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DISJOINTNESS OF FUZZY COALITIONS
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Milan Mareš and Milan Vlach

The cooperative games with fuzzy coalitions in which some players act in a coalition only
with a fraction of their total “power” (endeavor, investments, material, etc.) or in which
they can distribute their “power” in more coalitions, are connected with some formal or
interpretational problems. Some of these problems can be avoided if we interpret each fuzzy
coalition as a fuzzy class of crisp coalitions, as shown by Mareš and Vlach in [9, 10, 11].
The relation between this model of fuzziness and the original one, where fuzzy coalition is
a fuzzy set of players, is shown and the properties of the model are analyzed and briefly
interpreted in this paper. The analysis is focused on very elementary properties of fuzzy
coalitions and their payments like disjointness, superadditivity and also convexity. Three
variants of their modelling are shown and their consistency is investigated. The derived
results may be used for further development of the theory of fuzzy coalitions characterized
by fuzzy sets of crisp coalitions. They show that the procedure developed in [11] appears
to be the most adequate.
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1. INTRODUCTION

In this paper, we deal with cooperative (or coalitional) games with transferable util-
ity, briefly TU-games, and with their fuzzification. Generally, they can be fuzzified
in two principally different ways. It is possible to fuzzify their coalitions modelling
the vague structure of cooperation, or the expected pay-offs if we wish to model the
vagueness of expectations and motivations with which players enter the negotiation
process (see, e. g., [7]). In the presented contribution, we are interested in the first
problem, i. e., we deal with vaguely determined coalitions.

This model was formulated in seventies (see, e. g., [1, 2]) but in certain latent way,
it can be found even in some papers not using the terminology of fuzzy set theory
but admitting the parallel participation of players in several cooperation schemes
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grant No. 402/04/1026. The economic research included here was supported by the Centre of
Applied Research project “DAR”, No. 1M0572.
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(cf., [6]). The generalizations of the original model are further developed, e. g., in
[3, 4], and they are discussed in [8, 9], too.

The following sections are motivated by some specific uncertainties connected
with the interpretation of that model and with its “translation” into the reality of
cooperative behavior. Namely, if each (fuzzy) coalition is considered to be a fuzzy
subset of the set of all players, with membership function defined for all players (even
if sometimes vanishing) then the real structure of cooperation in coalitions including
the partition of the set of players into some “groups dealing the same interests” can
become rather hidden and the conflict of motivations can be unclear. Some very
brief comments on this were mentioned in [8] and partly in [9], too, and in [11] one
of its possible versions is suggested, as well. From the formal point of view, there
may appear some doubts on the sense of the concepts like disjointness of coalitions
and, consequently the superadditivity, additivity, coalitional structure, and related
concepts.

An attempt to handle these difficulties can be based on a modification of the for-
malism describing the concept of fuzzy coalition. The “traditional” fuzzy coalitions
defined as fuzzy sets of players can be easily transformed into fuzzy classes of crisp
coalitions. This transformation preserves the main advantages of the fuzzy sets of
players and, moreover, it offers even more refined diversification of the cooperative
bounds objectively existing in the game. Moreover, it offers a possibility to use the
well-known properties of crisp coalitions (and deterministic TU-games) even for the
applications in which the structure of cooperation is rather vague. In the main parts
of the paper, we study three potentially possible versions of such model. More ex-
actly, the eventual models of the considered game may be treated as certain mixtures
of the two models of fuzzy coalitions – their representations by fuzzy sets of players
or by fuzzy sets of crisp subcoalitions. Their analysis is focused on the mutual com-
patibility of these two approaches and on their proportions in one eventual model.
The main results regard very elementary (and, consequently, fundamental) concepts
of the cooperation theory, namely the disjointness of coalitions and the superaddi-
tivity. The following text represents a rather discussion paper contributing to the
methodological analysis of the adequacy of particular approaches to the reality of
cooperative behaviour as well as to the formal operability of the model.

The authors wish to thank cordially the referee(s) of the manuscript. The com-
ments to its original version have essentially contributed to the quality of the con-
ceptual formalism, and (which appears even more significant) to the further investi-
gations of the problems formulated here.

2. CRISP TU–GAME

The deterministic cooperative games with transferable utility (briefly, TU-games)
are defined by a pair (I, v) where I is a (finite and non-empty) set of players and
any its subset K ⊂ I is called a coalition. The mapping v : 2I → R is called a
characteristic function of the game. For every K ⊂ I, v(K) denotes the expected
income of K. We suppose that for the empty coalition ∅, v(∅) = 0.
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Every vector xK = (xi)i∈K ∈ RK , where K ⊂ I, such that
∑

i∈K
xi ≤ v(K) (1)

represents an achievable distribution of the total income of coalition K. Vectors

x = (xi)i∈I ∈ RI

will be called imputations and we say that an imputation x is blocked by coalition
K if the inequality (1) is strict.

The game is called superadditive iff for any pair of disjoint coalitions K, K ′, K ∩
K ′ = ∅

v(K ∪K ′) ≥ v(K) + v(K ′), (2)

and it is called convex iff for any K, K ′ ⊂ I,

v(K ∪K ′) + v(K ∩ L) ≥ v(K) + v(K ′). (3)

For more details see, e. g., [5, 13].

3. FUZZY COALITIONS – CLASSICAL MODEL

As already explained in the heuristic introduction, it is not realistic to assume that
each player participates in exactly one coalition which consumes all his potential
“power”. In fact, each of us parts his endeavor into cooperative activities in the
frame of several groups sharing common interest in a social or economic process.
One of these “groups” may be even the one-player coalition. This distribution of
player’s endeavor is modelled by the tools of fuzzy set theory – each coalition is
considered to be a fuzzy subset of the set I. In the following sections, we denote for
every set X by P(X) the class of all crisp subsets of X and by F(X) the class of all
fuzzy subsets of X. It means that every crisp coalition K is an element of P(I).

Every fuzzy coalition L ∈ F(I) is characterized by its membership function τL :
I → [0, 1] with the usual interpretation (cf. [1, 2, 3, 10, 9]). Evidently, every crisp
coalition is a special case of fuzzy coalition with membership values in {0, 1}. To
simplify the orientation in the next text, we denote by K (eventually with indices)
the crisp coalitions and by letters L, J, M (with eventual indices) the generally fuzzy
coalitions. Of course, I still keeps to be a symbol of the crisp coalition of all players.

Without loss of generality, we suppose that I = {1, 2, . . . , n}, i. e., there are n
players in the game. If we denote N = 2n − 1 then the crisp coalitions may be
labeled, K0,K1,K2, . . . ,KN where K0 = ∅.

The characteristic function of a TU-game with fuzzy coalitions is defined (see [1])
as a function v : F(I) → R such that v(K0) = 0. Its properties are investigated in
numerous works (e. g., in [1, 2, 3, 4] and others). The extension of some basic con-
cepts of the deterministic TU-games model to analogous games with fuzzy coalitions
is quite inspirative.

There are some open topics which deserve attention. The roots of some of them
can be found in a concealed but natural intuitive expectation that any TU-game
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with fuzzy coalitions would be interpreted as an extension of some crisp coalitional
TU-game. It is to start from its elementary components, coalitions and character-
istic function, and continue to more advanced basic concepts. This approach was
(first time, as far as we know) open in [10] and [9], and its more thorough analysis is
presented in the following sections of this paper. The analysis regards such elemen-
tary concept like the disjointness of fuzzy coalitions and its immediate consequences.
On this basic level, some potentially admissible approaches to the fuzzy coalitions
are illustrated.

4. FUZZY COALITIONS AS EXTENSION OF CRISP COOPERATION

The elementary attempt to connect fuzzy coalitions with their crisp counterparts
was done in [8] and [9]. Keeping the notations introduced in the previous sec-
tion and denoting by τ0, τ1, . . . , τN the {0, 1} membership functions of the crisp
coalitions K0,K1, . . . ,KN , respectively, we say that a fuzzy coalition L ∈ F(I) is
a convex combination of crisp coalitions Kj1 , . . . ,Kjm iff there exist real numbers
bj1 , . . . , bjm ∈ [0, 1] such that bj1 + · · ·+ bjm = 1 and for every i ∈ I,

τL(i) = bj1τj1(i) + · · ·+ bjmτjm(i). (4)

It is shown in [8] and [9] that for every fuzzy coalition L there exists at least one
set of crisp coalitions whose convex combination L is. Note that the empty crisp
coalition K0 may be added to the set {Kj1 , . . . ,Kjm} which offers a possibility to
use relatively wide spectrum of their coefficients bj1 , . . . , bjm whose sum is less than
1 and complete it by b0 without influencing the values τL(i). Moreover, there may
generally exist more than one such groups. If L is crisp, i. e., L = Kj for some
j = 1, . . . , N , then there exists exactly one group, namely, the one-element group
{Kj} such that L is “convex combination” of {Kj} with coefficient bj = 1.

The above facts offer an interesting interpretation. Namely, for any fuzzy coalition
L its membership function τL does not contain the complete information about the
structure of cooperation of a player i with other members of L. It specifies only, that
he “invests” the intensity τL(i) of his total endeavor in the interests of coalition L.
The representation of L by a convex combination of several crisp coalitions shows
that L itself is a structure of a few crisp cooperating groups of players where, usually,
each of them participates in the common goals of L with only some part of its
“power”. The fact that there may exist more than one such convex combinations
means that eventual choice of one of them brings some new information about the
real existing structure of relations inside L. It appears to be useful to represent the
fuzzy cooperation in the considered TU-game not only by fuzzy coalitions but also
by some structure based on the convex combinations.

Before doing so, we attempt to describe also some relation between the values of
characteristic function v for crisp and fuzzy coalitions. If L is a fuzzy coalition and
{K1, . . . ,Km} its representation by convex combination with coefficients b1, . . . , bm
then it is correct to define the value

v(K1, . . . ,Km) = b1 · v(K1) + · · ·+ bm · v(Km).
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Then we may define the value of the characteristic function v(L) for L by

v(L) = max (v(Kj1 , . . . ,Kjm) : {Kj1 , . . . ,Kjm} (5)
where L is convex combination of {Kj1 , . . . ,Kjm}) .

It is easy to see, due to our previous statements, that for crisp L, formula (5)
gives exactly the value of characteristic function for the crisp coalition in the crisp
TU-game which was extended by our fuzzified model.

Let us note that the representation of fuzzy coalitions by a convex combination
of crisp coalitions is mentioned in [1], too.

The values of coefficients bjk , k = 1, . . . ,m, in (4) have formal properties of values
of membership function which fact justifies the following procedure.

As we denote by P(I) the set of all crisp coalitions, P(I) = {K0,K1, . . . ,KN},
then every fuzzy coalition L can be characterized by a fuzzy subset L of P(I) with
membership function βL : P(I) → [0, 1]. Namely, if L is a convex combination of
{Kj1 , . . . ,Kjm} with coefficients bj1 , . . . , bjm then it is possible to introduce a fuzzy
set L ∈ F(P(I)) with membership function βL : P(I)→ [0, 1] such that we put for
every K ∈ P(I)

βL(K) = bjk if K = Kjk for some k = 1, . . . ,m,

= 0 otherwise.
(6)

If L ∈ F(I) with τL, and L ∈ F(P(I)) with βL are connected via the above con-
struction then we say that L reflects the cooperation in L.

The above discussion of results presented in [9, 10] immediately admits the possi-
bility that some fuzzy coalitions in the sense of fuzzy subsets of I can be characterized
by more than one fuzzy subsets of P(I). It means that the definition of fuzzy coali-
tions as fuzzy subset of the set P(I) is more sophisticated than the traditional one
based on fuzzy subset of I. These observations can be formulated in the following
statements.

Lemma 1. If L is a fuzzy coalition with membership function τL : I → [0, 1] then
there exists at least one L ∈ F(P(I)) with membership function βL : P(I) → [0, 1]
such that L is convex combination of P(I) with coefficients βL(K), K ∈ P(I).

P r o o f . The statement follows from the above construction. ¤

Remark 1. There may exist more than one fuzzy subsets of P(I) reflecting the
cooperation in a fuzzy coalition L ∈ F(I).

Example 1. Let n = 4 and let L be fuzzy coalition such that τL(i) = 1/2 for all
i ∈ I. Then L may be identified with, e. g., the following fuzzy subsets L of P(I):

βL : βL({1, 2}) = 1/2, βL({3, 4}) = 1/2, βL(K) = 0 otherwise,
β′L : β′L({1, 3}) = 1/2, β′L({2, 4}) = 1/2, β′L(K) = 0 otherwise,
β′′L : β′′L(I) = 1/2, β′′L({K0}) = 1/2, β′′L(K) = 0 otherwise,
β∗L : β∗L({1, 2, 3}) = 1/2, β∗L({4}) = 1/2, β∗L(K) = 0 otherwise,
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and many others. ¤

Lemma 2. A fuzzy subset L of P(I) with membership function βL reflects the
cooperation in a fuzzy coalition L ∈ F(I) iff

∑
K∈P(I)

βL(K) = 1.

P r o o f . The statement follows from the definition of convex combination (cf. (4))
and from definitoric formula (6), immediately. ¤

Remark 2. The previous results mean that there exist fuzzy subsets of P(I) which
do not correspond to any fuzzy subset of I.

Remarks 1 and 2 show that the mutual correspondence between two concepts
of fuzzy coalitions represented by fuzzy subsets of I (with τL) and fuzzy subsets of
P(I) (with βL) is very weak and it regards (in a very limited sense) only the cases
in which

βL(K0) + βL(K1) + · · ·+ βL(KN ) = 1.

If we focus our attention on a fuzzy coalition L and on the relations of one player
i ∈ I to his partners in L, then the classical concept of fuzzy coalition offers only
one simple information. Namely, the value τL(i) showing which deal of his capacity
player i contributes to the activity of L. On the other hand, the paradigm that
the fuzziness of a coalition means, in fact, that it itself is a combination of partial
“internal” and homogenous groups more or less contributing to L, opens a possibility
to analyze the relations of i to other partners in L in a much more sophisticated
way. For every player i ∈ I and every fuzzy coalition L ∈ F(I) for which a fuzzy set
L ∈ F(P(I)) and βL were constructed by the above method, we define a mapping
(i)βL : P(I)→ [0, 1] which we call a structure of contacts of i in characterization βL,
where for any K ∈ P(I)

(i)βL(K) = βL(K) if i ∈ K,
= 0 if i /∈ K.

(7)

Lemma 3. For any fuzzy coalition L, L ∈ F(P(I)), with βL reflecting the coop-
eration in L, and player i ∈ I,

∑
K∈P(I)

(i)βL(K) = τL(i).

P r o o f . The equality follows from (4), (6) and (7), immediately. ¤

The previous results show that there exists certain relation between the concep-
tion of fuzzy coalition as a fuzzy set from F(I) and as a fuzzy subset from F(P(I)).
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This relation is illustrated by Lemma 3, e. g. On the other hand, the relation is
not very tight – there is no one-to-one correspondence between both types of fuzzy
coalitions. Among other consequences it means that the method of extension of
the characteristic function v used in Section 3 cannot be simply transmitted to the
F(P(I)). Nevertheless, it is possible to define other extensions (one of them is
suggested in [11]) and the assumption that function v was extended from P(I) to
F(P(I)) is fully justified.

4.1. Fuzzy superadditivity

The concept of superadditivity, however simple it is, can be easily used for illustration
of differences between both approaches to the fuzziness of coalitions. If we wish to
respect the analogy between TU-games with crisp and fuzzy coalitions reflecting
the fact that fuzzy coalitions extend the set of their crisp counterparts, we are to
consider the fact that the superadditivity is closely connected with the disjointness
of the relevant coalitions. If those coalitions are fuzzy (with different degree of
membership) then the concept of disjointness itself may become rather uncertain.
In this subsection, we present a sequence of three models of the disjointness of fuzzy
coalitions and consequent concepts of superadditivity.

The paradigm due to which the superadditivity of a fuzzy game is to be fuzzy is
not dogmatic. E. g., Aubin in [1] suggest its definition as a crisp property. In our
symbols, by an inequality

v(L+ J) ≥ v(L) + v(J)

where L, J ∈ F(I), and τL(i) + τJ (i) ≤ 1, τL+J (i) = τL(i) + τJ (i), i ∈ I.
The three models combine, more or less, both approaches to the concept of fuzzy

coalition and they differ in their mutual proportions.

4.1.a. Fuzzy subsets of I

The superadditivity in the TU-games becomes rather vague if the fuzzy coalitions
are considered. The dogmatic view on the disjointness as strict separation of two
coalitions seems to be too strong if the eventual intersection contains only players
with some negligible participation in the coalitions. We would not forget that, for-
mally, all membership functions τL of fuzzy coalitions are defined over the complete
set I. From this point of view, the disjointness becomes a fuzzy relation defined
over the Cartesian product F(I) × F(I). Its membership function will be denoted
δ : F(I) × F(I) → [0, 1]. Now, we may choose one of the following approaches. In
the first one, the conception of disjointness (and then also superadditivity) can be
based on the traditional perception of fuzzy coalition as fuzzy subset of I, with τL.
Then we may proceed as follows. We define its value for any pair of fuzzy coalitions
L, M by

δ(L,M) = 1−max
i∈I

(min(τL(i), τM (i))) . (8)
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Remark 3. With respect to Lemma 3, it is easy to see that

δ(L,M) = 1−max
i∈I

(
min

(∑
K∈P(I)

(i)βL(K),
∑

K∈P(I)

(i)βM(K)
))

,

where L with βL and M with βM are some of the fuzzy sets from F(P(I)) which
reflect the cooperation in L and M , respectively, due to (6). Lemma 3 implies that
the last equality is independent of the choice of actual L andM among those which
reflect the cooperation in L and M .

Lemma 4. If L with βL andM with βM reflect the cooperation in L, M ∈ F(I),
respectively, and if for some K ∈ P(I), βL(K) > 0 and βM(K) > 0 then, evidently,
δ(L,M) < 1.

P r o o f . The statement follows from Remark 3 immediately. ¤

Theorem 1. If the coalitions L, M are crisp, i. e., L, M ∈ P(I), then δ(L,M) = 1
if L ∩M = ∅ and δ(L,M) = 0 if L ∩M 6= ∅ in the deterministic sense.

P r o o f . The statement follows from (8) and from the fact that for crisp coalitions
L, M the values τL(i) and τM (i) belong to {0, 1}. ¤

Now, it is natural to define the superadditivity as a fuzzy property defined on
the class of all TU-games (I, v) over the set of players I. Its membership function
is denoted by σI with values σI(v) ∈ [0, 1] depending on the fuzzy disjointness of
fuzzy coalitions for which the classical inequality (2) if fulfilled, for the extension of
the characteristic function v defined by (5). More exactly, we define

σI(v) = 1−max
(
δ(L,M) : L, M ∈ F(I), v(L ∪M) < v(L) + v(M)

)
, (9)

where the union L ∪M means that

τL∪M (i) = max (τL(i), τM (i)) . (10)

Lemma 5. It is easy to verify that for the game in which only crisp coalitions are
admissible the above definition of superadditivity coincides with the deterministic
one recollected in Section 2, formula (2).

P r o o f . The statement follows from Lemma 4 and from (9), immediately. ¤

4.1.b. Fuzzy subsets of P(I) – respecting also I

The above approach to the superadditivity respects the classical model of fuzzy
coalition (see, e. g. [1]) with its advantages and discrepancies where the latter ones
consist namely in very weak connections between the crisp and fuzzy coalitions.
If we prefer to respect the paradigm that fuzzy coalitions are, rather than some
independent objects, extensions of the crisp ones with more complex structure of
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cooperative relations, then it is desirable to reconsider the above model and to
modify it. We have done something similar in the previous paragraphs of Section 4,
namely by introducing the concepts of characterization of fuzzy coalition, structure
of contacts and, especially, in formula (5) where the tight relation between crisp and
fuzzy coalitions is stressed.

If we accept the principle that fuzzy coalition is not to be described as fuzzy
subset of I but as a fuzzy class of crisp subcoalitions than its impact on the concept
of disjointness (and other concepts derived from it) is quite significant.

If the cooperation in a fuzzy coalition L is identified with L and βL reflecting its
cooperation then also the disjointness may be understood as a relation between the
crisp subcoalitions with positive membership βL(·). The disjointness keeps being
a fuzzy relation between fuzzy coalitions. We denote its membership function by
δ : F(I)×F(I)→ [0, 1] but now, it is defined by

δ(L,M) = 1−max
i∈I

(
max

K,K′∈P(I)

(
min

(
(i)βL(K), (i)βM(K ′)

)))
, L, M ∈ F(I),

(11)
where L with βL andM with βM reflect the cooperation in L and M , respectively,
and (i)βL, (i)βM are defined by (7).

Let us note that this formulation represents a hybrid approach to the phenomenon
of disjointness in the sense that it is formally based on the fuzzy subsets of P(I) but,
as a consequence of the application of the structures of contacts (i)βL, it does not
contradict with the traditional interpretation of coalitions as (may be fuzzy) subsets
of I.

Theorem 2. If L, M are crisp then δ(L,M) = 1 iff L ∩M = ∅ and δ(L,M) = 0
iff L ∩M 6= ∅.

P r o o f . The statement follows from (11). If L, M are crisp, i. e., L, M ∈ P(I)
then, due to the first paragraph of Section 4, βL(L) = 1, βM(M) = 1 and βL(K) = 0,
βM(K) = 0 otherwise. Moreover, for all i ∈ L, (i)βL(L) = 1 and for all i ∈ M ,
(i)βM(M) = 1 and the values of (i)βL(·) and (i)βM(·) vanish in other cases. It means
that for disjoint L, M , always at least one of the values (i)βL(K), (i)βM(K) for any
K ∈ P(I) and any i ∈ I is equal to 0 and, consequently, δ(L,M) = 1. On the
other hand, if there exists i ∈ L ∩M then (i)βL(K) = (i)βM(K) = 1 for K = L and
K ′ = M and, consequently, δ(L,M) = 0. ¤

Then it is easy to modify formula (9) by means of modifying the condition of
disjointness and to define the fuzzy superadditivity as a fuzzy property of the TU-
games over the set of players I. We denote its membership function σI and define
it for a game (I, v) by

σI(v) = 1−max (δ(L,M) : L, M ∈ F(I), v(L ∪M) < v(L) + v(M)) , (12)

where the union L ∪ M is a fuzzy coalition with its own fuzzy subset L ∪ M ∈
F(P(I)) and βL∪M : P(I)→ [0, 1], reflecting the cooperation in L ∪M , practically
independent of βL and βM, and v is the extension of the characteristic function from
P(I) to F(I), again, analogously to (9) and with respect to (5).
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Remark 4. If L, M ∈ F(I) in (12) and L,M ∈ F(P(I)) reflecting their coop-
eration are such that min(βL(K), βM(K)) = 0 for all K ∈ P(I) then it is possible
(and, perhaps, natural) to use special expression

βL∪M(K) = max (βL(K), βM(K))/ 2, K ∈ P(I).

In accordance with (5), then

v(L ∪M) ≥
∑

K∈P(I)
βL∪M(K) · v(K).

Remark 5. Analogously to the previous case, it is easy to verify that for a
TU-game with only crisp coalitions the previous definition of fuzzy superadditiv-
ity corresponds with the classical deterministic one (cf. Lemma 5 and (2)).

4.1.c. Exclusively fuzzy subsets of P(I)

The last approach to the disjointness (and, consequently, superadditivity) of fuzzy
coalitions follows consequently from their representation by fuzzy subsets of the set
P(I). It means that their fuzzy disjointness keeps being a fuzzy relation, i. e., fuzzy
subset of F(P(I))×F(P(I)), with membership function δ∗ : F(P(I))×F(P(I))→
[0, 1], defined by

δ∗(L,M) = 1− max
K∈P(I)

[min (βL(K), βM(K))] (13)

for L,M∈ F(P(I)).
This definition of fuzzy disjointness essentially differs from the classical and in-

tuitively accepted one. Let us note, for illustration, that fuzzy coalition of 4 players
described in Example 1 as fuzzy subset of I, has several different representations by
fuzzy subsets of P(I). Many of them are completely disjoint in the sense of (13) i. e.
δ∗(·, ·) = 1, even if they represent the same fuzzy coalition in the sense of Section 3,
i. e., the values of δ(·, ·) and δ(·, ·) are equal to 0.

For this consequent acceptation of fuzzy coalitions from F(P(I)), also their union
and intersection gains completely different sense. Namely, for L,M ∈ F(P(I)),
L ∪M and L ∩M are from F(P(I)), too, and for any K ∈ P(I),

βL∪M(K) = max (βL(K), βM(K)) , βL∩M(K) = min (βL(K), βM(K)) . (14)

Except very special degenerated cases, the sums
∑

K∈P(I)
βL∪M(K) and

∑
K∈P(I)

βL∩M(K) (15)

are not equal to 1. With respect to Lemma 2 it means that they have no coun-
terparts in the class F(I). Consequently, in this model, we have definitely left the
environment of fuzzy coalitions extending the class of subsets of I by its fuzzy sub-
sets.

It is worth mentioning that for crisp K, K ′ such that there exists i ∈ I for which
i ∈ K and i ∈ K ′ (the crisp coalitions are not disjoint in the classical sense), but
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K 6= K ′, the intersection (16) is empty and L, M, where βL(K) = 1, βM(K ′) = 1,
and βL(·), βM(·) vanish for other coalitions are fuzzy disjoint in the sense that
δ∗(K,K ′) = 0.

Meanwhile the disjointness is a property of the inter-coalitional relation, the su-
peradditivity is to respect also specific properties of the characteristic function v.
Till now, we have considered v as a mapping v : P(I)→ R extended to v : F(I)→ R
by means of (5). In this subsection, where we consider fuzzy subsets of P(I), i. e.,
fuzzy sets from F(P(I)) for the main representation of coalitional cooperation, it is
desirable to extend v also on the mapping v : F(P(I))→ R.

Let us stress the fact that the consistency of this extension with the original
characteristic function v : P(I)→ R is desirable.

Let us consider a fuzzy set of crisp coalitions L ∈ F(P(I)) with membership
function βL : P(I)→ [0, 1]. Then we define the value

v(L) = max {v(K) · βL(K) : K ∈ P(I)} . (16)

Remark 6. It is easy to see that if the fuzzy set L is formed by a single possible
crisp coalition K ∈ P(I), where βL(K) = 1, βL(K ′) = 0 for K ′ 6= K, K ′ ∈ P(I),
then evidently v(L) = v(K).

Let us note that (16) is not the single possibility of extension of v on the set
F(P(I)). The alternative approach, extending v into a fuzzy function, is considered
in [12].

Even in this model the definition of fuzzy superadditivity preserves the classical
pattern, and it is defined as a fuzzy property of TU-games with membership function
σ∗I such that for any (I, v) the value σ∗I (v) denoting the possibility that (I, v) is
superadditive is defined by

σ∗I (v) = 1−max (δ∗(L,M) : L,M∈ F(P(I)), v(L ∪M) < v(L) + v(M)) . (17)

In this formula, the consequent and formally pure definition of union by (15) enables
to define the value of v(L ∪ M) (rather similarly to (5)) by the formula used in
Remark 4.

The procedure described in this subsection has some evident discrepancies. Their
roots consist in the fact that this model of fuzzy coalition as a fuzzy subset of
P(I) separates that notion from the natural demand due to which even the fuzzy
coalition is to be a set of players, in some sense extending the crisp coalition model.
It means that it is to characterize the distribution of each player’s endeavor among
the coalitions in which he participates. This demand is not respected. For example,
even if L,M∈ F(P(I)) fulfil the statement of Lemma 3 and for some i ∈ I

∑
K∈P(I)

(i)βL(K) ≤ 1,
∑

K∈P(I)

(i)βM(K) ≤ 1

the union of both fuzzy coalitions need not respect that limitation, and then
∑

K∈P(I)

(i)βL∪M(K) > 1,
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in such case, player i ∈ I distributes more of his “energy” than he disposes with.
Nevertheless, the approach used in [11] follows from 4.1.c with some modifications

reflecting the individual motivation of particular players, and the monotonicity of
the pay-off function for the fuzzy coalitions.

4.2. Convexity of fuzzy coalitions

If we are to fuzzify the concept of convexity (cf. (3)), the situation is rather simpler,
as the convexity is not conditioned by anything like disjointness. On the other hand,
the problems regarding the unrealistic analytical properties of L ∪M and L ∩M
for L,M∈ F(P(I)) meant in Subsection 4.1.c, keep significant even for the concept
of convexity. As there is no fuzzy disjointness, it is possible to treat the convexity
of TU-game with fuzzy coalitions analogously to the method used in 4.1.a and to
compare it with analogy to 4.1.c.

Then we say that TU-game with fuzzy coalitions from F(I) is convex if for every
L, M ∈ F(I)

v(L ∪M) + v(L ∩M) ≥ v(L) + v(M), (18)

where

τL∪M (i) = max (τL(i), τM (i)) , τL∩M (i) = min (τL(i), τM (i)) . (19)

Remark 7. It can be easily seen that L∪M and L∩M are fuzzy coalitions from
F(I), it means that (5) can be used for them, and the above formula (18) is correct.

The above definition (18), (19) is a weakening of more sophisticated concept of
convex game introduced in [2]. Namely, the Butnariu’s definition better reflects
the intuitively demanded monotonicity of marginal contributions of any coalition.
In fact, for a great majority of applications, the version suggested in [2] is more
realistic.

The alternative approach based on the assumption that L,M ∈ F(P(I)) is
connected with the discrepancies analogous to those mentioned in Subsection 4.1.c.
They follow from the concepts of L∪M and L∩M given by (16) and their paradoxical
properties.

Nevertheless, these discrepancies were overcome in [11], where they were com-
pensed by some other significant modifications of the model. In this paper, we limit
our attention to the (more complicated) concept of superadditivity (depending on
the disjointness) which sufficiently illustrates the differences between the presented
models.

5. CONCLUSION

The definition of fuzzy coalition as a fuzzy subset of the class of all crisp coalitions
is, itself, formally correct, and it can be closely connected with the fuzzy coalitions
defined as fuzzy sets of players. Anyhow, their further processing closely analogous
to the processing of the fuzzy coalitions from F(I) leads to some paradoxes, mostly
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following from the attempts to manage the concepts of union and intersection of
such fuzzy coalitions.

The acceptance of the alternative model of fuzzy coalition given here and in [11]
does not mean that its further development can follow without alternatives. We
have tested three of them on the very basic concept of superadditivity. It is obvious
that all of them are in certain limits possible but each of them is connected with
formal problems demanding other and more essential interventions in the model. The
methodological principles presented here in Subsection 4.1.c were further developed
in [11] and the results are quite optimistic. They appear to be an adequate reflection
of the realistic cooperation with vague participation in coalitions.

Anyhow, the definition of the fuzzy coalitions as fuzzy subsets of the class P(I)
appears inspirative and perspective. It effectively extends the existing model and
brings its new interpretations, and it also offers a qualitatively new view at the
structure of fuzziness in cooperative behaviour. Hence, it appears to be an interesting
topic of the further development of the theory of TU-games with fuzzy coalitions.

The above paper is consequently formulated in the terms of “classical” fuzzy set
(and fuzzy quantities) theory, not using the formalism of triangular norms and co-
norms. Some of the definitions and results can be essentially extended if the concepts
of the t-norms theory are used, e. g., in (8) and (18), instead of the classical tools.

(Received September 26, 2007.)
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[12] M. Mareš and M. Vlach: Alternative representation of fuzzy coalitions. Internat. J.
Uncertainty, Fuzziness and Knowledge–Based Systems, submitted.

[13] J. Rosenmüller: The Theory of Games and Markets. North Holland, Amsterdam 1982.



Disjointness of Fuzzy Coalitions 429
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