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A RELATED–KEY ATTACK
ON ITERATED CHAOTIC CIPHERS

Yang Yang and Chenhui Jin

In this paper, we present a new type of attack on iterated chaotic ciphers using related
keys. Based on the fact that a chaotic sequence is not sensitive to the less significant
bits of initial conditions and parameters, a divide-and-conquer attack on iterated chaotic
ciphers was presented by us before, which significantly reduces the computing complexity
of attacks. However, if the information leaked is significant according to the distribution
of the coincidence degrees, a measure for the information leakage of chaotic ciphers, or
the size of the key is large, then it is difficult for the divide-and-conquer attack to reduce
its computing complexity into a realizable level. The related-key attack we present in
this paper simultaneously uses the information leaked from different chaotic sequences
generated by related keys and combines the ideas of linear cryptanalysis and divide-and-
conquer attack together, hence greatly enhances the efficiency of divide-and-conquer attack.
As an example, we test the related-key attack on the ZLL chaotic cipher with a 64-bit key
on a Pentium IV 2.5 GHz PC, which takes only 8 minutes and 45 seconds to recover all
bits of the key successfully.
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1. INTRODUCTION

A chaotic sequence is a nonlinear deterministic sequence that is sensitive to the
initial condition and the parameters eventually. A chaotic sequence is constructed
usually by operations on real numbers and can be generated quickly. Two chaotic
sequences with a slight difference on the initial conditions and the parameters will
eventually become uncorrelated. Hence, chaotic sequences were frequently applied
to construct stream ciphers, and the initial conditions and/or the parameters of a
chaos-based encryption scheme are used as key in most cases.

The security of chaotic ciphers is a key issue for study. In this research area, a
kind of multi-resolutionary cryptanalysis was proposed in [4], which can decrease
the entropy of the key for the chaotic cipher proposed in [8] by 2 bits on average.
But the amount of plain texts required and the computing complexity of the attack
are very large. It is found in [3] and [2] that the less significant bits of the initial
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conditions of chaotic ciphers have little effect on the initial signals of the output
sequence, where the concept of coincidence degree was also introduced, which will
be further explained below. In [3] the leaked information of a chaotic cipher is
quantified by the distribution of coincidence degrees, where a divide-and-conquer
attack on chaotic ciphers is presented, which can reduce the computing complexity
of attacks greatly. But there are still two limitations to the above attack. One is that
if the amount of information leaked is insignificant according to the distribution of
the coincidence degrees, the reduced entropy of the key will not be large. The other
is that it is difficult to reduce the computing complexity of a divide-and-conquer
attack to a realizable level when the key size is large.

In this paper, we present a new type of attack on iterated chaotic ciphers using
related keys. The attack uses simultaneously the information leaked from differ-
ent chaotic sequences generated by related keys and combines the ideas of linear
cryptanalysis and divide-and-conquer attacks together, hence greatly enhances the
efficiency of the divide-and-conquer attack. It also overcomes the limitations men-
tioned above. The chaotic encryption scheme ZLL, which is based on a piecewise
linear chaotic map (PWLCM for short), is a typical iterated chaotic cipher. As an
example, we have tested the related-key attack to ZLL whose parameters and initial
condition are used as keys, where the key size is set as 64 bits. The attack succeeds
with a success rate of 0.94 for 50 known output sequences generated by related keys,
and its runtime is 11 minutes and 39 seconds on average. With 80 known output
sequences generated by related keys, it takes only 8 minutes and 45 seconds on av-
erage with a success rate near 1.0. The method is also applicable to chaotic ciphers
with known parameters.

The paper is organized as follows. In Section 2, we review the ZLL cipher and
analyze the distribution of the coincidence degrees. The related-key attack method
on ZLL cipher is presented in Section 3. The success rate and the computing com-
plexity are also discussed in this section. In Section 4, other types of related-key
attacks are described. Section 5 gives the conclusions.

2. THE ZLL CHAOTIC CIPHER AND KEY INFORMATION LEAKED

The ZLL chaotic cipher consists of two transformations. One is a piecewise linear
chaotic map (PWLCM for short) f , the other is a map T .

Let p be a natural number and a0, a1, . . . , ap+1 be real numbers with 0 = a0 <
a1 < a2 < · · · < ap < ap+1 = 1. Let a = (a0, a1, . . . , ap+1) and define a chaotic map
fa : [−1, 1) → [−1, 1) by

fa(x) =
{

−1 + 2(x− aj)/(aj+1 − aj), if x ∈ [aj , aj+1), j = 0, 1, . . . , p ;

f(−x), if x < 0.
(1)

Let n be a natural number and I0, I1, . . . , I2n−1 be intervals defined by Ii =
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[ i
2n−1 − 1, i+1

2n−1 − 1) for 0 ≤ i < 2n. Define T : [−1, 1) → {0, 1} by

T (x) =





0, if x ∈
2n−1−1∪

k=0

I2k;

1, if x ∈
2n−1−1∪

k=0

I2k+1.

(2)

In [3], it was shown that equality T (x) = b2n−1xc mod 2.
Let x =

∑∞
i=1 xi/2i be a nonnegative real number with xi ∈ {0, 1}. The real

number
∑m

i=1 xi/2i is called the m-precision number of x. In this paper, we consider
the m-dimensional binary vector (x1, x2, . . . , xm) as the same as

∑m
i=1 xi/2i, and call

(x1, x2, . . . , xn) the most significant n bits of x =
∑∞

i=1 xi/2i.
Let x0 be a real number with precision m. The chaotic sequence {xi}∞i=1 of the

ZLL cipher is generated by
xi = [fa(xi−1)]m, i ≥ 1,

where [fa(xi−1)]m is the m-precision number of fa(xi−1). The binary output se-
quence {si}∞i=1 is constructed by si = T (xi) for i ≥ 1. Suppose {mi}∞i=1 is the bi-
nary sequence of plaintext. Then, the binary sequence of ciphertext is {mi⊕ si}∞i=1,
where ⊕ denotes addition modulo 2. Obviously, the output sequence {si}∞i=1 can be
discovered if the pair of plaintext and ciphertext are given, therefore an attack to
the ZLL cipher with known plaintexts is equivalent to an attack with known output
sequences.

The initial value x0, the parameters n, p, and a0, a1, . . . , ap+1, may be used for
the key of the ZLL chaotic cipher. Since n and p can be easily searched, we assume
that n and p are known and the key is k = (a1, a2, . . . , ap, x0).

Definition 1. (Jin and Gao [3]) Let k be the key of a stream cipher and k′ be
a testing key. Let {si}∞i=0 and {s′i}∞i=0 be output sequences generated by k and k

′
,

respectively. Then, the coincidence degree of k′is defined by

max{n : s′i = si for any i with 1 ≤ i ≤ n}.

For a well-designed stream cipher, the output sequence generated by k
′

should
be balanced over {0, 1} and independent of that generated by k. So the coincidence
degree of k

′
should follow the geometric distribution, i. e. p(ξ = t) = 2−t−1 for

t ≥ 0. Hence, p(ξ ≥ t) = 2−t and the expectation of ξ is 1. However, most chaotic
maps are designed by continuous functions or piecewise continuous functions, hence
a slight difference in inputs of the chaotic map will result in a slight difference in the
outputs. If we replace the less-significant bits of an input by 0’s, the most significant
bits of the output of the chaotic map will not be changed with a great probability.
Thus the less-significant bits of initial values and parameters have little effect on the
most significant bits of the output sequences.

Let k = (a1, . . . , ap, x0) be the key of the ZLL cipher, and k(m) = (a(m)
1 , . . . , a

(m)
p ,

x
(m)
0 ) be constructed by replacing each element in k with its m-precision number.
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The coincidence degree of k(m) is denoted by nm. Note that the distribution of nm

is far different from the geometric distribution and the coincidence degree of k(m)

is larger than that of the test keys constructed by random m-precision numbers.
Hence, we can distinguish k(m) from other test keys constructed by random m-
precision numbers.

It’s difficult to give the distribution of nm precisely. But we may reveal it by some
testing methods. Let n = 5, p = 1, and the size of key be 64 bits. Then k = (a, x0),
and the sizes of a and x0 are both 32 bits. Table 1 displays the distribution of n8

by an experiment with 10 thousand independent random keys. For example, the
number of cases of n8 = 2, out of 10 thousand trials, is 2634 as listed in Table 1.

Table 1. The distribution of n8.

n8 0 1 2 3 4 5 6 7 8 9 10 ≥ 11
count 762 2246 2634 1929 1107 628 325 178 89 53 26 23

Moreover, we have p(n8 ≥ 2) = 0.6992, p(n16 ≥ 7) = 0.5398, and p(n24 ≥ 12) =
0.4584. With the test results, we carry out the divide-and-conquer attack on the
ZLL in the following way.

We may attack k(8) firstly, and then k(16), k(24), k(32), step by step. For example,
we may search for each possible value of k(8) first, and leave all test values with
coincidence degrees ≥ 2 to be candidates of k(8). The candidates are not unique in
most cases. Subsequently, we may search for all the possible values of k(16) in which
the most significant 8 bits are used as one of the candidates of k(8), and leave all test
keys with coincidence degrees ≥ 7 to be candidates of k(16). Similarly, k(24), k(32)

are attacked.
The principle of the above divide-and-conquer attack is as follows.

Lemma 1. (Jin and Gao [3]) Let k be the key of a stream cipher. Then, the
probability of a test key with coincidence degree ≥ t is 2−t, and the probability that
the set of test keys with coincidence degrees ≥ t containing k(m) is p(nm ≥ t).

Let a and b be m-precision numbers and k′ = (a, b) be a test key of k(m). Then,
k′ = (a, b) may be regarded as a candidate of k(m) if its coincidence degree ≥ t for a
given t, by Lemma 1. In this way, the number of candidates is decreased by a factor
of 2−t on average. In other words, the entropy of the key is reduced by t bits, and
the probability that the true key is not missed is p(nm ≥ t).

In order to ensure the success rates of the divide-and-conquer attack, we should
select t such that the probability p(nm ≥ t) is large enough. If we can’t find a
larger t such that p(nm ≥ t) is greater than an expected success rate p, it is hard to
reduce the computing complexity of an attack to a realizable level. Moreover, our
experiments show that the increasing speed of t with p(nm ≥ t) ≥ q for a fixed q is
slower than that of m in general. So, once the key size becomes large, it is difficult
to reduce the computing complexity to a realizable level though the entropy of the
key could be decreased greatly.
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3. RELATED–KEY ATTACK ON THE ZLL CHAOTIC CIPHER

In order to overcome the limitations of the divide-and-conquer attack, we design a
related-key attack on chaotic ciphers, which combines the ideas of linear cryptanal-
ysis and the divide-and-conquer attack. Consequently, the efficiency of the divide-
and-conquer attack is enhanced greatly by using the output sequences generated
from different related keys.

Let δ1 = (α1, β1), δ2 = (α2, β2), . . . , δN = (αN , βN ), and let di = {dij}∞j=1 be the
output sequences of the ZLL chaotic cipher generated by the key k⊕δi, respectively,
where k = (a, x0) and k ⊕ δi = (a ⊕ αi, x0 ⊕ βi). Now, we try to recover the key
k = (a, x0) under the condition that all δi and di are known. The attack is called
a related-key attack since the keys k ⊕ δ1, k ⊕ δ2, . . . , k ⊕ δN , generating the output
sequences d1, . . . , dN , are N related keys.

The above conditions for the related-key attack can be satisfied under some cir-
cumstances. For example, if a pair of users adopt the following session key protocol,
the conditions of the related-key attack are satisfied automatically:

Let k = (a, b) be the shared key of Alice and Bob, and Ek(m) denote the cipher-
text of message m encrypted by k. When Alice wants to send the message m to
Bob secretly, she may choose α and β randomly with the lengths of α and β equal
to that of a and b, respectively, and then send Ek⊕δ(m) and δ = (α, β) to a public
channel.

The related-key attack on chaotic ciphers are designed as follows:
Let p(nm ≥ d) = p. From k ⊕ δi = (a⊕ αi, x0 ⊕ βi), we have

(k ⊕ δi)(m) = (a⊕ αi, x0 ⊕ βi)(m) = ((a⊕ αi)(m), (x0 ⊕ βi)(m))

= (a(m) ⊕ α
(m)
i , x

(m)
0 ⊕ β

(m)
i ) = k(m) ⊕ δ

(m)
i .

Hence, we can obtain (k⊕ δi)(m) with known δi and assumed k(m). Since the initial
d values of the two output sequences, generated by k ⊕ δi and (k ⊕ δi)(m), are the
same with probability p = p(nm ≥ d), we can attack k(m) by searching for its every
possible value by the following algorithm.

Algorithm 1. Let k′ = (a′, b′) be an assumed value of k(m) = (a(m), x
(m)
0 ), and let

k′⊕ δ
(m)
i = (a′⊕α

(m)
i , b′⊕β

(m)
i ) for 1 ≤ i ≤ N . We test whether the initial d values

of the output sequence generated by k′ ⊕ δ
(m)
i are the same as those generated by

k⊕ δi. If the answer is yes, we declare that k′ has passed the test and set ξi(k′) = 1;
otherwise, ξi(k′) = 0. If we let Tk′ =

∑N
i=1 ξi(k′), then after each possible value of

k(m) has been tested, the k′ with Tk′ > Tk′′ for all k′′ where k′′ 6= k′ is determined
to be the correct k(m), and the k1, . . . , kn with Tk1 ≥ Tk2 ≥ · · · ≥ Tkn ≥ Tk′′ for all
k′′ where k′′ 6= k1, . . . , k

′′ 6= kn are determined to be the first, the second, . . ., the
nth candidate for k(m).

Lemma 2. Let |K| denote the total number of exhausted keys in Algorithm 1 and
let pk′ = p(ξi(k′) = 1), where k′ is a test key. Suppose that the random variables
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ξi(k′), 1 ≤ i ≤ N, k′ ∈ K, are independent of each other. Then, the probability that
the first candidate of k(m) in Algorithm 1 is correct is

N∑

i=1

[
Ci

Npi
k(m)(1− pk(m))N−i

∏

k′∈{0,1}m\k(m)

i−1∑

j=0

Cj
Npj

k′(1− pk′)N−j
]
.

P r o o f . Tk′ = i means that the number of 1’s in ξ1(k′), . . . , ξN (k′) is i and the
number of 0’s is N − i. Thus p(Tk′ = i) = Ci

Npi
k′(1−pk′)N−i since ξ1(k′), . . . , ξN (k′)

are independent. The fact that the first candidate of k(m) in Algorithm 1 is correct
is equivalent to Tk(m) > max

k′:k′ 6=k(m)
Tk′ . So the probability is

p
(
Tk(m) > max

k′∈{0,1}m\k(m)
Tk′

)

=
N∑

i=0

p(Tk(m) = i and Tk′ < i for ∀ k′ ∈ {0, 1}m\k(m))

=
N∑

i=0

p(Tk(m) = i)
∏

k′∈{0,1}m\k(m)

p(Tk′ < i)

=
N∑

i=1

[
Ci

Npi
k(m)(1− pk(m))N−i

∏
k′∈{0,1}m\k(m)

i−1∑
j=0

Cj
Npj

k′(1− pk′)N−j
]
.

The second equation holds since all Tk′ , k
′ ∈ K are independent. ¤

A related-key attack on the ZLL cipher with the key size being 64 bits is described
in Algorithm 2, in which we attack k(8), k(16), k(24), k(32) one by one.

Algorithm 2.

Step 1. Let N=80, d8=2, d16=7, d24=12, d32 = 20, and mi = 8i for 1 ≤ i ≤ 4.
Set i = 1.

Step 2. Attack k(mi) = (a(mi), x
(mi)
0 ):

If i = 1, we use k′ = (a′, b′) as a test value of k(8) with a′ and b′ being selected
from {0, 1}8 in turn. If 2 ≤ i ≤ 4, we denote by k′i−1 = (ai−1, bi−1) the candidate of
k(mi−1) and use k′ = (a′, b′) as a test value of k(mi) with the most significant mi−1

bits of a′ fixed as ai−1, the most significant mi−1 bits of b′ fixed as bi−1, and the
lower mi − mi−1 bits of a′and b′ selected from {0, 1}mi−mi−1 in turn. If i = 4, go
to Step 3. When i ≤ 3, for each j with 1 ≤ j ≤ N , once the initial dmivalues of the
output sequence generated by k′ ⊕ δ

(m)
j are equal to those generated by k ⊕ δj , we

set ξj(k′) = 1; otherwise, ξj(k′) = 0. If we let Tk′ =
∑N

j=1 ξj(k′), then after each
possible value k′ of k(mi) has been tested, we determine the k′ with Tk′ > Tk′′ for
all k′′ where k′′ 6= k′ to be the correct k(mi). Increase i by 1 and return to Step 2.

Step 3. If the initial dm4values of the output sequence generated by k′ ⊕ δ
(m)
j are
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equal to those generated by k ⊕ δj for each j with 1 ≤ j ≤ N , we output k(m4) as
a decision for the key of the ZLL cipher. Otherwise, declare Algorithm 2 has failed.
The algorithm is terminated.

Theorem 1. The computing complexity of Algorithm 2 is 225 times in computing
chaotic maps on average.

P r o o f . The average computing complexity of Algorithm 2 is the sum of av-
erage computing complexity of attack on k(8), k(16), k(24) and k(32). Suppose the
fundamental unit of computing complexity is the time of finishing the computing
of fa(x) and T (x). Then, the average computing complexity of attack on k(8i) is
about d8i × N × 216/2 for i = 1, 2, 3. So the average computing complexities of
attack on k(8), k(16), k(24) are 1.25× 222, 1.09× 224, 1.88× 224, respectively. Under
the assumption that the coincidence degrees of test keys of k(32) should ≥ d24, we
conclude that the probability is approximately 2−(j−1)(d32−d24)−i. Then, a test key
of k(32) is determined to be false just after j − 1 output sequences and the i initial
signals of the jth output sequence have been tested. Hence, the average computing
complexity of attack on k(32) is

80∑

j=1

d32−d24∑

i=1

[(j − 1)d32 + d24 + i]× 216 × 2−(j−1)(d32−d24)−i = 1.76× 219.

So, the average computing complexity of Algorithm 2 is

1.25× 222 + 1.09× 224 + 1.88× 224 + 1.76× 219 ≈ 1.67× 225. ¤

Theorem 2. Let k be the key of the ZLL cipher and k′ be the output of Algo-
rithm 2. Denote k(8) by k8, and k(8i) by (k(8(i−1)), k8i) for 2 ≤ i ≤ 4. Similarly,
Denote k′(8) by k′8, and k′(8i) by (k′(8(i−1)), k′8i) for 2 ≤ i ≤ 4. Then, we have

p(k = k′) = p(k′8 = k8) · p(k′16 = k16|k′8 = k8) · p(k′24 = k24|(k′8, k′16) = k(16))·
p(k′32 = k32|(k′8, k′16, k′24) = k(24)).

Let k = (a, b) be a key of the ZLL cipher, and k′ = (a′, b′) be a test key of the
ZLL cipher. Put

a =
∑n

i=1
ai/2i, b =

∑n

i=1
bi/2i, a′ =

∑n

i=1
a′i/2i, b′ =

∑n

i=1
b′i/2i

and define

d(k, k′) = max{m : ai = a′i and bi = b′i for any i with 1 ≤ i ≤ m}.

The larger the d(k, k′) is, the less the difference between k and k′ is, hence the
greater the coincidence degree of k′ is. So, we may classify the test keys by d(k, k′),
and obtain the probability distribution of the coincidence degrees of test keys in each
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class by test methods. Consequently, we can compute the success rate of Algorithm 2
with the aid of Lemma 2 and Theorem 2.

To verify Algorithm 2, we have made 100 trials with independent and random
keys for the ZLL cipher with a 64-bit key on a Pentium IV 2.5 GHz PC. For each
trial, it took about 7 minutes and 15 seconds to recover the key of the ZLL cipher
at a success rate of 0.85 on average. The success rate will be 0.56 if N=50, and will
be 0.61 if N=60. Hence, we may increase N appropriately in order to increase the
success rate.

We should attack the ZLL cipher with multiple candidates by modifying Algo-
rithm 2 so as to enhance the success rate if N is small.

Algorithm 3.

Step 1. Let N = 50, d8 = 2, d16 = 7, d24 = 12, d32 = 20 and mi = 8i for
1 ≤ i ≤ 4. Denote by Mi the number of elements in the sets Ωi for 1 ≤ i ≤ 3 and
set M1 = 4, M2 = 3, M3 = 4. Set ti = 1 for 1 ≤ i ≤ 3. Set i = 1.

Step 2. Attack k(mi) = (a(mi), x
(mi)
0 ).

If i = 1, we use k′ = (a′, b′) as a test value of k(8) with a′ and b′ being selected
from {0, 1}8 in turn. If 2 ≤ i ≤ 4, denote by Ωi−1 the set of candidates for k(mi−1).
Use k′i−1 = (ai−1, bi−1) ∈ Ωi−1 as the ti−1th candidate for k(mi−1). Now, we use
k′ = (a′, b′) as a test value of k(mi) with the most significant mi−1 bits of a′ fixed
as ai−1, the most significant mi−1 bits of b′ fixed as bi−1, and the lower mi −mi−1

bits of a′ and b′ being selected from {0, 1}mi−mi−1 in turn. If i = 4, go to Step 3.
Otherwise, for any j with 1 ≤ j ≤ N , if the initial dmi values of the output sequence
generated by k′ ⊕ δ

(m)
j are equal to those generated by k ⊕ δj , we set ξj(k′) = 1;

otherwise, ξj(k′) = 0. If we let Tk′ =
∑N

j=1 ξj(k′), then after each possible value k′ of
k(mi) has been tested, we determine k′1, . . . , k

′
Mi

with Tk′1 ≥ Tk′2 ≥ · · · ≥ Tk′Mi
≥ Tk′

for all k′, where k′ 6= k′1, . . . , k
′ 6= k′Mi

, to be the first, second, . . ., Mith candidate
for k(m) and set Ωi = {k′1, . . . , k′Mi

}. Increase i by 1 and return to Step 2.

Step 3. If the initial dm4 values of the output sequence generated by k′ ⊕ δ
(m)
j are

equal to those generated by k ⊕ δj for each j with 1 ≤ j ≤ N , we output k(m4) as
a decision for the key of the ZLL cipher and terminate the algorithm. Otherwise,
increase t3 by 1 and return to Step 2 when t3 ≤ M3. If t3 = M3 + 1, set t3 = 1,
i = 2 and increase t2 by 1. Return to Step 2 when t2 ≤ M2. If t2 = M2 + 1, set
t2 = 1, i = 1 and increase t1 by 1. Return to Step 2 when t1 ≤ M1. If t1 = M1 + 1,
we declare that Algorithm 2 has failed and the algorithm is terminated.

For Algorithm 3, we note that the first candidate of k must be tested firstly.
Hence, if the first candidates of k(8), k(16), k(24), k(32) are all correct, the computing
complexity of the multiple candidates scheme must be the same as that of Algorithm
2. In our 100 trials for Algorithm 3 on a Pentium IV 2.5 GHz PC, it took 11 minutes
and 39 seconds on average to recover the key of the ZLL cipher with a success rate
at 0.94. Furthermore, it took 7 minutes and 48 seconds on average when the attack
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succeeded. If N=80, the success rate of the Algorithm 3 is almost 1 and it only took
8 minutes and 45 seconds on average.

The performances of Algorithm 2 and Algorithm 3 may be changed greatly if the
methods of dividing key blocks and dm1 , dm2 , dm3 , dm4 are changed. If the mode of
dividing key blocks or the choice of di is not proper, the success rate will decrease
rapidly. The choice of dm1 , dm2 , dm3 , dm4 should be based on the following principle:
Under the condition that the attack has a satisfactory success rate, one should try to
make di as small as possible so as to reduce the average computing complexity. From
the results of experiments, we find that the success rate will reach the maximum
when dmi equals the expectation of the coincidence degree of k(mi).

After the N known output sequences have been tested in Algorithm 1, the count
of k(m) is about Np(nm ≥ dm), and that of the wrong test key k′ is about Npk′ ,
where pk′ is the probability that the coincidence degree of k′ is not less than dm.
Note that Np(nm ≥ dm) will be quite distinct from Npk′ as N increases. So we
can distinguish k(m) from its possible values at a high success rate. In other words,
for a chaotic cipher with a large key size, the correct key can be derived with a
small computing complexity and a high success rate by using the related-key attack.
Moreover, as long as p(nm ≥ dm) is distinct from pk′ , one can realize a related-key
attack effectively even if p(nm ≥ dm) is not big enough. Hence, the limitations of
divide-and-conquer attacks to chaotic ciphers are overcome efficiently.

4. ATTACKS BY OTHER KINDS OF RELATED KEYS

The related-key attack proposed above is based on the following facts. The equation
(k⊕ δi)m = k(m)⊕ δ

(m)
i ensures that (k⊕ δi)(m) could be obtained with known k(m)

and δ
(m)
i for any i with 1 ≤ i ≤ N . When the related keys of a chaotic cipher are in

the forms of k + δ1, k + δ2, . . . , k + δN , where + is addition modulo 2n or addition
modulo 2n word-wise for n ≥ 1, the chaotic map f(k+δi) also has the property that
the less-significant bits of the input have little effect on the most significant bits of
the output. This shows that the output sequence generated by k(m) + δi and that
generated by k + δi will be the same in the initial signals with a high probability.
The results of experiments indicate that the related-key can be similarly applied in
these cases.

Let k be a shared key by Alice and Bob, and δ be a random number being trans-
ferred publicly. Suppose Alice and Bob want to use g(k, δ) as their session key to en-
crypt their messages. For the same reason as above, if g : {0, 1}n×{0, 1}t → {0, 1}n

has the property that the less-significant bits of the input have little effect on the
most significant bits of the output, one can implement the related-key attacks on the
chaotic cipher by using the related keys in the forms of g(k, δ1), g(k, δ2), . . . , g(k, δN ).
Hence, in a session key protocol, the cryptographical property of function g is highly
important for chaotic ciphers to resist related-key attacks. In other words, if the
distribution of coincidence degrees of a chaotic cipher is not reasonable and may
be detected efficiently, the chaotic cipher may be broken easily in some cases. The
distribution of coincidence degrees of chaotic ciphers should be one of the measures
of security for chaotic ciphers.
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5. CONCLUSIONS

We have presented a related-key attack on chaotic ciphers in this paper. This method
utilizes simultaneously the output sequences generated by related keys to attack on
a chaotic cipher. Hence, the efficiency of the divide-and-conquer attack is enhanced
greatly and the limitations of the divide-and-conquer attack [2, 3] on chaotic ciphers
are overcome. As an example, we have realized the related-key attacks on the ZLL
chaotic cipher with a 64-bit key.

The results of this paper indicate that it is much likely to obtain the total bits of
the key for a chaotic cipher even with little information leaked by the distribution
of coincidence degrees of a chaotic cipher. Hence, it is important for the designers
of chaotic ciphers to ensure a reasonable distribution of the coincidence degrees.
Although the related-key attacks presented in this paper aim at the iterated chaotic
ciphers, which sets the initial conditions and parameters as keys, the ideals are also
applicable to other types of chaotic ciphers.

(Received September 30, 2007.)
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