using radial parametrizations
that allow to establish a one to one relation between directions in the noise space and
model parameters and by suitable extensions of the selection criteria. To simplify
the exposition we will consider, in the following, only the extension of the Shifted
Relation Criterion.

The extension of this criterion to the multivariable case can be performed by
considering the rank deficiency properties of the matrices Σ̂(νM + `) (` ≥ 0), where
the compact notation νM +` stands for (ν1+1+`, . . . , νm+1+`, νM +`, . . . , νM +`),
that can be summarized as follows:

1. If ` ≥ 0 the dimension of the null space of Σ̂(νM + `) and, consequently, the
multiplicity of its (null) least eigenvalue, is equal to (` + 1)m;

2. For ` > 0 all linear dependence relations between the vectors of the matrices
Σ̂(νM + `) can be described by the same sets of coefficients η1, . . . , ηm.

For example, when ` = 1 it can be easily verified that

ker
[
Σ̂(νM + 1)

]
= im Θ̄ = im

[
θ̄′1 θ̄′′1 · · · θ̄′m θ̄′′m

]
, (116)

where

θ̄′i =
[
0 αi11 · · · αi1νi1 0 · · · 0︸ ︷︷ ︸

ν1+1−νi1

| · · · | (117)

0 αii1 · · · αiiνi − 1 | · · · | 0αim1 · · · αimνim 0 · · · 0︸ ︷︷ ︸
νm+1−νim

|

| 0βi11 · · · βi1νi 0 · · · 0︸ ︷︷ ︸
νM−νi

| · · · | 0βir1 · · · βirνi 0 · · · 0︸ ︷︷ ︸
νM−νi

]T

θ̄′′i =
[
αi11 · · · αi1νi1 0 · · · 0︸ ︷︷ ︸

ν1+1−νi1

0 | · · · | (118)

αii1 · · · αiiνi − 1 0 | · · · |αim1 · · · αimνim 0 · · · 0︸ ︷︷ ︸
νm+1−νim

0 |

|βi11 · · ·βi1νi 0 · · · 0︸ ︷︷ ︸
νM−νi

0 | · · · |βir1 · · ·βirνi 0 · · · 0︸ ︷︷ ︸
νM−νi

0
]T

.

It is thus possible to define, as an extension of (60), the cost function

f(P ) = ‖ Θ̄T Σ̂(νM + 1) Θ̄ ‖ , (119)

associated with the generic point P = (σ̃2
1 , . . . σ̃2

m+r) ∈ S(Σ(νM +1)). By denoting
with δ a generic direction, the cost function (119) can be thus defined as f(δ) and
the intersections of the straight line from the origin with direction δ with the hy-
persurfaces S(Σ(νM

i )), (i = 1, . . . ,m) allow estimating all subsystem parameters.
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A selection criterion based on the minimization of this function is consistent
because f(δ) annihilates, in the asymptotic case, only in the point associated with
the actual noise variances.

In all other cases the identification procedure can be performed by using radial
parametrizations that allow to establish a one to one relation between directions
in the noise space and model parameters and by performing a search in order to
minimize expression (119). The ratio of the noise variances is defined by the direc-
tion associated with the minimum of f(δ) while the values of the variances to be
associated with the model are defined by the intersection of the selected line with
S(Σ (νM + 1)). This assures the fulfillment of the condition Σ̂(νM + 1) ≥ 0.

The robustness of the proposed procedure has been tested on sequences obtained
by simulation from the following single-input two-output model

P (z) =

[
z2 − 0.4z + 0.3 0.1975

−0.2026z + 0.1013 z − 0.4

]

Q(z) =

[
0.3426z + 0.7194

0.7979

]
.

The input sequence û(·) is a PRBS normalized between −1 and 1 with unit variance
and length N = 300. The variances of the noiseless output sequences ŷ1(·), ŷ2(·) are
equal to 1. A Monte Carlo simulation of 100 independent runs has been performed
by adding to the noise-free sequences different Gaussian white noise realizations with
variances

σ̃2∗
u = 0.04 σ̃2∗

y1
= 0.16 σ̃2∗

y2
= 0.36 ,

which correspond to amounts of 20%, 40% and 60% in standard deviation. The
identification results are summarized in Tables 2 – 4 where the true value of pa-
rameters and noise variances, the means of their estimates and the corresponding
standard deviations are reported.

These results show a good performance of the proposed approach also in presence
of poor signal to noise ratios (SNR).

4. APPLICATIONS OF FRISCH IDENTIFICATION TECHNIQUES

4.1. Blind identification of SIMO FIR systems

The blind identification of dynamic systems is of great relevance in many fields
like telecommunications, sismology, radioastronomy, etc. The purpose is the re-
construction of the transfer function of a transmission channel starting from noisy
measurements performed only on its output [1, 40].

Blind identification relies on linear models describing a set of parallel channels
driven by an unknown sequence and characterized by a finite impulse response (FIR).
These models can describe a single unknown source in presence of multiple spatially
and/or temporally distributed sensors. In the two-channel case the process is de-
scribed (see Figure 9) by the model
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Table 2. True and estimated parameters of P (z).

α111 α112 α121 α211 α212 α221

true 0.3000 −0.4000 0.19750 0.1013 −0.2026 −0.4000
ident. 0.2781± 0.08 −0.4246± 0.09 0.2363± 0.14 0.090± 0.10 −0.2165± 0.12 −0.3748± 0.16

Table 3. True and estimated parameters of Q(z).

β111 β112 β121

true 0.7194 0.3426 0.7979

ident. 0.7167± 0.04 0.3423± 0.03 0.7997± 0.06

Table 4. True and estimated variances of ũ(t), ỹ1(t), ỹ2(t).

σ̃∗u σ̃∗y1
σ̃∗y2

true 0.0400 0.1600 0.3600

ident. 0.0400± 0.02 0.1537± 0.02 0.3746± 0.04

u(t)

ŷ1(t)

ŷ2(t)

H1(z−1)

H2(z−1)

+

+

ỹ1(t)

ỹ2(t)

y1(t)

y2(t)

Fig. 9. Two-channel FIR system.

ŷi(t) = Hi(z−1) u(t) =
n∑

k=0

hi(k) u(t− k), i = 1, 2 (120)

Hi(z−1) = hi(0) + hi(1) z−1 + · · ·+ hi(n) z−n, i = 1, 2 (121)

yi(t) = ŷi(t) + ỹi(t), i = 1, 2 (122)

where ỹ1(t) and ỹ2(t) are mutually uncorrelated white noises, uncorrelated with u(t)
and with unknown variances σ̃2∗

y1
, σ̃2∗

y2
. Relations (120) lead immediately to the well

known cross-relation property

H2(z−1) ŷ1(t) = H1(z−1) ŷ2(t). (123)
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It is thus possible to write the relation
[
Xn+1(ŷ1) Xn+1(ŷ2)

]
h = 0, (124)

where
h = [ h2(n) · · · h2(0) − h1(n) · · · − h1(0)]T (125)

and

Xn+1(ŷi) =




ŷi(1) . . . ŷi(n + 1)
...

...
ŷi(N) . . . ŷi(N + n)


 , i = 1, 2. (126)

Define now the covariance matrix

Σ̂n = lim
N→∞

1
N

[
Xn+1(ŷ1)Xn+1(ŷ2)

]T [
Xn+1(ŷ1) Xn+1(ŷ2)

]
. (127)

It follows that

Σ̂n h = 0 (128)

Σn = Σ̂n + Σ̃∗n (129)

Σ̃∗n = diag
[
σ̃2∗

y1
In+1, σ̃2∗

y2
In+1

]
, (130)

where Σn and Σ̃∗n can be obtained by inserting Xn+1(yi) and Xn+1(ỹi) in (127).
The blind identification problem has thus been mapped into an errors-in-variables

identification problem that can be solved (in the case of two channels) by using the
identification procedures described for the SISO case or with more specific procedures
[11]. The multichannel case is more complex and cannot be reconducted to the MISO
or MIMO cases; a procedure solving the blind multichannel identification problem
is described in [24].

In both cases the proposed approaches extend the existing blind channel identi-
fication procedures to the case of unbalanced channel noises.

4.2. Identification of noisy autoregressive models

Autoregressive (AR) models are commonly used in a wide range of engineering appli-
cations, like spectral estimation, speech and image processing, noise cancellation etc.

A considerable attention has been dedicated, in the literature, to the problem
of estimating AR models from signals corrupted by white noise. In this case the
estimates obtained with classical AR identification methods (least-squares, Yule–
Walker equations) are poor, particularly for low signal-to-noise ratio conditions [32,
33].

Consider the noisy AR model

x(t) = α1 x(t− 1) + · · ·+ αn x(t− n) + e(t), (131)

y(t) = x(t) + w(t), (132)
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where x(t) is the noise-free AR signal, e(t) is the driving noise and y(t) is the available
observation affected by the additive noise w(t); e(t) and w(t) are zero-mean white
processes, mutually uncorrelated, with unknown variances σ2∗

e and σ2∗
w .

The AR+noise identification problem consists in estimating α1, . . . , αn and σ2∗
e ,

σ2∗
w starting from the available measurements y(1), y(2), . . . , y(N).

By defining the vectors

ϕx(t) =
[
x(t− n) . . . x(t− 1) x(t)

]T
,

ϕy(t) =
[
y(t− n) . . . y(t− 1) y(t)

]T
,

ϕw(t) =
[
w(t− n) . . . w(t− 1) w(t)

]T
,

and the parameter vector

θ∗ =
[
αn · · · α1 − 1

]T
, (133)

it is possible to write model (131) – (132) in the form
(
ϕT

x (t)− [ 0 . . . 0 e(t) ]
)
θ∗ = 0 (134)

ϕy(t) = ϕx(t) + ϕw(t). (135)

Define now the (n + 1)× (n + 1) covariance matrix

Σ̂n = E [ϕx(t) ϕT
x (t) ]− diag [ 0 . . . 0︸ ︷︷ ︸

n

σ2∗
e ]

=




rx(0) rx(1) · · · rx(n)
rx(1) rx(0) · · · rx(n− 1)

...
...

. . .
...

rx(n) rx(n− 1) · · · rx(0)− σ2∗
e


 ,

where rx(k) = rx(−k) = E [x(t) x(t− k)]. From relation (134) it follows that

Σ̂n θ∗ = 0. (136)

Because of (135), it follows that the covariance matrix of the noisy observations is
given by

Σn = E [ϕy(t)ϕT
y (t) ] = Σ̂n + Σ̃∗n (137)

where

Σ̃∗n =




σ2∗
w 0 · · · · · · 0
0 σ2∗

w 0 · · · 0
...

. . .
...

... σ2∗
w 0

0 · · · · · · 0 (σ2∗
w + σ2∗

e )




= diag
[
σ2∗

w In, σ2∗
s

]
(138)

with σ2∗
s = σ2∗

w + σ2∗
e . Relation (137) shows that the identification of AR+noise

models can be performed by means of Frisch procedures [12, 15] by introducing a
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constraint on the last noise variance that must be ≥ σ2
w; this corresponds to the

exclusion of the points of S(Σn) that do not satisfy this condition. It has also been
shown that the particular structure of the covariance matrix of a noisy AR model
allows to consider, as locus of compatible solutions, an interval instead of a curve
[14]. This leads to a more efficient implementation of the identification algorithm.

Other applications of blind FIR identification and AR+noise procedures concern
speech enhancement [6, 7].

5. CONCLUSIONS

This paper has presented an overview of several results concerning the properties
of the Frisch scheme and its application to the estimation of linear relations from
data affected by unknown amounts of additive noise and to the identification of
dynamic processes in an Errors-in-Variables context. While it does not present new
results, it integrates in an unitary view many results previously scattered in different
works and underlines the links, not previously described, between the algebraic and
dynamic contexts where the Frisch scheme can be applied.

(Received July 30, 2007.)
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