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The paper deals with a new stochastic optimization model, named OMoGaS–SV (Op-
timization Modelling for Gas Seller–Stochastic Version), to assist companies dealing with
gas retail commercialization. Stochasticity is due to the dependence of consumptions on
temperature uncertainty. Due to nonlinearities present in the objective function, the model
can be classified as an NLP mixed integer model, with the profit function depending on
the number of contracts with the final consumers, the typology of such consumers and the
cost supported to meet the final demand. Constraints related to a maximum daily gas
consumption, to yearly maximum and minimum consumption in order to avoid penalties
and to consumption profiles are included. The results obtained by the stochastic version
give clear indication of the amount of losses that may appear in the gas seller’s budget and
are compared with the results obtained by the deterministic version (see Allevi et al. [2]).
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1. INTRODUCTION

Starting in 1999 the Italian Natural Gas market has been undergoing a liberaliza-
tion process aiming at promoting competition and efficiency, while ensuring adequate
service quality standards. Timings and methods for the internal gas market liber-
alization have been introduced following the European Gas Directive; the roles of
different segments of the natural gas “chain” have been identified and defined, such
as import, production, export, transportation and dispatching, storage, distribution
and sale. In particular, the principle has been introduced of unbundling between
supply and transport/storage and between distribution and selling. Before liber-
alization there was a national monopolistic operator, for all activities related to
supply, transport, storage and wholesale commercialization, and local monopolistic
operators, for distributing and selling to final consumers. After liberalization the
following operators run different activities:
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• shippers: production/import, re-gasification and wholesale commercialization;

• national distributor: transport on national network and storage;

• local distributors: transport on local network;

• selling companies: purchase gas from shippers and sell to final consumers.

In 2003 the Italian Regulatory Authority for Electricity and Gas, see [9], defined
consumption classes, on the basis of gas consumption in the thermal year, and
introduced a new gas tariff, in order to guarantee small consumers’ protection by
applying the transparency principle in the pricing mechanism. The new tariff is
based on a detailed splitting in different components, whose values are periodically
revised, and represents a maximum price to be applied to small consumers.

In a previous paper, see Allevi et al. [2], a deterministic optimization model has
been developed to assist companies dealing with retail commercialization. For each
citygate, the gas seller has to decide the customer portfolio, i. e. the number of final
customers to supply in each consumption class, and the sell prices to apply to each
consumption class. Indeed, different customer portfolios determine different citygate
consumption patterns, which shippers refer to when setting the gas price to be paid
by the gas seller for the citygate supply. For each thermal year and each citygate
there is a contract between shipper and gas seller setting:

• the gas volume required by gas seller for next thermal year;

• the gas volume required in winter months;

• the maximum daily consumption (capacity) requested by the gas seller;

• the purchase price fixed by the shipper.

In the contract it is also specified how to compute penalties, due by the gas seller if
daily consumption exceeds daily capacity.

In this paper we introduce stochasticity in the model due to the influence of
temperature on consumptions. For domestic customers, using gas either only for
cooking or for cooking and heating, and for commercial activities and small indus-
tries, gas consumption in winter months strongly depends on weather conditions. A
first simple model to take into account this fact has been introduced in Allevi et al.
[3]; here we propose a mean reverting process modelling temperature. This model
is presented in Section 2. In Section 3 the two-stage stochastic optimization model,
named OMoGaS-SV, is described and in Section 4 numerical results related to a
case study are reported and discussed.

2. THE STOCHASTIC TEMPERATURE MODEL

In this section we introduce a stochastic model describing the temperature variations
along the months in a year time. We strictly refer to the model introduced by Alaton
et al. [1]. We start with some definitions about temperature:
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Definition 1. Given a weather station, let Tmax
t and Tmin

t denote the maximum
and the minimum temperatures (in Celsius degrees) measured in day t, respectively.
We define the mean temperature of day t as

Tt =
Tmax
t + Tmin

t

2
. (1)

Definition 2. Let Tt denote the mean temperature of day t. We define Heating
Days Degree (HDDt: measure of cold in winter) and Cooling Days Degree (CDDt:
measure of heat in summer) respectively as

HDDt = max {18− Tt, 0} , (2)
CDDt = max {Tt − 18, 0} . (3)

For a given day HDD and CDD are the numbers of degrees of deviation from a
reference temperature level in Bergamo (18◦C). The name “Heating Days Degree”
refers to the fact that if temperature is below 18◦ C people tend to use more energy
to heat their homes; the name “Cooling Days Degree” refers to the fact that if
temperature is above 18◦ people start turning their air conditioners on. Typically
the HDD season is from November to March, whereas the CDD season is from May
to September. April and October are often referred to as “shoulder months”.

We have a database of temperatures measured in Bergamo in the last 12 years
(1/01/1994 – 30/11/2005). The database consists of daily minimum and maximum
temperatures, from which average daily temperatures are computed using (1). Due
to the cyclical nature of the temperature process we find that historical data give
a reasonable idea of the temperature level in the future. We have plotted the daily
mean temperatures at Bergamo for the 12 years (see Figure 1); it is evident that
the temperature process is mean stationary and variance stationary so it should be
a mean reverting process, reverting to some cyclical function. However, because
temperature process is evidently not deterministic, we must consider the presence
of noise. Looking at the histogram of the daily temperature differences in Bergamo
(1994 – 2005), it shows a good fit with the corresponding normal distribution, though
the frequency of small differences in daily mean temperature is underestimated. This
is the reason which brings us to choose the Brownian Motion as model of temperature
process.

In order to model the temperature behavior, we first consider a Vasicek process
with mean reversion through the following stochastic differential equation:

dTt = a (ϑ− Tt) dt+ σdWt , (4)

where Tt is the process to be modelled, a ∈ R is the speed of mean reversion, ϑ
the mean to which the process reverts to (constant), σ the volatility of the process
(constant) and Wt is the Wiener process.

For the temperature process we need a ϑ = ϑ (t) = ϑt, a = a (i) = ai and
σ = σ (i) = σi as functions changing over the months but constant in each month i.
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Then our process becomes

dTt = ai (ϑt − Tt) dt+ σidWt . (5)

Thus, we need to determine a functional form for ϑt and estimates for ai and σi
from historical data. In Dornier and Queruel [10], it is shown that the process found
in (5) is not reverting to ϑt; to obtain a process that really reverts to the mean we
have to add the term ϑ

′
t to the drift term in (5) so that the equation becomes

dTt =
[
ai (ϑt − Tt) +

dϑt
dt

]
dt+ σidWt . (6)

The proof of reversion to the mean can be found in the Appendix.

2.1. The mean temperature ϑt

By observing the plot of the temperature data measured in Bergamo in the last 12
years (see Figure 1), we note a strong seasonal variation. Following Alaton et al. [1]
we first assume a deterministic model ϑt for the mean temperature at time t, given
by the function

ϑt = A+Bt+ C sin (ωt+ ϕ) , (7)

where t is the time measured in days, ϕ is a phase angle due to the fact that the yearly
minimum and maximum mean temperatures do not necessarily occur at January 1
and July 1 respectively, ω = 2π/365 is the frequency of oscillation and the linear
part corresponds to a linear warming trend. Equation (7) can be rewritten as

ϑt = A+Bt+ C [cos (ϕ) sin (ωt) + sin (ϕ) cos (ωt)] . (8)

In order to estimate the parameters in (8), a change of variables is operated and the
constants are renamed as follows





A = a1

B = a2

C cos (ϕ) = a3

C sin (ϕ) = a4

(9)

or equivalently




A = a1

B = a2

C =
√
a2

3 + a2
4

ϕ = arctan
(
a4
a3

)
− π

(10)

and we obtain
ϑt = a1 + a2t+ a3 sin (ωt) + a4 cos (ωt) . (11)

The numerical values of the parameters in (11) are computed by the least squares
method, i. e. is computed the parameter vector ξ = (a1, a2, a3, a4) that solves

min
ξ
‖ϑ−X‖2 , (12)
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where ϑ is the vector whose elements are given by (11) and X is the data vector.
By using the series of 4323 observations of the historical daily temperatures we get





A = 13.33
B = 6.8891 · 10−5

C = 10.366
ϕ = −1.7302.

(13)

In Figure 1 we can see a comparison between the observed temperatures and those
estimated by using the deterministic approach given by ϑt in the years 1994 – 2005.
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Fig. 1. Comparison between daily average temperature and estimated mean temperature

ϑt according to formula (7) at Bergamo in the years 1994 – 2005.

There may be some criticism towards the sinusoidal model (7) as the real annual
cycle of temperature shows some signs of asymmetry. An alternative deterministic
model ϑt can be considered: according to (7) and (13), the temperature increase
is about 0.025◦ C per year and can be thus ignored (only one year scenarios are
generated). Hence the deterministic model ϑt (t are days) can be considered as a
365-periodic function. The following simple model can be chosen for ϑt: subscript
i = 0, 1, . . . , 12, 13 refers to past December, present January, February, . . . , Decem-
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ber, next January; di is the middle point of month i, Ti, i = 1, . . . , 12, is the average
of month i temperature obtained by averaging the real data over years 1994 – 2005;
define T0 = T12 = T13 = T1; connect points

[
di, Ti

]
, i = 0, . . . , 13 by cubic interpo-

lation splines, getting thus (one period of) ϑt. This ϑt may be handled in the same
way as ϑt given by (7), i. e., may be plugged into (15) (model ϑt may be adjusted so
that Ti and monthly mean values based on the model coincide).

Looking at Figure 2 we observe that the cubic interpolation spline and the sinu-
soidal function based on averaged month i, i = 1, . . . , 12, temperatures show quite
similar graphs, which, in fact, represent the average behaviour of the empirical data.
The Figure gives a clear evidence that the rather different (monthly or daily) input
data make a sensible difference in the output. Nevertheless, being the improvement
using splines limited, we prefer to use the sinusoidal model (7) based on daily data
suggested by Alaton et al. [1].
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Fig. 2. Comparison over one year among cubic interpolation spline, sinusoidal function,

both based on averaged month i, i = 1, . . . , 12; temperatures obtained by averaging the

real data over years 1994 – 2005, and sinusoidal function based on daily data.
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2.2. Estimation of σi

For the estimation of the volatility σi we follow the same approach as in Alaton et
al. [1], where the quadratic variation σ2

i of temperature is assumed to be different
along the months in the year, but nearly constant within each month. Because only
the mean value of temperature in each month is needed, it is not necessary to use
a more elaborate model. For this reason σi is assumed to be a piece-wise constant
function, with a constant value during each month. A crude estimator is based on
the quadratic variation of Tt (see Basawa and Prasaka Rao [4])

σ̂2
i =

1
Ni

Ni−1∑

t=0

(Tt+1 − Tt)2
, (14)

where Ni denotes the number of days of month i and t = 0 refers to the last day of
the previous month.
The estimator that will be used in the sequel is derived by discretizing (6) and
using the discretized equation as a regression equation. During a given month i, the
discretized equation is

Tt = ϑt − ϑt−1 + aiϑt−1 + (1− ai)Tt−1 + σiεt−1 t = 1 . . . Ni , (15)

where {εt}Ni−1
t=1 are independent standard normally distributed random variables.

Thus, an efficient estimator of σi is (see Brockwell and Davis [6]),

σ̂2
i =

1
Ni − 2

Ni∑

t=1

(Tt − (ϑt − ϑt−1)− âiϑt−1 − (1− âi)Tt−1)2
, (16)

where âi is estimated in the following section. In Table 1 for each month i the
estimator of σi based on the quadratic variation, the one based on the regression
approach and their mean value are reported.

2.3. Estimation of speed of reversion

According to Bibby and Sorensen [5], based on observations collected during Ni days
of month i, an efficient estimator âi of ai is the zero of the martingale function given
by

G (ai) =
Ni∑

t=1

ḃ (Tt−1; ai)
σ2
i,t−1

{Tt − E [Tt|Tt−1]} , (17)

where ḃ (Tt−1; ai) denotes the derivative with respect to ai of the drift term

b (Tt, ai) =
dϑt
dt

+ ai (ϑt − Tt) . (18)

In order to obtain the solution of (17), we have to determine each of the terms
E [Tt|Tt−1]; thus, if we take again the process developed in (6) for a given month i
and integrate between day (t− 1) and day t in month i, we find

Tt = ϑt + e−ai (Tt−1 − ϑt−1) + e−ait
∫ t

t−1

σse
aisdWs , (19)



284 F. MAGGIONI, M. T. VESPUCCI, E. ALLEVI, M. I. BERTOCCHI AND M. INNORTA

Table 1. The estimators of σi based on the quadratic variation

and the regression approach and their mean value.

Month Estimator 1 Estimator 2 Mean Value
January 1.6508 1.6196 1.6352
February 1.5415 1.5515 1.5465

March 1.7455 1.7209 1.7332
April 1.8480 1.8305 1.8393
May 1.8142 1.8013 1.8078
June 1.9871 1.9765 1.9818
July 1.7605 1.7298 1.7452

August 1.6305 1.6402 1.6354
September 1.4805 1.4674 1.4739
October 1.3831 1.3905 1.3868

November 1.5062 1.4933 1.4998
December 1.4912 1.4899 1.4906

which yields
E [Tt|Tt−1] = e−ai (Tt−1 − ϑt−1) + ϑt , (20)

because the expected value of an Itô integral is zero.
By substituting (20) in (17) we find

GNi (ai) =
Ni∑

t=1

ḃ (Tt−1; ai)
σ2
t−1

[
Tt − ϑt − e−ai (Tt−1 − ϑt−1)

]
, (21)

from which we obtain

âi = − log




∑Ni
t=1

ϑt−1−Tt−1

σ2
t−1

(Tt − ϑt)
∑Ni
t=1

ϑt−1−Tt−1

σ2
t−1

(Tt−1 − ϑt−1)


 . (22)

Inserting the data of temperatures and the estimator σ̂ given by (14), we find the
estimator âi. In Table 2 the values of the estimator âi in the twelve months are
reported.

2.4. Generation of temperature scenarios

In this section we consider the problem of generating temperature scenarios. Using
Euler approximation scheme, we discretize equation (6) obtaining

Tt = ϑt − ϑt−1 + aiϑt−1 + (1− ai)Tt−1 + σiεt−1 , (23)

where {εt}364
t=1 are independent standard normally distributed random variables. Fig-

ure 3 shows both the evolution of a simulated trajectory of the estimated temperature
and its mean ϑt, while Figure 4 gives the evolution of 10 scenarios of temperatures.
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Table 2. The estimator âi
based on the formula (22).

Month Estimator âi
January 0.2707
February 0.2055

March 0.2017
April 0.1755
May 0.3079
June 0.2364
July 0.3051

August 0.2559
September 0.2666
October 0.1594

November 0.183
December 0.1969

0 50 100 150 200 250 300 350 400
−5

0

5

10

15

20

25

30

35

days

te
m

pe
ra

tu
re

 

 
simulation by Monte Carlo method
sinusoidal model

Fig. 3. Simulation of sample path of temperature estimated by Monte Carlo method

according to eq. (23) and estimated mean temperature ϑt according to the sinusoidal

model (7).

The following notation is used:

• Ts ∈ R365 is the vector of random variables along scenario s, s = 1, . . . , N
which we have obtained using a mean reverting process; the component T st
represents the daily average heating days degree for day t, t = 1, . . . , 365 along
scenario s;
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Fig. 4. 10 scenarios of temperature estimated by Monte Carlo simulation

according to eq. (23).

• Due to the fact that the consumption data are monthly data, we generate
monthly temperature scenarios from the vector Ts by averaging. Tms repre-
sents the monthly temperature scenario s, whose component Tms

i represents
the monthly heating days degree for month i, i = 1, . . . 12 along scenario s;

• T̄mi =
∑N
s=1 Tm

s
i

N
for i = 1, . . . , 12, is the expected value over all scenarios of

the random variable Tms
i ;

• ∆s ∈ R12 is the vector of distances of monthly heating degree days from its
expected value along scenario s, s = 1, . . . , N , i. e. ∆s

i := Tms
i − T̄mi , i =

1, . . . , 12, s = 1, . . . , N ;

• ps is the probability related to each scenario s, s = 1, . . . , N ; we assume equal
probability, i. e. ps = 1

N , s = 1, . . . , N .
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3. THE STOCHASTIC OMOGAS–SV MODEL

In the literature (see Brooks [7], Eydeland and Wolyniec [11], Ermoliev and Wets
[12] and Ruszczynski and Shapiro [13]) stochastic approaches in the gas market deal
mainly with the scheduling of development of gas fields, the use of gas storage and
the gas delivery problem.

The stochastic version of our model, which can be classified as a two-stage stochas-
tic program with recourse, uses the temperature ∆ as source of uncertainty. The
consumptions of the first six classes of consumers are considered as dependent on
temperature variations along the months.

The following notations are used:

• I = {i = 1, . . . , 12} is the set of month indices, with i = 1 corresponding to
July and i = 12 corresponding to the following June;

• J = {j = 1, . . . , 10} is the set of consumer class indices;

• S = {s = 1, . . . , N} is the set of scenario indices;

• csij is the consumption of consumer j, j = 1, . . . , 6, in month i ∈ I along
scenario s ∈ S

csij = C̄ij + Cij∆s
i , j = 1, . . . , 6, i ∈ I, s ∈ S , (24)

where C̄ij is the average consumption of consumer j in month i ∈ I; for
j = 7, . . . , 10 the consumption does not depend on temperature and therefore

cij = C̄ij , j = 7, . . . , 10, i ∈ I ; (25)

• vasj is the annual volume of gas for consumer j, j = 1, . . . , 6, along scenario
s ∈ S

vasj =
12∑

i=1

csij , j = 1, . . . , 6, s ∈ S , (26)

for j = 7, . . . , 10 the annual volume of gas is

vaj =
12∑

i=1

C̄ij , j = 7, . . . , 10 ; (27)

• vwsj is the winter volume of gas for consumer j, j = 1, . . . , 6, along scenario
s ∈ S

vwsj =
9∑

i=5

csij , j = 1, . . . , 6, s ∈ S , (28)

for j = 7, . . . , 10 the winter volume of gas is

vwj =
9∑

i=5

C̄ij , j = 7, . . . , 10 ; (29)
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• rsj is the ratio of winter gas consumption with respect to the total annual
consumption of consumer j, j = 1, . . . , 6, along scenario s ∈ S

rsj =
vwsj
vasj

, j = 1, . . . , 6, s ∈ S , (30)

for j = 7, . . . , 10 the ratio of winter gas consumption with respect to the total
annual consumption is

rj =
vwj
vaj

, j = 7, . . . , 10 ; (31)

• cdsij is the peak consumption per day of customer j in month i ∈ I for s ∈ S

cdsij = csij
γ

ti
, j = 1, . . . , 6, i ∈ I, s ∈ S , (32)

where ti is the number of days of the month i ∈ I and γ is a parameter given by
the Authority; we note that for industrial customers j = 7, . . . , 10 the formula
simplifies in

cdij = cij
γ

ti
, j = 7, . . . , 10 , i ∈ I ; (33)

• ncj are the first stage decision variables representing the number of consumers
of class j ∈ J , restricted to be nonnegative integers, subject to upper bounds,
ncj ,

0 ≤ ncj ≤ ncj , j ∈ J ; (34)

• cms
i is the citygate consumption of month i ∈ I along scenario s ∈ S

cms
i =

6∑

j=1

csij · ncj +
10∑

j=7

cij · ncj , i ∈ I, s ∈ S ; (35)

• cas is the gas volume to be purchased for supplying the citygate consumers
along scenario s ∈ S

cas =
12∑

i=1

cms
i , s ∈ S ; (36)

• xs is the citygate loading factor along scenario s ∈ S and g is the first stage
decision variable representing the maximum consumption per day above which
the gas seller has to pay a penalty

xs =
cas

365 · g , s ∈ S ; (37)

• lj is the loading factor of consumer j = 7, . . . , 10, lj = vaj
cdj ·365 , where cdj is

the maximum daily capacity of consumer j, cdj = maxi{cdij} ;
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• s+ s
ki , k = 0, 1, 2 are second stage decision variables along scenario s ∈ S

that represent the surplus of consumption in the peak day of winter month
i (i = 5, . . . , 9) with respect to gas availability given by the decision variable
g. These variables are used in computing the penalties by

∑9
i=5

∑2
k=1 µkis

+ s
ki

where µki is the unitary penalty in month i to be paid on the amount s+ s
ki .

The unitary penalty µ0i is zero and the surplus variables s+ s
ki must satisfy the

relations
0 ≤ s+s

0i ≤ π0i · g, i = 5, . . . , 9, s ∈ S , (38)

π0i · g ≤ s+s

1i ≤ π1i · g, i = 5, . . . , 9, s ∈ S , (39)

π2i · g ≤ s+s

2i , i = 5, . . . , 9, s ∈ S , (40)

where πki represents the width of penalizations classes k = 0, 1 (no upper
bound for class k = 2);

• cws is the citygate consumption in winter months along scenario s ∈ S

cws =
9∑

i=5

cms
i , s ∈ S ; (41)

• hs is the ratio of winter gas consumption with respect to total annual con-
sumption along scenario s ∈ S

hs =
cws

cas
, s ∈ S ; (42)

• P s is the purchase price to be paid by the gas seller to the shipper along
scenario s ∈ S: it is expressed as a linear function of xs, and is defined as

P s = QT +QS + q +m · xs, s ∈ S ; (43)

where q is the intercept and m is the slope; QT and QS are fixed by the Italian
Regulatory Authority;

• P ′j is the price to be paid by the first 6 classes of consumers and is defined as

P ′j = (CMP +QVD) · (1− αj) , (44)

where the values of CMP and QVD are fixed by the Italian Regulatory Au-
thority and cover raw material costs (production, importation and transport)
and retail commercialization costs respectively; αj is a parameter representing
possible discount fixed by the gas seller to be applied to consumer j;

• P ′′ sj is the price applied by the gas seller to consumer class j, j = 7, . . . , 10
along scenario s ∈ S

P ′′ sj = P s − βj ·
(

1− xs

lj

)
+ δj · (rj − hs) + λj , (45)

where βj and δj are constant values and λj is a possible recharge which can
be applied to the industrial consumer class j.
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We choose as objective function the expected value of the gas seller profit:

w = E




6∑

j=1

(P ′j · vasj · ncj) +
10∑

j=7

(P ′′ sj · vaj · ncj)

−P s · cas −
9∑

i=5

2∑

k=1

µkis
+ s
ki

]
. (46)

Notice that

• the expected value of revenues from the first six consumer classes is

E




6∑

j=1

(P ′j · vasj · ncj)


 =

6∑

j=1

(
P ′j ·

12∑

i=1

C̄ij · ncj
)

; (47)

• the expected value of revenues from the last four consumer classes is

E




10∑

j=7

(P ′′ sj · vaj · ncj)


 =

10∑

j=7

(
ncjE[P ′′ sj ] ·

12∑

i=1

cij

)
, (48)

being the industrial consumptions independent of temperature. Notice that

E
(
P ′′ sj

)
= E (P s)− βj ·

(
1− E

(
xs

lj

))
+ δj · (rj − E (hs)) + λj (49)

= QT +QS + q − βj + δjrj + λj +
(
m+

βj
lj

) N∑

s=1

xsps − δj
N∑

s=1

hsps ;

• the expected value of the costs is

E [P s · cas] (QT +QS + q)
12∑

i=1

E [cms
i ]

+
m

365 · g




E

[
12∑

i=1

(cms
i )

2

]
+ 2E




12∑

i,k=1

k>i

(cms
i ) (cms

k)






, (50)

where

E
[
(cms

i )
2
]

=
N∑

s=1

(cms
i )

2
ps ,
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and

E




12∑

i,k=1

k>i

(cms
i ) (cms

k)




=
N∑

s=1




12∑

i,k=1

k>i

(cms
i ) (cms

k)



ps ;

• the expected value of the penalties is

E

[
9∑

i=5

2∑

k=1

µkis
+ s
ki

]
=

N∑

s=1

(
9∑

i=5

2∑

k=0

µkis
+ s
ki

)
ps . (51)

The constraints of our stochastic problem are the following:

0 ≤ ncj ≤ ncj , j ∈ J , (52)

6∑

j=1

cdsij · ncj +
10∑

j=7

cdij · ncj − g ≤
2∑

k=0

s+s

ki , i = 5, . . . , 9, s ∈ S , (53)

0 ≤ s+s

0i ≤ π0i · g, i = 5, . . . , 9, s ∈ S , (54)

π0i · g ≤ s+s

1i ≤ π1i · g, i = 5, . . . , 9, s ∈ S , (55)

π2i · g ≤ s+s

2i , i = 5, . . . , 9, s ∈ S . (56)

Notice that the problem may also be formulated as a two-stage stochastic model with
recourse as follows:

max Eξ [f (x, y(∆))] , (57)

Ax = b , (58)

T (∆)x+Wy(∆) = h(∆) , (59)

x ≥ 0, y(∆) ≥ 0 , (60)

where ξ = (h (∆) , T (∆)) is a random vector influenced by random temperature
data. In our problem the first stage decision variables x involve:

• the number of customers ncj of class j ∈ J ;

• the daily capacity g above which the gas seller has to pay a penalty;

whereas the second stage decision variable y(∆) involves the surplus in consumption
in the peak day s+s

ki in winter month i. Furthermore the first stage constraint (58)
is represented by equation (52) and the second stage constraint (59) by equations
(53), (54), (55) and (56).
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4. RESULTS AND MODEL VALIDATIONS

In this section, we show the results of our stochastic model for a local gas seller
who has to decide the customer portfolio structure in a village in Northern Italy
(Sotto il Monte). The simulation is based on the data of thermal year 2004 – 2005
(for these data see Allevi et al. [3]). We have developed a simulation framework
based on ACCESS 97, for database management, on MATLAB release 12, for data
visualization, and on GAMS release 21.5, for optimization. In the GAMS framework
the DICOPT solver has been used for the nonlinear mixed integer optimization
problem. DICOPT solves a series of NLP subproblems by CONOPT2 and MIP
subproblems by CPLEX.

The relation between the purchase price P s and xs is estimated by the gas seller
through a linear regression using the data related to year 2004 – 2005 for all citygates
managed by the gas seller. The regression of P s values has also been tried on the
annual volume cas, hs and g but it has been found not significant. Indeed, the value
of R2-test (see e. g. Davidson [8]) with the regression on xs is 0.603, therefore not
highly significant. However, the introduction of non parametric regression, would
introduce a more complicated function in the model. On the other side, linear
regression is currently used by the gas seller in his simulations. In our case we use:

P s(xs) = QT +QS + 18.348− 3.866 · xs , (61)

where the intercept value is 18.348 and the slope value is −3.866; the values QT and
QS are given by the Italian Regulatory Authority: in our numerical experiments
QT = 2.4953171 Eurocent/Stm3 and QS = 0.63882 Eurocent/Stm3.

The relation between the consumption of consumer j, j = 1, . . . , 6, in month
i ∈ I along scenario s ∈ S, csij , and the deviation from mean value over scenarios,
∆s
i , is supposed to be linear, with intercept equal to C̄ij and the other coefficient

computed via a linear regression. The regression results seem to be significant for
all the consumers.

The model has been validated by running several tests both in the deterministic
(see Allevi et al. [2]) and in the stochastic case. The deterministic results are
reported in Table 3. For the stochastic model, we report the result obtained by
solving 10000 times the problem, each time with N = 50 scenarios randomly chosen
with the procedure described in section 2.4. The optimal values both in the function
and in the decision variables are stable. We report in Table 4 their average over 10000
trials.
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Table 3. Optimal values for citygate Sotto il Monte

in the deterministic case.

Profit 154265 Euro
P 19.67 Eurocent/Stm3

ca 4484406 Stm3

g 26399 Stm3

x 0.4654

Table 4. Average optimal values over 10000 simulations

for citygate Sotto il Monte in the stochastic case with N = 50.

Profit 152219 Euro
P 19.67 Eurocent/Stm3

ca 4484525 Stm3

g 26309 Stm3

x 0.4669

While in the deterministic case, the consumption surplus in January and February
is under 10 % and therefore no penalization has to be paid, in the stochastic case
a nonzero penalization is applied in scenarios with high variance in consumptions.
In fact the stochastic approach gives indications to the gas seller that in scenarios
with colder temperatures, he could face the possibility of a reduced profit due to
penalties. This solution, though, allows gas seller to have the same purchase price of
the deterministic case and therefore the same selling price for the industrial customer;
this means that industrial consumer is still very important and worthwhile to belong
to the retail seller’s portfolio.

To validate the model we analyze the sensitivity of solutions to different number
of scenarios. We have run 1000 and 10000 simulations with increasing number of
scenarios. In Figures 5 and 6 we report for each number of scenarios the average
optimal value over the corresponding number of simulations; we observe that the
optimal profit converges to a value between 152200 and 152210.

5. CONCLUSIONS

We have proposed a stochastic model for the management of a gas sale company
where the uncertainty is based on a mean reversion stochastic process for the evo-
lution of temperature; as the number of scenarios increases, the complexity of the
problem also increases: one further possibility is to devise a new algorithm that
decouples computation of g from all other decision variables so that the problem
becomes linear. Moreover, there exists a relation between purchase price p and in-
ternational price indices, since gas seller must choose the index of reference among
a certain number of admitted choices: it is possible to investigate the influence on
P of future variations of these indices to help gas seller in taking his decision.
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Fig. 5. Case of 1000 simulations: optimal profit value

as the number of scenarios increases.
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Fig. 6. Case of 10000 simulations: optimal profit value

as the number of scenarios increases.
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APPENDIX

Denoting with Ni the number of days of a specific month i, in order to prove that
the process found in (6) is mean reverting we set

Yt =

[
e
“Pi−1

k=1

RNk
0 akds

”
+
R t−Pi−1

k=1 Nk
0 aids

]
(ϑt − Tt) (A.1)

=
[
e(Pi−1

k=1 Nkak)+ai(t−
Pi−1
k=1)Nk

]
(ϑt − Tt) ,

then Itô’s formula implies

dYt =
[
e(Pi−1

k=1 Nkak)+ai(t−
Pi−1
k=1)Nk

] [ (
dϑt
dt

+ ai (ϑt − Tt)
)

dt (A.2)

−
(
ai (ϑt − Tt) +

dϑt
dt

)
dt− σtdWt] ,

hence

Yt − Y0 = −
∫ t

0

σs

[
e(Pi−1

k=1 Nkak)+ai(s−
Pi−1
k=1)Nk

]
dWs , (A.3)

that is
[
e(Pi−1

k=1 Nkak)+ai(t−
Pi−1
k=1)Nk

]
(ϑt − Tt)

= ϑ0 − T0 −
∫ t

0

[
e(Pi−1

k=1 Nkak)+ai(s−
Pi−1
k=1)Nk

]
σsdWs ,

but ϑ0 = T0 = C and thus

Tt = ϑt+e−[(Pi−1
k=1 Nkak)+ai(t−

Pi−1
k=1)Nk]

∫ t

0

[
e(Pi−1

k=1 Nkak)+ai(s−
Pi−1
k=1)Nk

]
σsdWs ,

(A.4)
from which we can see that the process reverts to its mean ϑt because the expected
value of an Itô Integral is zero.
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