
K Y B E R N E T I K A — V O L U M E 4 4 ( 2 0 0 8 ) , N U M B E R 3 , P A G E S 4 3 0 – 4 4 0

THE EXISTENCE OF STATES
ON EVERY ARCHIMEDEAN ATOMIC LATTICE
EFFECT ALGEBRA WITH AT MOST FIVE BLOCKS

Zdenka Riečanová

Effect algebras are very natural logical structures as carriers of probabilities and states.
They were introduced for modeling of sets of propositions, properties, questions, or events
with fuzziness, uncertainty or unsharpness. Nevertheless, there are effect algebras without
any state, and questions about the existence (for non-modular) are still unanswered. We
show that every Archimedean atomic lattice effect algebra with at most five blocks (max-
imal MV-subalgebras) has at least one state, which can be obtained by “State Smearing
Theorem” from a state on its sharp elements.
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0. INTRODUCTION

Generalizations of Boolean algebras including noncompatible pairs of elements are
orthomodular lattices [10], while generalizations including unsharp elements are MV-
algebras [4]. Lattice effect algebras are common generalizations of both these cases,
hence they may contain noncompatible pairs as well as unsharp elements. On the
other hand, the subset of all sharp elements in every lattice effect algebra E is an
orthomodular lattice [9] and every maximal subset of pairwise compatible elements
of E is an MV-algebra (MV-effect algebra) called a block and E is a union of its
blocks [15].

In spite of the fact that on every MV algebra there exists a state [8] there are
lattice effect algebras without any state (probability) [16]. The question, for which
maximal positive integer n every lattice effect algebra with at most n blocks has
a state, is still open. In this paper we are going to show that on every atomic
Archimedean lattice (e. g., on every finite and on every complete atomic) effect al-
gebra E with at most five blocks there exists a state. Note that the existence of
states on all complete atomic modular lattice effect algebras was proved in [18]. For
non-modular cases the existence is known only for lattice effect algebras with two
blocks.



Archimedean Atomic Lattice Effect Algebra 431

For the convenience of the reader we remind some necessary definitions and basic
facts in Section 1. In Section 2 we prove statements which can be used for all
orthomodular lattices with finitely many blocks. In Sections 3, 4 and 5 we prove
the existence of an (o)-continuous two-valued state on every atomic orthomodular
lattice with at most five blocks. In Section 6 we prove the main result of this paper:
the existence of states on every Archimedean atomic lattice effect algebras with at
most five blocks (even, more generally, the set of all sharp elements of which has at
most five blocks). To prove this, our main tool is the “State Smearing Theorem” for
(o)-continuous states on sharp elements of complete atomic lattice effect algebras
[17] and a theorem on the MacNeille completions of Archimedean block-finite lattice
effect algebras [14].

1. BASIC DEFINITIONS AND KNOWN FACTS

Effect algebras as generalizations of Hilbert space effects interpreted as the unsharp
quantum events were introduced by D. J. Foulis and M. K. Bennett [5].

Definition 1.1. A partial algebra (E;⊕, 0, 1) is called an effect algebra if 0, 1
are two distinct elements and ⊕ is a partially defined binary operation on E which
satisfy the following conditions for any a, b, c ∈ E:

(Ei) b⊕ a = a⊕ b if a⊕ b is defined,

(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,

(Eiii) for every a ∈ E there exists a unique b ∈ E such that a⊕b = 1 (we put a′ = b),

(Eiv) if 1⊕ a is defined then a = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. In every effect algebra
E we can define the partial order ≤ by putting

a ≤ b and bª a = c iff a⊕ c is defined and a⊕ c = b, we set c = bª a .

If E with the defined partial order is a lattice (a complete lattice) then (E;⊕, 0, 1)
is called a lattice effect algebra (a complete lattice effect algebra). If, moreover, E is
modular or distributive lattice then E is called modular or distributive effect algebra.

A set Q ⊆ E is called a sub-effect algebra of the effect algebra E if

(i) 1 ∈ Q
(ii) if out of elements a, b, c ∈ E with a⊕ b = c two are in Q, then a, b, c ∈ Q.

Note that lattice effect algebras generalize orthomodular lattices [10] (including
Boolean algebras) if we assume the existence of unsharp elements x ∈ E, meaning
that x∧ x′ 6= 0. On the other hand the set S(E) = {x ∈ E | x∧ x′ = 0} of all sharp
elements of a lattice effect algebra E is an orthomodular lattice [9]. In this sense a
lattice effect algebra is a “smeared” orthomodular lattice. An orthomodular lattice
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L can be organized into a lattice effect algebra by setting a⊕ b = a∨ b for every pair
a, b ∈ L such that a ≤ b⊥. This is the original idea of G. Boole, who supposed that
a+ b denote the logical disjunction of a and b when the logical conjunction ab = 0.
And this is all that is needed for probability theory on Boolean algebras. If ab = 0
then P (a + b) = P (a) + P (b), where P is a probability measure (hence + can be
partially defined).

In next we will write a ⊕ b instead of a ∨ b for elements a, b of an orthomodular
lattice L whenever a ≤ b′, hence b ª a instead of a′ ∧ b whenever a ≤ b. Then
(L;⊕, 0, 1) is called a lattice effect algebra derived from the orthomodular lattice L.

Definition 1.2. Let E be an effect algebra. A map ω : E → [0, 1] is called a state
on E if ω(0) = 0, ω(1) = 1 and ω(x⊕ y) = ω(x) + ω(y) whenever x⊕ y exists in E.

It is easy to check that the notion of a state ω on an orthomodular lattice L
coincides with the notion of a state on its derived effect algebra L. It is because
x ≤ y′ iff x ⊕ y exists in L, hence ω(x ∨ y) = ω(x ⊕ y) = ω(x) + ω(y) whenever
x ≤ y′.

Recall that elements x and y of a lattice effect algebra are called compatible
(written x ↔ y) if x ∨ y = x ⊕ (y ª (x ∧ y)) (see [11]). For x ∈ E and Y ⊆ E we
write x ↔ Y iff x ↔ y for all y ∈ Y . If every two elements are compatible then E
is called an MV-effect algebra. In fact, every MV-effect algebra can be organized
into an MV-algebra if we extend the partial ⊕ into a total operation by setting
x+ y = x⊕ (x′ ∧ y) for all x, y ∈ E (also conversely, restricting total + into partial
⊕ for only x, y ∈ E with x ≤ y′ we obtain MV-effect algebra).

In [15] it was proved that every lattice effect algebra is a set-theoretical union
of MV-effect algebras called blocks. Blocks of E are maximal subsets of pairwise
compatible elements of E. By Zorn’s Lemma, every subset of pairwise compatible
elements of E is contained in a maximal one. Further, blocks are sub-lattices and
sub-effect algebras of E and hence maximal sub-MV-effect algebras of E. If the
number of blocks of E is finite then E is called block-finite. Moreover, for elements
x, y of an orthomodular lattice L we have x ↔ y (resp. xCy see [10]) iff x ↔ y in
the derived effect algebra L and consequently their blocks coincide, as well.

An element a of an effect algebra E is an atom if 0 ≤ b < a implies b = 0 and
E is called atomic if for every nonzero element x ∈ E there is an atom a of E with
a ≤ x. If E is a lattice effect algebra then for x ∈ E and an atom a of E we have
a ↔ x iff a ≤ x or a ≤ x′. It follows that if a is an atom of a block M of E then a
is also an atom of E. On the other hand if E is atomic then, in general, every block
in E need not be atomic [1].

For an element x of an effect algebra E we write ord (x) =∞ if nx = x⊕x⊕· · ·⊕x
(n-times) exists for every positive integer n and we write ord (x) = nx if nx is
the greatest positive integer such that nxx exists in E. An effect algebra E is
Archimedean if ord (x) < ∞ for all x ∈ E. We can show that every complete effect
algebra is Archimedean (see [14]).

Lemma 1.3. Let (E;⊕, 0, 1) be an Archimedean atomic lattice effect algebra.
Then
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(i) (Riečanová [17], Theorem 3.3) To every nonzero element x ∈ E there are
mutually distinct atoms aα ∈ E and positive integers kα, α ∈ E such that

x =
⊕
{kαaα | α ∈ E} =

∨
{kαaα | α ∈ E},

under which x ∈ S(E) iff kα = naα = ord (aα) for all α ∈ E .

(ii) (Mosná [12], Theorem 8) A block M of E is atomic iff there exists a maximal
pairwise compatible set A of atoms of E such that A ⊆M and if M1 is a block
of E with A ⊆ M1 then M = M1. Moreover, for x ∈ E it holds x ∈ M iff
x↔ a for all a ∈ A.

(iii) (Mosná [12], Theorem 8) E =
⋃{M ⊆ E |M an atomic block of E}.

(iv) (Pulmannová, Riečanová [13]) Every block of an atomic block-finite orthomod-
ular lattice is atomic.

Clearly, a lattice effect algebra E is an orthomodular lattice iff ord (x) = 1 for
every x ∈ E.

2. BLOCK–FINITE ORTHOMODULAR LATTICES
AND LATTICE EFFECT ALGEBRAS

Recall that a lattice effect algebra E (orthomodular lattice E) is called block-finite
if the number of blocks of E is finite. A lattice effect algebra is called a horizontal
sum of the family {Ei | i ∈ I} of sub-effect algebras Ei of E if Ek ∩ El = {0, 1} for
all k 6= l, k, l ∈ I. It follows that for all x ∈ Ek, y ∈ El, k 6= l we have x∧ y = 0 and
x ∨ y = 1. A direct product E =

∏{Eκ | κ ∈ H} of effect algebras (orthomodular
lattices) Eκ , κ ∈ H, we mean a Cartesian product with “componentwise” defined
⊕, 0 and 1 (∨,∧,′ , 0, 1).

Finally, recall that a state ω on a lattice effect algebra E is called (o)-continuous
if for every net (xα)α∈E of elements of E such that xα ↑ x (meaning that xα1 ≤ xα2

for every α1 ≤ α2, α1, α2 ∈ E and x =
∨{xα | α ∈ E} ω(x) = sup{ω(xα) | α ∈ E}

holds.

Theorem 2.1. Let L be a block-finite atomic orthomodular lattice. Let ω : L →
{0, 1} be a two valued state on L such that for every block B of L there exists an
atom b ∈ B such that ω(b) = 1. Then ω is (o)-continuous.

P r o o f . Assume that xα ∈ L, x ∈ L, α ∈ E and xα ↑ x. Let ω(x) = 1. Since the
number of blocks of L is finite there exists a block B of L and a cofinal subset B ⊆ E
such that for every β ∈ B we have xβ ∈ B. The last follows from the fact that L is
a set-theoretical union of its blocks. Because every block is closed with respect to
all suprema existing in L and x =

∨{xβ | β ∈ B} we obtain that x ∈ B. Let b be an
atom of B such that ω(b) = 1. Then b ≤ x, because otherwise x ≤ b′ and ω(b′) = 1,
a contradiction. ¤
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Lemma 2.2. (Bruns [3], p. 966) Every orthomodular lattice with two blocks is
isomorphic with the direct product B × L1 where B is a Boolean algebra and L1 is
the horizontal sum of Boolean algebras A1 and A2.

Corollary 2.3. On every atomic orthomodular lattice with two blocks there exists
an (o)-continuous two-valued state ω.

Lemma 2.4. Let L be an atomic orthomodular lattice with two blocks B1 and B2

and C(L) 6= {0, 1}. Then there exists an atom a of L such that a ∈ B1 ∩B2.

P r o o f . Since C(L) 6= {0, 1}, L is not a horizontal sum of B1 and B2. More
precisely, there exists c ∈ C(L), c /∈ {0, 1} such that L ∼= [0, c] × [0, c′], where
[0, c] = B is a nontrivial atomic Boolean algebra and [0, c′] is a horizontal sum of
Boolean algebras A1, A2. It follows that every atom of B is an atom of B1

∼= B×A1

and also of B2
∼= B × A2. This proves that there exists an atom a of L such that

a ∈ B1 ∩B2, because atoms of blocks are also atoms of L. ¤

Theorem 2.5. Let an atomic orthomodular lattice with exactly n blocks be a
set-theoretical union of a Boolean algebra B and an orthomodular lattice L1 with
exactly (n− 1) blocks, under which B ∩ L1 = [c, 1] ∪ [0, c′], c 6= 0. Then

(i) if A = [c, 1] ∪ [0, c′], x ∈ B \A and y ∈ L1 \A then x 6≤ y′,
(ii) if a ∈ B is an atom of B with 0 < a < c then for every y ∈ L1 either y ∈ A or

a ∧ y = 0.

(iii) Every (o)-continuous two-valued state ω existing on L1 can be extended to an
(o)-continuous two-valued state on L.

P r o o f . (i) Assume that x ≤ y′. Then x ⊕ y exists in L. If x ⊕ y ∈ B then
y = (x ⊕ y) ª x ∈ B, as x ∈ B and hence y ∈ B ∩ (L1 \ A) = ∅, a contradiction.
If x ⊕ y ∈ L1 then x = (x ⊕ y) ª y ∈ L1, which gives x ∈ L1 ∩ (B \ A) = ∅, a
contradiction. This proves that x 6≤ y′.

(ii) Assume that c is an atom of B, then B = [c, 1] ∪ [0, c′], as B is a Boolean
algebra. Moreover, then B = A ⊆ L1 = B1 ∪ B2 ∪ · · · ∪ Bn−1 and hence there
exists k ∈ {1, 2, . . . , n − 1} such that c ∈ Bk. Because B is a block of L, every
atom of B is also an atom of L and hence c is an atom of Bk. This implies that
Bk = [c, 1]∪ [0, c′] = B, which contradicts to the number of blocks of L. Hence there
exists an atom a of B with 0 < a < c.

Assume now that y ∈ L1 \ A and a ≤ y = (y′)′. Then there exists a ⊕ y′ and
because a ∈ B \ A we obtain by (i) that y′ 6∈ L1 \ A. It follows that y′ ∈ A and
hence y ∈ A, a contradiction. This proves (ii).

(iii) Let us assume first that ω(c) = 1. Let a ∈ B be an atom of B such that
0 < a < c. We have shown in (ii) that such atom of B exists. Define a map
ω̂ : L→ {0, 1} by the conditions: ω̂|L1 = ω and for all x ∈ B let ω̂(x) = 1 if a ≤ x,
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otherwise ω̂(x) = 0. Then ω̂|A = ω|A as evidently ω(c′) = 0 and ω(x) = 1 for
all x ∈ [c, 1]. Moreover, ω̂|B is a state on B and using (i) we obtain that for all
y ∈ L1 \A and x ∈ B \A we have x 6≤ y′. This proves that ω̂ is a state on L.

Assume now that ω(c) = 0 and hence ω(c′) = 1. Then by the (o)-continuity of ω
there exists an atom p of L1, p ≤ c′, such that ω(p) = 1, since otherwise ω(c′) = 0.
Since p ∈ A ⊆ B we can set for all x ∈ B, ω̂(x) = 1 if p ≤ x, otherwise ω̂(x) = 0.
Then ω̂ is a state on B such that ω̂|A = ω|A as A is a Boolean algebra. Now, using
(i) we obtain that ω̂ is a state on L.

Finally, ω̂ is (o)-continuous on L, by Theorem 2.1, as clearly ω̂ satisfies its as-
sumptions. Really, for every block D of L we have: If D = B then either there exists
an atom a of B with 0 < a < c and ω̂(a) = 1, or an atom p ≤ c′ with ω̂(p) = 1.
If D is a block of L1 then ω̂|D = ω|D is an (o)-continuous two-valued state on D
and thus there exists an atom q ∈ D such that ω(q) = 1 = ω̂(q), otherwise by the
(o)-continuity of ω on D we obtain ω(1) = 0, a contradiction. ¤

3. ATOMIC ORTHOMODULAR LATTICES WITH THREE BLOCKS

A block B of an orthomodular lattice L with exactly three blocks A,B,C is called
a middle block if A ∪B and B ∪C are subalgebras of L, A ∩C ⊆ B and A ∩B and
B ∩ C are unequal to C(L) = A ∩ B ∩ C ([3] and [10], p. 306). If C(L) = {0, 1}
then L has either a middle block, or L is a horizontal sum of its blocks, or L is a
horizontal sum of a Boolean algebra B and an orthomodular lattice L1 with two
blocks ([3], [10], p. 306).

Theorem 3.1. Let L be an irreducible atomic orthomodular lattice with exactly
three blocks. Then there exists an (o)-continuous two-valued state ω on L.

P r o o f . By [13] every block of L is atomic. Hence there exist exactly three
maximal pairwise compatible sets of atoms AA, AB and AC being sets of all atoms
of blocks A,B and C respectively [12].

Assume first that B is a middle block. Then by Lemma 2.4 we have AA∩AB 6= ∅,
AB ∩ AC 6= ∅ and AA ∩ AC = ∅ because A ∩ B 6= {0, 1}, B ∩ C 6= {0, 1} and
A ∩ C = A ∩ B ∩ C = C(L) = {0, 1}. It follows by the maximality of AA, AB and
AC (Lemma 1.3, (ii)) that AA 6⊆ AB ∪AC , AB 6⊆ AA ∪AC and AC 6⊆ AA ∪AB . Let
a ∈ AA \ (AB ∪AC), b ∈ AB \ (AA ∪AC) and c ∈ AC \ (AA ∪AB). Then every atom
p ∈ {a, b, c} is in exactly one block M ∈ {A,B,C} and for every such M we have
M ∩ {a, b, c} 6= ∅.

Let us define a map ω : L→ {0, 1} by conditions: ω(x) = 1 if [0, x]∩{a, b, c} 6= ∅
and ω(x) = 0 if [0, x] ∩ {a, b, c} = ∅. Then evidently ω(0) = 0 and ω(1) = 1. If
x, y ∈ L with x ≤ y′ then there exists a block M of L with {x, y, x ⊕ y} ⊆ M . If
ω(x⊕y) = 0 then evidently ω(x) = ω(y) = 0, because x, y ≤ x⊕y. Let ω(x⊕y) = 1.
Then there exists p ∈ [0, x ⊕ y] ∩ {a, b, c}. Let q ∈ M ∩ {a, b, c}. Then q ≤ x ⊕ y,
because otherwise p 6= q and p ≤ x ⊕ y ≤ q′ as x ⊕ y ↔ q, which contradicts to
the fact that for no block M1 ∈ {A,B,C}, {p, q} ⊆ M1 holds. This proves that
p = q ∈ M and hence p = p ∧ (x ⊕ y) = (p ∧ x) ⊕ (p ∧ y), which gives that exactly
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one of p∧x and p∧y equals 0. Thus ω(x⊕y) = ω(x) +ω(y), which gives that ω is a
two-valued state on L. Because for every block M of L there exists an atom p ∈M
with ω(p) = 1 we obtain, using Theorem 2.1, that ω is (o)-continuous on L.

In the cases when L is a horizontal sum of its blocks or L is a horizontal sum of
an orthomodular lattice L with two blocks and a Boolean algebra B the existence
of an (o)-continuous two-valued state ω is obvious. ¤

Note that if L in Theorem 3.1 is not irreducible, i. e., C(L) 6= {0, 1}, then it
is isomorphic to a direct product of nontrivial atomic Boolean algebra B and an
irreducible orthomodular lattice L1 with exactly three blocks. Hence we obtain:

Theorem 3.2. On every atomic orthomodular lattice with exactly three blocks
there exists an (o)-continuous two-valued state.

4. ATOMIC ORTHOMODULAR LATTICES WITH FOUR BLOCKS

Lemma 4.1. (Bruns [3], p. 977) Every orthomodular lattice L with exactly four
blocks is either the direct product of two orthomodular lattices with two blocks each
or can be obtained by pasting a Boolean algebra B and an orthomodular lattice L1

with exactly three blocks along a segment [c, 1] ∪ [0, c′] = A, meaning that c 6= 0,
B ∩ L1 = A and B ∪ L1 = L.

Theorem 4.2. Let L be an atomic orthomodular lattice with exactly 4 blocks.
Then there exists an (o)-continuous two-valued state ω on L.

P r o o f . (1) Let L be the direct product of orthomodular lattices L1 and L2 with
two blocks each. Let ω be an (o)-continuous two-valued state ω on L1. For every
x ∈ L there are unique u ∈ L1, v ∈ L2 such that x = u ⊕ v. We set ω̂(x) = ω(u).
Because the operations 0, 1,∨,∧,′ ,⊕ are defined “componentwise” on L1 × L2 we
can easily show that ω̂ is an (o)-continuous two-valued state on L.

(2) If L can be obtained by pasting a Boolean algebra B and an orthomodular
lattice L1 with exactly three blocks around a segment [c, 1]∪ [0, c′] then there exists
an (o)-continuous two-valued state ω̂ on L by Theorems 2.5 and 3.1. ¤

5. ATOMIC ORTHOMODULAR LATTICES WITH FIVE BLOCKS

Definition 5.1. (Bruns [3])

(i) For blocks B1, B2 of an orthomodular lattices L define B1 ≈ B2 iff B1 6= B2,
B1 ∪B2 is a subalgebra of L and B1 ∩B2 6= C(L).

(ii) A strong link in L is an unordered pair of blocksB1, B2 of L satisfyingB1 ≈ B2.
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Lemma 5.2. (Bruns [3]) Let L be an atomic orthomodular lattice with exactly
five blocks. Then:

(i) either L = B0 ∪ B1 ∪ B2 ∪ B3 ∪ B4 such that L = B0 ≈ B1 ≈ B2 ≈ B3 ≈ B4

holds and there are no other strong links.

(ii) or L can be obtained by pasting of an orthomodular lattice L1 with exactly
four blocks and a Boolean algebra B along a segment A = [c, 1] ∪ [0, c′], c 6= 0
meaning that L = B ∪ L1 and B ∩ L1 = A.

Theorem 5.3. Let L be an atomic orthomodular lattice with exactly five blocks.
Then there exists an (o)-continuous state on L.

P r o o f . (1) Assume first that L satisfies condition (ii) of Lemma 5.2. Then by
Theorem 2.5, there exists an (o)-continuous two-valued state ω̂ on L which extends
an (o)-continuous two-valued state ω on L1 existing by Theorem 4.2.

(2) Assume now that L satisfies condition (i) of Lemma 5.2 and that C(L) =
{0, 1}. Then by ([3], (8.1) and (8.2)), for every i (modulo 5) we have:

(a) The only unions of two blocks which are subalgebras of L are Bi ∪Bi+1.

(b) Bi ∩Bi+2 = C(L).

(c) Bi ∩Bi+1 6⊆ Bi+2, Bi+1 ∩Bi+2 6⊆ Bi.
(d) The union of three or four blocks of L is never a subalgebra of L.

By Lemma 2.4 there exist atoms a, b of L such that a ∈ B0 ∩ B1 and b ∈ B2 ∩ B3.
It follows that a /∈ B2, B3, B4 because B0 ∩ B2 = B3 ∩ B0 = B4 ∩ B1 = {0, 1} and
b /∈ B0, B1, B4 because B0∩B2 = B1∩B3 = B2∩B4 = {0, 1}. Assume that the sets
of all atoms of B0, B1, B2, B3 and B4 are AB0 , AB1 , AB2 , AB3 and AB4 , respectively,
and that AB4 ⊆ AB0 ∪ AB1 ∪ AB2 ∪ AB3 . Then AB4 = AB4 ∩ (AB0 ∪ AB3) because
AB4 ∩ AB1 = AB4 ∩ AB2 = ∅ as B4 ∩ B1 = B4 ∩ B2 = {0, 1}. Because AB4 ⊆ AB0

resp. AB4 ⊆ AB3 contradicts the maximality of sets of all atoms in blocks we obtain
that there exist atoms p ∈ AB4 ∩ AB0 and q ∈ AB3 ∩ AB4 and hence p ↔ q which
gives p ≤ q′. It follows that p ∨ q′ = q′ < 1, which contradicts to the fact that
B3 ∩B0 = {0, 1} and hence for all nonzero x ∈ B3, y ∈ B0 we have x ∨ y = 1. This
proves that there exists an atom c of L such that c ∈ AB4 \ (AB0 ∪AB1 ∪AB2 ∪AB3).

Let F = {a, b, c} and define ω̂(x) = 1 if F∩[0, x] 6= ∅ and ω̂(x) = 0 if F∩[0, x] = ∅.
Then evidently ω̂(0) = 0 and ω̂(1) = 1. Assume that x, y ∈ L are such that x ≤ y′.
If [0, x ⊕ y] ∩ F = ∅ then ω̂(x ⊕ y) = 0 = ω̂(x) + ω̂(y) because x, y ≤ x ⊕ y. If
[0, x ⊕ y] ∩ F 6= ∅ then there exists p ∈ F such that p ≤ x ⊕ y. Moreover, there
exists a block M ∈ {B0, B1, B2, B3, B4} with {x, y, x⊕y} ⊆M . Further there exists
q ∈ M ∩ F , as we can easily see. If q 6≤ x ⊕ y then because q, x ⊕ y ∈ M we have
x ⊕ y ≤ q′ which implies that p ≤ x ⊕ y ≤ q′. The last contradicts the fact that
no pair of elements p, q ∈ F is in the same block (i. e., p 6↔ q). This proves that
q ≤ x ⊕ y and hence q = (q ∧ x) ⊕ (q ∧ y) since {q, x, y, x ⊕ y} ⊆ M , and M is
a Boolean algebra. It follows that exactly one of q ∧ x and q ∧ y equals q. Thus
ω̂(x⊕ y) = 1 = ω̂(x) + ω̂(y).
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Finally, ω̂ is (o)-continuous on L by Theorem 2.1, because M ∩ F 6= ∅ for every
block M of L and ω̂(p) = 1 for every p ∈ F .

Assume now that C(L) 6= {0, 1}. Then there exists an element z ∈ C(L) such
that L ∼= [0, c]× [0, c′] and [0, c] = B is a Boolean algebra and [0, c′] is an irreducible
orthomodular lattice L1 with exactly five blocks. Since B and L1 are atomic the
existence of an (o)-continuous two-valued state on L is obvious. ¤

6. ARCHIMEDEAN ATOMIC LATTICE EFFECT ALGEBRAS
WITH AT MOST FIVE BLOCKS

The notion of sharp elements of effect algebras was introduced by S. P. Gudder
([6, 7]). The set S(E) = {x ∈ E | x∧x′ = 0} of all sharp elements is an orthomodular
lattice, a sub-effect algebra and a full sub-lattice of E (meaning that S(E) is closed
with respect to all suprema and infima existing in E), [9].

Theorem 6.1. Let (E;⊕, 0, 1) be an Archimedean atomic lattice effect algebra
with at most n blocks. Then

(i) the orthomodular lattice S(E) has at most n blocks,

(ii) S(E) is atomic and p ∈ S(E) is an atom of S(E) iff there exists an atom a of
E with naa = p and there is no atom b of E with nbb < naa

P r o o f . (i) Let B ⊆ S(E) be a block of S(E). Since B is a maximal pairwise
compatible set of elements of S(E), there exists a block M of E with B ⊆M and in
view of the maximality of B in S(E), we have B = M ∩S(E). Further, if B1 and B2

are different blocks of S(E) then there exist different blocks M1 and M2 of E such
that B1 ⊆ M1 and B2 ⊆ M2, because M1 = M2 implies that B1 = M1 ∩ S(E) =
M2 ∩ S(E) = B2, a contradiction. This proves that S(E) has at most n blocks.

(ii) Since E is Archimedean and atomic, to every nonzero x ∈ E there exists a
set {aα | α ∈ E} of atoms of E such that x =

⊕{kαaα | α ∈ E} =
∨{kαaα | α ∈ E},

under which x ∈ S(E) iff kα = ord (aα) = naα for all α ∈ E ([17], Theorem 3.3).
It follows that p ∈ S(E) is an atom of S(E) iff there exists an atom a of E with
naa = p and for no atom b of E, nbb < naa holds. Assume to the contrary that
there are atoms a1, a2, a3, . . . of E such that na1a1 > na2a2 > na3a3 > . . . . Then
ak 6↔ al for all k 6= l, which contradicts the assumption that E is block-finite. Really,
if there exist l < k such that ak ↔ al then ak ≤ a′l and, because nakak < nalal,
we have nal 6= 1. This implies that ak ⊕ al = ak ∨ al ≤ a′l, which gives that
ak⊕ 2al = (ak ∨ al)⊕ al = (ak⊕ al)∨ 2al = ak ∨ 2al. By induction ak⊕nalal exists,
hence nakak < nalal < a′k, which contradicts to nak = ord (ak). ¤

Theorem 6.2. Let (E;⊕, 0, 1) be an Archimedean atomic lattice effect algebra
with at most five blocks. Then there exists a state on E.

P r o o f . In [14] it was proved that every block-finite Archimedean atomic lattice
effect algebra E can be embedded as a subeffect algebra into a complete lattice
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effect algebra Ê. In fact, Ê is the MacNeille completion (completion by cuts) of the
lattice E. It follows that E is supremum and infimum dense in Ê and hence E and
Ê have the same set of all atoms (we identify E with ϕ(E), where ϕ : E → Ê is
the embedding). Moreover, all suprema and infima existing in E are inherited in
Ê. This implies that for an atom a of E its naa = p is an atom of S(E) iff naa is
an atom of S(Ê). Since we have x ∈ S(Ê) iff there exists a set {aα | α ∈ A} of
atoms of Ê and hence atoms of E such that x =

⊕{naαaα | α ∈ A} =
∨{naαaα |

α ∈ A} [17, Theorem 3.3]) we see that S(E) ⊆ S(Ê) and S(Ê) is the MacNeille
completion of S(E). Further every block B̂ of S(Ê) is a MacNeille completion of
a block B of S(E) at which B and B̂ correspond to the same maximal subset of
pairwise compatible atoms of S(E). Thus, by Theorem 6.1, S(Ê) has at most five
blocks. In [14] was proved that every complete lattice effect algebra is Archimedean.
By Theorems 2.1, 3.2, 4.2, 5.3 and Corollary 2.3, there exists an (o)-continuous two-
valued state ω on S(Ê) and by the “State Smearing Theorem” ([17], Theorem 5.2)
there exists a state ω̂ on Ê extending ω. Since E is a sub-effect algebra of Ê, the
restriction ω̂|E of ω̂ is a state on E. ¤

In fact, we have proved more:

Theorem 6.3. Let (E;⊕, 0, 1) be a block-finite Archimedean atomic lattice effect
algebra. Let the set S(E) of all sharp elements of E have at most five blocks. Then
there exists a state on E.

Remark 6.4. Let n be an arbitrary positive integer. It is easy to construct an
Archimedean atomic lattice effect algebra E having n blocks such that S(E) has a
unique block (e. g., a horizontal sum of n finite chains or a complete atomic lattice
effect algebra with S(E) = C(E)).
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