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BOUND–BASED DECISION RULES
IN MULTISTAGE STOCHASTIC PROGRAMMING
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We study bounding approximations for a multistage stochastic program with expected
value constraints. Two simpler approximate stochastic programs, which provide upper and
lower bounds on the original problem, are obtained by replacing the original stochastic
data process by finitely supported approximate processes. We model the original and
approximate processes as dependent random vectors on a joint probability space. This
probabilistic coupling allows us to transform the optimal solution of the upper bounding
problem to a near-optimal decision rule for the original problem. Unlike the scenario tree
based solutions of the bounding problems, the resulting decision rule is implementable in
all decision stages, i. e., there is no need for dynamic reoptimization during the planning
period. Our approach is illustrated with a mean-risk portfolio optimization model.
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1. INTRODUCTION

Consider a sequential decision problem under uncertainty. Decisions are selected at
different stages indexed by h = 1, . . . ,H, and the uncertainty is given in terms of
two stochastic processes η = (η1, . . . ,ηH) and ξ = (ξ1, . . . , ξH). All random objects
(that is, random variables, random vectors, and stochastic processes) are defined on
some sample space (Ω,Σ, P ). They are consistently denoted in boldface, while their
realizations are denoted by the same symbols in normal script. We assume that the
random vectors ηh and ξh take values in RK and RL, respectively. The process
η will impact only the objective function, and ξ will influence only the constraints
of our decision problem. This convention is nonrestrictive since a random process
that appears both in the objective and the constraints can be duplicated in both η
and ξ.1 At stage h the decision maker has full information about the history of the
stochastic processes up to stage h but no (or only distributional) information about
the future from stage h+1 onwards. Hence, decisions xh selected at stage h represent

1However, common components of η and ξ will be treated differently in Section 3 when we
address their discretization.
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Fh-measurable random vectors valued in RN , where Fh is the σ-algebra generated
by η1, . . . ,ηh and ξ1, . . . , ξh. Since all random objects in this paper are defined on
(Ω,Σ, P ), the induced σ-algebras Fh are subsets of Σ. A similar statement holds for
all other σ-algebras to be introduced below. By construction, the decision process
x = (x1, . . . ,xH) is adapted to F = {Fh}Hh=1, that is, the filtration induced by the
data processes η and ξ. This property is usually referred to as non-anticipativity in
literature.

In this paper we study a class of multistage stochastic programs with expected
value constraints.

minimize
x∈X(F)

E (c(x,η))

s.t. E(fh(x, ξ) | Fh) ≤ 0 P -a. s. ∀h = 1, . . . , H
(P)

The objective criterion and the constraints in P are determined through a real-
valued cost function c : RH(N+K) → R and a sequence of vector-valued constraint
functions fh : RH(N+L) → RM for h = 1, . . . ,H. We can assume without loss
of generality that there are equally many decision variables and constraints in all
stages. Minimization in P is over a space of stochastic decision processes, which are
also referred to as strategies or policies. The set of admissible strategies is defined as

X(F) = {x ∈ ×Hh=1L∞(Ω,Fh, P ;RN ) |x(ω) ∈ X for P -a.e. ω ∈ Ω} ,

where X is a convex compact subset of RHN . In problem P the constraint functions
are required to be nonpositive in expectation (instead of pointwise), where expecta-
tion is conditional on the stagewise information sets. If some component functions
of fh depend only on x1, . . . ,xh and ξ1, . . . , ξh, then the corresponding conditional
expectations become vacuous, and we essentially face standard constraints that hold
pointwise. Expected value constraints are important for modelling the risk attitude
of the decision maker, e. g. through conditional value-at-risk constraints [28] or inte-
grated chance constraints [12]. They also have relevance in Markowitz-type portfolio
optimization problems which restrict the expectation of terminal wealth.

In the sequel, the following regularity conditions are assumed to hold:

(C1) c is convex in x, concave in η, and continuous;

(C2) there is a convex continuous function

f̃h : R(HN+1)×(HL+1) → RM with fh(x, ξ) = f̃h
(
(1, x)(1, ξ)>

)
,

and f̃h is constant in xi ξ
>
j for all 1 ≤ j ≤ i ≤ H, h = 1, . . . ,H;

(C3) X is convex and compact;

(C4) η and ξ are serially independent processes, and there are compact convex sets
Θ ⊂ RHK and Ξ ⊂ RHL with η(ω) ∈ Θ and ξ(ω) ∈ Ξ for P -a.e. ω ∈ Ω.

The conditions (C1) and (C2) are satisfied, for instance, by linear multistage stochas-
tic programs which have deterministic recourse matrices but random objective func-
tion coefficients, right hand side vectors, and technology matrices. The compactness
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requirement (C3) is nonrestrictive in practice since we want to solve P numerically.
Reasonable numerical solutions are always bounded. A similar comment applies to
condition (C4). The supports of η and ξ can always be compactified by truncating
certain extreme scenarios that have a marginal effect on the solution of P. The se-
rial independence requirement is for technical reasons. It can often be circumvented
by rewriting the original data process as a transformation of a serially independent
noise process. In this case, any serial dependencies are absorbed in the definition
of the cost and constraint functions.2 Notice that we do not require problem P to
have (relatively) complete recourse.

Following the lines of [21], we next introduce the set

Y (F) = {y ∈ ×Hh=1L1(Ω,Fh, P ;RM ) |y(ω) ≥ 0 for P -a.e. ω ∈ Ω} ,

which is interpreted as the set of all nonnegative integrable dual decision processes
y = (y1, . . . ,yH) adapted to F. By using Y (F) to dualize the explicit constraints
in P, we obtain an equivalent min-max problem without explicit constraints. This
statement is formalized in the following lemma.

Lemma 1. (Wright [31, § 4]) Under the conditions (C1) – (C3) we find

inf P = inf
x∈X(F)

sup
y∈Y (F)

E

(
c(x,η) +

H∑

h=1

yh · fh(x, ξ)

)
. (1)

Unless the support of (η, ξ) constitutes a finite subset of RH(K+L), problem P
constitutes an infinite-dimensional optimization problem, which is computationally
untractable. A simple way to address this problem is to replace the original data
processes by finitely supported approximate processes ηu = (ηu1 , . . . ,η

u
H) and ξu =

(ξu1 , . . . , ξ
u
H) of appropriate dimensions. The resulting approximate problem Pu can

be represented as
minimize
x∈X(Fu)

E (c(x,ηu))

s.t. E(fh(x, ξu) | Fuh ) ≤ 0 P -a. s. ∀h = 1, . . . , H,
(Pu)

where Fu = {Fuh }Hh=1 stands for the filtration generated by ηu and ξu, whileX(Fu) is
defined as the space of Fu-adapted primal decision processes valued in X. As before,
it proves useful to introduce a space Y (Fu) which contains all Fu-adapted dual
decision processes valued in the nonnegative orthant of RM . Notice that Lemma 1
also applies to problem Pu. This result will help us to clarify the relation between
the original and approximate stochastic optimization problems in Section 4 below.

2Besides the compact support and serial independence assumptions, we impose no further condi-
tions on the distribution of the data process. Although we require the cost and constraint functions
to be continuous in their arguments, the distribution of (η, ξ) can be discrete.
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2. DECISION RULES

In stochastic programming the original and approximate data processes are mostly
identified, while only their distributions are distinguished. In this mainstream view,
the stochastic program P is approximated by discretizing the underlying probability
measure, which is equivalent to generating a discrete scenario tree. A multitude of
different methods has been suggested to perform this kind of scenario generation.
Discrete approximate distributions can be constructed, for instance, by sampling
from the original distribution [16, 17, 18], by using concepts of numerical integration
[19, 25], by solving mass transportation problems [13, 14, 26, 27], or by solving certain
moment problems [3, 4, 5, 6, 7, 10, 15].

The method advocated in this paper adopts a radically different perspective in
that the original and approximate data processes are interpreted as two dependent
random vectors on a single probability space and not as a single random vector under
two alternative probability measures. Instead of specifying the marginal distribution
of (ηu, ξu) on RH(K+L), we prescribe its conditional distributions given the original
process (η, ξ). By using the product measure theorem [1, Theorem 2.6.2], this will
allow us to determine the joint distribution of the original and approximate processes
on R2H(K+L).

At first sight, it seems cumbersome to deal with the rather complex joint distri-
bution instead of simply focussing on the marginal distributions of the original and
approximate data processes. This objection appears particularly compelling since
only the marginal distributions of the approximate (original) data processes influence
the solution of the approximate (original) stochastic program. The joint distribution
is an artefact that has no ‘physical’ meaning. Nevertheless, we will argue below that
it can be very beneficial to have this joint distribution at our disposition. It pro-
vides a convenient way to transform optimal solutions of the approximate problem
to near-optimal solutions for the original problem.

It is frequently criticized that only the first-stage optimal solution of a scenario
tree-based stochastic program is implementable. The reason for this is that recourse
decisions are only available for a finite number of scenarios. Any scenario that ma-
terializes in reality will typically differ from all scenarios in the tree, and therefore
the scenario tree solution provides no guidelines on what to do in reality at stages
h = 2, . . . ,H. This difficulty can be overcome by using a rolling optimization scheme.
That is, the approximate stochastic program is solved repeatedly at all stages h over
a shrinking (or receding) planning horizon and conditional on the realizations of the
random data observed up to h. In each step of this procedure, only the correspond-
ing first-stage decision is implemented. Rolling optimization schemes of this type
have been evaluated e. g. by Kouwenberg [20] and Fleten et al. [8]. Notice that the
rolling optimization strategy is always implementable, while the optimal strategy of
the approximate problem (for h = 1) is generically not implementable. It should also
be emphasized that the solution of the approximate problem provides only limited
information about the expected cost of the rolling optimization strategy. The latter
could principally be estimated by sampling many paths of the data process (η, ξ),
evaluating the rolling optimization strategy along each path, and averaging the path-
wise cost over all samples. This involves solving H multistage stochastic programs
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for each sample, which quickly becomes computationally prohibitive. Therefore,
forecasting the expected cost of the rolling optimization strategy is at best difficult.
Observe that rolling optimization is practicable, however, if one focusses only on one
path of the data process (η, ξ), e. g. the path that materializes in reality.

In this paper we report on a simple method to transform the optimal solution
of the approximate problem (for h = 1) to a near-optimal solution for the original
problem. Like any admissible policy, this near-optimal solution can be represented in
feedback form, that is, as a measurable function of (η, ξ). In standard terminology,
such functions are referred to as decision rules. The decision rule obtained by our
methodology will turn out to be piecewise constant in η and piecewise polynomial
in ξ. We will further provide deterministic error bounds that estimate the opti-
mality gap associated with our decision rule. Like the rolling optimization strategy
mentioned above, our near-optimal decision rule is implementable in reality, that
is, it prescribes an admissible sequence of actions for each scenario of the original
data process. In contrast to the rolling optimization strategy, however, our decision
rule is determined by the solution of one single stochastic program. Therefore, its
expected cost (as well as the underlying cost distribution) can conveniently and ac-
curately be evaluated via Monte Carlo simulation. No reoptimization is necessary at
stages h = 2, . . . , H to achieve this. Our approach has the additional benefit that it
accommodates expected value constraints, which frequently arise when dealing with
risk functionals in the objective and or in the constraints. Moreover, our method is
even applicable to problems that fail to have relatively complete recourse.

A review and critical assessment of early results on decision rules in stochastic
programming is due to Garstka and Wets [11]. The use of parametric linear de-
cision rules has recently been proposed by Shapiro and Nemirovski [29] to reduce
the computational complexity of multistage stochastic programs. For similar rea-
sons, Thénié and Vial [30] suggest piecewise constant step decision rules, which are
obtained by using machine learning techniques. Mirkov and Pflug [24] construct
near-optimal decision rules for multistage stochastic programs that have complete
recourse and satisfy certain Lipschitz conditions.

3. DISCRETIZATION

As indicated in the previous section, ηu and ξu are constructed as finitely supported
stochastic processes on (Ω,Σ, P ), which are (nonlinearly) correlated with the original
processes η and ξ. For the following discussion we specify the underlying probability
space. Without loss of generality, we set Ω = R2H(K+L), let Σ be the Borel σ-algebra
on Ω, and define η, ξ, ηu, and ξu as the coordinate projections

η : R2H(K+L) → RHK , (η, ξ, ηu, ξu) 7→ η ,

ξ : R2H(K+L) → RHL, (η, ξ, ηu, ξu) 7→ ξ ,

ηu : R2H(K+L) → RHK , (η, ξ, ηu, ξu) 7→ ηu ,

ξu : R2H(K+L) → RHL, (η, ξ, ηu, ξu) 7→ ξu .
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Furthermore, we let P be the joint distribution of these stochastic processes. Note
that only the marginal distribution of η and ξ is a priori given through the specifica-
tion of problem P. In contrast, the conditional distribution of (ηu, ξu) given (η, ξ) is
selected at our discretion. Once we have specified this conditional distribution, the
joint distribution P of the original and approximate stochastic processes follows from
the product measure theorem [1, Theorem 2.6.2]. Strictly speaking, the probability
measure P is therefore partially unknown before we have specified the conditional
distribution of the approximate data processes. However, for the purposes of this
article it is perfectly acceptable to assume that P is known (or chosen appropriately)
already at the outset.

Our aim is to specify the distribution of (ηu, ξu) conditional on (η, ξ) in such a
way that the following relations are satisfied for suitable versions of the conditional
expectations, respectively.

E(x|F) ∈ X(F) for all x ∈ X(Fu) (2a)

E(y|Fu) ∈ Y (Fu) for all y ∈ Y (F) (2b)

E(ξu|F) = ξ (2c)

E(η|Fu) = ηu (2d)

Here, we use the shorthand notation F = FH and Fu = FuH , both of which are
sub-σ-algebras of Σ. Observe that the random parameters ξ and η and their dis-
cretizations are treated in a complementary manner in (2c) and (2d). The reason for
this is that the problem Lagrangian L(x, y; η, ξ) = c(x, η) +

∑H
h=1 y

>
h fh(x, ξ) is con-

vex in ξ while it is concave in η; see also the proof of Theorem 4 below. Furthermore,
we require the following inequality to hold for h = 1, . . . , H.

E(fh(x, ξu)|F) ≥ fh(E(x|F), ξ) P -a. s. for all x ∈ X(Fu) (3)

The relation (3) can be seen as a generalization of the conditional Jensen inequality
which applies to constraint functions subject to the assumption (C2). A general
approach to construct conditional distribution functions for ηu and ξu which guar-
antee the validity of (2) and (3) has been presented in [21, § 4]; see also [23, § 5].
Here, we will not repeat this construction in its full generality, but we will sketch
the underlying ideas.

To keep things simple, we consider first the one-stage case and assume that there
is only one random parameter in the constraints. Put differently, we assume that
H = 1, K = 0, and L = 1. By the regularity condition (C4), the real-valued random
variable ξ = ξ1 is supported in a compact convex set Ξ = [a, b] ⊂ R. The marginal
distribution of ξ is assumed to be given, see Figure 1. In contrast, the conditional
distribution of ξu given ξ is chosen with the aim to satisfy (2) and (3). Using an
educated guess, we require this conditional distribution to be supported on the two
extreme points of Ξ, and the two conditional probabilities are set to

P (ξu = a | ξ = ξ) =
b− ξ
b− a , and P (ξu = b | ξ = ξ) =

ξ − a
b− a ,
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a

a

b

b

ξ

ξu

marginal distr. of ξ

cond. distr. of ξu|ξ

marginal distr. of ξu

ξ−a

b−a

b−ξ

b−a

E(ξ)−a

b−a

b−E(ξ)
b−a

Fig. 1. Relation between ξ and ξu.

see Figure 1. By construction, the marginal distribution of ξu is concentrated to the
points a and b with unconditional probabilities

P (ξu = a) =
b− E(ξ)
b− a , and P (ξu = b) =

E(ξ)− a
b− a .

These probabilities play an important role in the well-known one-dimensional Ed-
mundson–Madansky inequality, see e. g. [2, p. 293], which follows as a special case
from Theorem 2 below. It is easy to verify that condition (2c) is satisfied since

E(ξu|F) = aP (ξu = a | ξ) + b P (ξu = b | ξ) = a
b− ξ
b− a + b

ξ − a
b− a = ξ P -a. s.

The conditions (2a) and (2b) are trivially satisfied for H = 1, and condition (2d)
becomes vacuous for K = 0. Thus, our construction of ξu is consistent with all
conditions (2).

Let us next consider the one-stage case with a one-dimensional random parameter
in the objective function only, that is, H = 1, K = 1, and L = 0. Condition
(C4) implies that the given marginal distribution of η is supported on a compact
convex set Θ ⊂ R. By a slight abuse of notation, the two extreme points of Θ
are again denoted by a and b, see Figure 2. Next, we construct the distribution of
ηu conditional on η. It will be convenient to let this conditional distribution be
supported on the single point E(η) with conditional probability equal to 1 for all
realizations of η. Thus, the marginal distribution of ηu is the Dirac distribution
concentrated at E(η), see Figure 2. By construction, we find

E(η|Fu) = E(η) = ηu P -a. s.,
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ηu

marginal distr. of η

cond. distr. of η
u|η

marginal distr. of η
u

E(η)

E(η)

1

Fig. 2. Relation between η and ηu.

which implies (2d). The conditions (2a) and (2b) are automatically satisfied in the
one-stage case, and (2c) becomes vacuous for L = 0. Thus, our construction of ηu

is consistent with all conditions (2).

ξ

ξu

η

ηu

Fig. 3. Refinement of discretization.

It is apparent from Figures 1 and 2 that the marginal distributions of ξu and
ηu can differ substantially from the marginal distributions of ξ and η, respectively.
Hence, the solutions of the original and approximate stochastic programs are likely
to differ as well. In order to improve the accuracy of the approximate solution,
we refine the construction of the conditional distributions. This can be achieved
by applying the basic construction on increasingly small subintervals of Ξ and Θ,
respectively.

In the special case H = L = 1 and K = 0 with Ξ = [a, b], for instance, we select
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an increasing sequence of real numbers a = a0 < a1 < · · · < aJ = b and set

P (ξu = aj | ξ = ξ) =





ξ−aj−1
aj−aj−1

for aj−1 ≤ ξ < aj ,

aj−ξ
aj+1−aj for aj ≤ ξ < aj+1,

0 otherwise,

for j = 0, . . . , J . As opposed to a simple two-point distribution, the marginal distri-
bution of ξu now exhibits J+1 discretization points. Thus, it bears more resemblance
to the marginal distribution of ξ, see the left panel of Figure 3. By using familiar
arguments, we can verify that the conditions (2) are still satisfied. Moreover, if the
diameters of all subintervals [aj−1, aj ] become uniformly small, then the L∞-distance
between ξu and ξ tends to zero.

In the special case H = K = 1 and L = 0 with Θ = [a, b], we also select real
numbers a = a0 < a1 < · · · < aJ = b and define the conditional distribution of ηu

through

P (ηu = µj | ξ = ξ) =

{
1 for aj−1 ≤ ξ < aj ,

0 otherwise,

where µi denotes the conditional expectation of η within the interval [aj−1, aj), see
the right panel of Figure 3. Again, the validity of (2) is preserved, while the shape
of the marginal distribution of ηu is improved. As the diameters of all subintervals
[aj−1, aj) become uniformly small, the L∞-distance between ηu and η converges to
zero.

We will not give details on how to construct the conditional distribution of
(ηu, ξu) in the general case K,L ≥ 0. A complete description is provided in [21,
§ 4]. We merely remark that the compact convex sets Θ ⊂ RK and Ξ ⊂ RL are cov-
ered by nondegenerate simplices. Moreover, the conditional distribution of (ηu, ξu)
given (η, ξ) = (η, ξ) is concentrated to some generalized barycenters of the sim-
plices covering Θ and to the vertices of the simplices covering Ξ. The corresponding
probabilities are piecewise constant in η and piecewise linear in ξ.

In the multistage case H ≥ 1, the relations (2a) and (2b) become restrictive. In
fact, the inclusion (2a) essentially means that the sets of random vectors {ηui , ξui }i≤h
and {ηi, ξi}i>h are conditionally independent given {ηi, ξi}i≤h for all stage indices
h. Conditional independence, in turn, follows from the serial independence of (η, ξ)
if (ηu, ξu) is constructed by using a ‘non-anticipative’ forward recursion scheme. The
inclusion (2b), on the other hand, is essentially equivalent to conditional indepen-
dence of {ηi, ξi}i≤h and {ηui , ξui }i>h given {ηui , ξui }i≤h for all h. Since the original
ξ process is serially independent, the generalized Jensen inequality (3) is satisfied if
the approximate process ξu is constructed in a non-anticipative manner; a formal
proof is provided in [23, § 5].

In summary, we argue that under the regularity conditions (C1) – (C4) it is possi-
ble to systematically construct approximate data processes ηu and ξu which satisfy
both (2) and (3). At the same time, the L∞-distance between (ηu, ξu) and (η, ξ)
can be made as small as desired. Furthermore, it can be shown that the marginal



Bound-Based Decision Rules in Multistage Stochastic Programming 143

distribution of (ηu, ξu) represents a ‘barycentric scenario tree’ in the sense of Frauen-
dorfer [9, 10]. A major benefit of the novel approach presented here originates from
the fact that we do not consider this scenario tree in isolation. Instead, the original
and approximate data processes are constructed as dependent random vectors on a
joint probability space. In the next section we will exploit this probabilistic coupling
to convert optimal solutions for the approximate problem Pu to implementable and
near-optimal decision rules for the original problem P.

Before we can elaborate our main approximation result, we introduce a second
pair of discrete stochastic processes ηl = (ηl1, . . . ,η

l
H) and ξl = (ξl1, . . . , ξ

l
H) which

are also defined as measurable mappings from (Ω,Σ, P ) to RHK and RHL, respec-
tively. As usual, we denote by F l = {F lh}Hh=1 the filtration generated by (ηl, ξl)
and set F l = F lH . It is possible to construct these approximate processes in such a
way that the following conditions are satisfied for some versions of the conditional
expectations, respectively.

E(x|F l) ∈ X(F l) for all x ∈ X(F) (4a)

E(y|F) ∈ Y (F) for all y ∈ Y (F l) (4b)

E(ξ|F l) = ξl (4c)

E(ηl|F) = η (4d)

Here, the function spaces X(F l) and Y (F l) are defined in the obvious manner.
Furthermore, we may require the following inequality to hold for h = 1, . . . , H.

E(fh(x, ξ)|F l) ≥ fh(E(x|F l), ξl) P -a. s. for all x ∈ X(F) (5)

The construction of ηl and ξl proceeds in complete analogy to the construction of
ηu and ξu. The only difference is that the roles of η and ξ are interchanged.

4. APPROXIMATION

In the remainder of this paper we assume that we are given a pair of discrete data
processes ηu and ξu subject to (2) and (3). We further assume that there are
discrete processes ηl and ξl satisfying the conditions (4) and (5). A new approximate
stochastic program P l is defined analogously to problem Pu: it is obtained from
the original problem P by replacing η and ξ with ηl and ξl, respectively. We also
substitute F l for the original filtration F. With these preparations, we now introduce
our central approximation result.3

Theorem 2. (Kuhn et al. [23, Theorem 5.5]) Assume that the approximate prob-
lems P l and Pu are solvable with finite optimal values. If xu solves Pu, then
x̂ = E(xu|F) is feasible in P and

inf P l ≤ inf P ≤ E(c(x̂,η)) ≤ inf Pu.
3Theorem 2 is inspired by Theorem 2 in Birge and Louveaux [2, § 11.1].
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P r o o f . We repeat the proof from [23] to keep this paper self-contained and to
illustrate the intuition behind the assumptions (2) – (5). Using Lemma 1 to refor-
mulate P as an unconstrained min-max problem, we find

inf P ≥ inf
x∈X(F)

sup
y∈Y (F l)

E

(
c(x,E(ηl|F)) +

H∑

h=1

E(yh|F) · fh(x, ξ)

)

≥ inf
x∈X(F)

sup
y∈Y (F l)

E

(
c(x,ηl) +

H∑

h=1

yh · fh(x, ξ)

)

= inf
x∈X(F)

sup
y∈Y (F l)

E

(
E(c(x,ηl)|F l) +

H∑

h=1

yh · E(fh(x, ξ)|F l)
)
.

Here, the first inequality is a direct consequence of (4b) and (4d). The second
inequality follows from the conditional Jensen inequality, which applies since the
cost function is concave in its second argument, while x and ξ are F-measurable.
Finally, the equality in the third line follows from the law of iterated conditional
expectations and uses the fact that y is F l-measurable. Next, we have

inf P ≥ inf
x∈X(F)

sup
y∈Y (F l)

E

(
c(E(x|F l),ηl) +

H∑

h=1

yh · fh(E(x|F l), ξl)
)

≥ inf
x∈X(F l)

sup
y∈Y (F l)

E

(
c(x,ηl) +

H∑

h=1

yh · fh(x, ξl)

)
,

where the first inequality holds by (5) and the conditional Jensen inequality. Note
that the cost function is convex in its first argument and that the approximate
process ηl is F l-measurable. The second inequality is due to (4a). So far, we have
therefore shown inf P l ≤ inf P.

Observe now that xu ∈ X(Fu), which implies via (2a) that E(xu|F) ∈ X(F).
This justifies the first inequality in

inf P ≤ sup
y∈Y (F)

E

(
c(E(xu|F),η) +

H∑

h=1

yh · fh(E(xu|F), ξ)

)

≤ sup
y∈Y (F)

E

(
E(c(xu,η)|F) +

H∑

h=1

yh · E(fh(xu, ξu)|F)

)
(6)

= sup
y∈Y (F)

E

(
c(xu,η) +

H∑

h=1

yh · fh(xu, ξu)

)
.

The second inequality is based on (3) and the conditional Jensen inequality, while
the equalityuses the law of iterated conditional expectations and the fact that y is
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F-measurable. Another application of the conditional Jensen inequality then yields

inf P ≤ sup
y∈Y (F)

E

(
c(xu,E(η|Fu)) +

H∑

h=1

E(yh|Fu) · fh(xu, ξu)

)

≤ sup
y∈Y (Fu)

E

(
c(xu,ηu) +

H∑

h=1

yh · fh(xu, ξu)

)

= inf
x∈X(Fu)

sup
y∈Y (Fu)

E

(
c(x,ηu) +

H∑

h=1

yh · fh(x, ξu)

)
.

The second inequality holds by (2b) and (2d), which entails a relaxation of the dual
feasible set. The last line in the above expression can easily be identified as inf Pu,
which is finite by assumption. Hence, the supremum over Y (F) in the first line of (6)
is finite, too, and it is attained by the trivial strategy y = 0. The primal strategy
x̂ = E(xu|F) is therefore feasible in P, and its objective value E(c(x̂,η)) satisfies
the postulated inequalities. ¤

Theorem 2 addresses the following fundamental problem in stochastic program-
ming: if the support of (η, ξ) is infinite (or of finite but large cardinality), then the
original stochastic program P is computationally untractable (or extremely hard to
solve). In such situations, Theorem 2 provides an a priori estimate for the minimal
expected cost achievable in reality, that is, the optimal value of problem P. This
estimate is expressed in terms of upper and lower bounds, which are typically com-
putable since they are given by the optimal values of two finite-dimensional convex
optimization problems.4 Notice that the solutions of P l and Pu depend only on the
marginal distributions of (ηl, ξl) and (ηu, ξu), respectively. The relations between
these processes and the original data process, on the other hand, do not affect the
approximate solutions.

A typical decision maker is not only interested in estimating the optimal value
of P, which is attained by some unknown ideal strategy, but even more in finding a
computable strategy whose objective value comes close to the theoretical optimum.
A naive guess would be that the optimal solutions of P l and or Pu might constitute
near-optimal solutions for P. However, these strategies are not even feasible in P
since they are confined to a relatively small scenario set (that is, the support of
the approximate data processes). Theorem 2 resolves this dilemma by proposing a
policy x̂ which is implementable for all scenarios (that is, the support of the original
data processes) and whose expected cost is bracketed by inf P l and inf Pu. Here, we
exploit the stochastic interdependence of (η, ξ) and (ηu, ξu) to transform the optimal
solution xu of Pu to a feasible near-optimal solution x̂ of P. Note that E(c(x̂,η))
represents the expected cost which is achieved in reality by implementing x̂.

Since x̂ constitutes an F-measurable random vector, there is a Borel measurable
decision rule ρ̂ : RH(K+L) → RHN such that x̂ = ρ̂(η, ξ). The decision rule ρ̂ assigns

4In applications, the cost and constraint functions are frequently linear or convex quadratic. In
these cases, and given enough storage space and processing power, the finite-dimensional approxi-
mate problems Pl and Pu can be solved by linear or quadratic programming algorithms.



146 D. KUHN, P. PARPAS AND B. RUSTEM

a

a

b

b

ξ

ξu

ρ̂(ξ)

cond. distr. of ξu|ξ

ρu(ξu)

ρu(b)

ρu(a)

Fig. 4. Decision rules.

to each scenario (η, ξ) ∈ RH(K+L) a sequence of H actions in RN . Similarly, since xu

constitutes an Fu-measurable random vector, there is a Borel measurable decision
rule ρu which has the same domain and range as ρ̂ and satisfies xu = ρu(ηu, ξu).
Note that only the restriction of ρu to the support of the approximate data processes
has physical meaning. Moreover, the value of ρu for any realization of (ηu, ξu) can
easily be read off from the solution xu of Pu. The implementable decision rule ρ̂,
on the other hand, is only given implicitly in terms of a conditional expectation of
xu. Since xu is finitely supported, evaluation of ρ̂(η, ξ) reduces to the evaluation
of a finite sum, which is computationally cheap. For the further argumentation,
we let {(ηuj , ξuj )}Jj=1 be the finite support of (ηu, ξu). Furthermore, we introduce
conditional probabilities

puj (η, ξ) = P
(
(ηu, ξu) = (ηuj , ξ

u
j ) | (η, ξ) = (η, ξ)

)

for all scenarios j = 1, . . . , J , where (η, ξ) is any point in the support of (η, ξ).
Observe that these conditional probabilities are known. In fact, we prescribed them
ourselves when specifying the approximate data processes, see Section 3. The value
of ρ̂ at point (η, ξ) thus amounts to

ρ̂(η, ξ) =
J∑

j=1

puj (η, ξ)ρu(ηuj , ξ
u
j ) .

Figure 4 illustrates how to obtain ρ̂ in the special case H = L = 1, K = 0, and
Ξ = [a, b]. To keep this example as simple as possible, we assume that the support
of ξu contains only the extreme scenarios a and b, which are indexed by 1 and 2,
respectively. By construction, pu1 (ξ) decreases linearly from 1 to 0 as ξ increases
from a to b. At the same time, the conditional probability pu2 (ξ) increases linearly
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from 0 to 1, see Section 3. Assume now that the optimal solution of the approximate
problem Pu prescribes the actions ρu(a) and ρu(b) in scenarios a and b, respectively.
Then, the decision rule ρ̂ linearly interpolates the optimal decisions ρu(a) and ρu(b)
for all ξ ∈ [a, b].

It is easy to visualize that the decision rule ρ̂ will be piecewise linear if the dis-
cretization of ξ is refined as in the left panel of Figure 3. One also easily verifies
that the decision rule ρ̂ will turn out to be piecewise constant in the special case
H = K = 1 and L = 0. In the general multistage case with H ≥ 0 and K,L arbi-
trary, the conditional probabilities puj (η, ξ) are piecewise constant in η and piecewise
polynomial in ξ.5 This property is inherited by the decision rule ρ̂.

In conclusion, it is worthwhile to remark that the gap between the upper and
lower bounds in Theorem 2 converges to zero as the discretizations of the data
processes are suitably refined, see e. g. [22, 23]. At the same time, the expected
cost of the implementable strategy x̂ converges to the optimal value of the original
problem P. Note also that the expected cost of x̂ can conveniently be calculated by
Monte Carlo simulation.

5. EXAMPLE: MEAN–RISK PORTFOLIO OPTIMIZATION

Expected value constraints are a central element of mean-risk portfolio selection
models. Therefore, such models are ideal candidates to illustrate our methodologies.
We consider a market of L stocks which can be traded at time points 0 = t1 <
· · · < tH = T .6 For each h the L-dimensional random vector ξh characterize the
price relatives of the stocks over the interval from th−1 to th. The price relative of
a stock over a certain period is given by the ratio of terminal price to initial price.
By convention, we denote by ξ = {ξh}Hh=1 the process of price relatives and let
F = {Fh}Hh=1 be the filtration generated by ξ. Next, we specify the decision variables.
We set w±h = (w±1,h, . . . ,w

±
L,h), where w−l,h denotes the capital invested in asset l at

time th before portfolio rebalancing, while w+
l,h denotes the capital invested in asset

l at time th after reallocation of funds. Moreover, we set bh = (b1,h, . . . , bL,H) and
sh = (s1,h, . . . , sL,H), where bl,h and sl,h represent the amounts of money used at
time th to buy and sell stocks of type l, respectively. With these conventions, we
can now formulate the problem of minimizing portfolio risk subject to a performance
constraint.

minimize CVaRα(e>w−1 − e>w−H)

s.t. E(e>w−H) ≥ γ e>w−1
w+
h = w−h + bh − sh 1 ≤ h < H

(1 + cb) e>bh = (1− cs) e>sh ”
w−h+1 = ξh+1¯w+

h ”

w−h ,w
+
h , bh, sh ≥ 0, Fh-measurable ”

(P ′)

5In the multistage case, the puj (η, ξ) are products of H stagewise conditional probabilities, which

are all piecewise constant in η and piecewise linear in ξ, see [21, § 4].
6For notational convenience, will sometimes use an additional time point t0 = 0.
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The parameter γ represents the return target over the investment period, cb and
cs denote the transaction costs per unit of currency for sales and purchases of the
stocks, respectively, and ‘¯’ denotes the entrywise Hadamard product. Moreover,
the constant vector w−1 characterizes the initial portfolio. To measure risk, we use
the conditional value-at-risk (CVaR) at level α ∈ (0, 1). Rockafellar and Uryasev
[28] have shown that if L is some random variable representing ‘loss’, then

CVaRα(L) = inf
β∈R

{
β + (1− α)−1 E(L− β)+

}
. (7)

In our case, loss corresponds to the difference between initial and terminal portfolio
value. By using the representation (7), problem P ′ can be brought to the standard
form P. One can easily verify that this problem satisfies the regularity conditions
(C1) – (C4) if the price relatives are bounded and serially independent.
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Fig. 5. Approximate efficient frontiers.

Our computational example is based on a market model with L = 5 assets and
H = 4 monthly investment intervals. The stock returns {ξh}Hh=1 are assumed to
be independent and identically distributed. In particular, the monthly log-returns
follow a truncated multivariate normal distribution with mean values 0.41 %, 0.82 %,
1.19 %, 1.60 %, 1.99 % and standard deviations 8.5 %, 8.0 %, 9.5 %, 9.0 %, 10.0 %.
The correlations are set to 30% uniformly over all pairs of stocks. We aim at solving
mean-risk portfolio problems of the type P ′ with α = 95% and for different values
of the return target parameter γ. We start from a regular reformulation P of P ′
and construct upper and lower bounding problems Pu and P l, respectively. The
construction of these bounding problems goes along the lines of Sections 3 and 4.
Unlike P, the approximate problems allow for numerical solution. By solving them
for different values of γ, we can trace out two closely aligned efficient frontiers in the
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risk-return plane, see Figure 5. Theorem 2 guarantees that these upper and lower
approximate frontiers bracket the true efficient frontier. Moreover, all portfolios
corresponding to decision rules ρ̂ in the sense of Section 4 lie also between the
approximate frontiers in the risk-return plane. Note that these decision rules are
computable and implementable in reality, while the solutions of Pu and P l are
not implementable, and P is not directly solvable. The risk associated with the
decision rules was estimated via Monte Carlo simulation. The number of sample
paths (5× 106) was chosen to guarantee that the standard error of the estimator is
smaller than 0.001%.
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