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COUNTING NUMBER OF CELLS AND CELL
SEGMENTATION USING ADVECTION–DIFFUSION
EQUATIONS
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We develop a method for counting number of cells and extraction of approximate cell
centers in 2D and 3D images of early stages of the zebra-fish embryogenesis. The ap-
proximate cell centers give us the starting points for the subjective surface based cell seg-
mentation. We move in the inner normal direction all level sets of nuclei and membranes
images by a constant speed with slight regularization of this flow by the (mean) curvature.
Such multi-scale evolutionary process is represented by a geometrical advection-diffusion
equation which gives us at a certain scale the desired information on the number of cells.
For solving the problems computationally we use flux-based finite volume level set method
developed by Frolkovič and Mikula in [3] and semi-implicit co-volume subjective surface
method given in [1, 5, 6]. Computational experiments on testing and real 2D and 3D
embryogenesis images are presented and the results are discussed.
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1. INTRODUCTION

In this paper we describe an application of the geometrical advection-diffusion equa-
tions to extraction of the important information from 2D and 3D embryogenesis
images. Namely, we develop a method for counting number of cells in 2D and
3D images and consequently for extraction of approximate cell centers. The ap-
proximate cell centers give the starting points for the subjective surface based cell
segmentation.

Either 2D or 3D nuclei or membranes images taken by a multi-photon laser mi-
croscopy at early stages of zebra-fish embryogenesis are represented by the image
intensity functions, which we denote u0

n in case of nuclei and u0
m in case of mem-

branes. Although nuclei and membranes images are color (either red or green in our
case, cf. Figure 1), only one of the color channels is nonzero. So both u0

m, u
0
n can be

understood as a scalar functions from an image domain Ω, Ω ⊂ R2 or Ω ⊂ R3 to R
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Fig. 1. 2D images of nuclei (left,red) and membranes (middle,green) taken by

multi-photon laser microscopy. Combination of both images (right) showing the structure

of cells in one particular 2D slice.

representing a “grey-level” image intensities. Without lost of generality we assume
that 0 ≤ u0

n, u
0
m ≤ 1.

The nuclei and membranes images have a specific feature that can be utilized for
our goals. Namely, nuclei are given by (highly noisy) humps of the function u0

n, and,
inner parts of cells bounded by cell membranes are given by (highly noisy) humps
of the function 1−u0

m, see Figure 1 and Figure 2 top raw. Both these functions can
be decomposed into level sets which can be further processed by properly designed
geometrical advection-diffusion equations. To reach our goals we construct the evo-
lutionary process (in the form of partial differential equation) which modifies their
level sets (and correspondingly the functions themselves) utilizing their geometrical
properties like direction of the normal vector field and the local curvature.

One can clearly observe that humps (representing either nuclei or inner part of
cells) in the functions u0

n and 1 − u0
m are composed by level sets with relatively

large diameter r1, 0 << c1 ≤ r1 ≤ c2, while diameter r2 of level sets representing a
noise is much smaller, close to zero, 0 < r2 << c1. In order to extract approximate
nucleus or cell centers we can evolve all level sets of u0

n or 1−u0
m in the inner normal

direction by a constant speed. In general, the level sets are either closed curves (in
2D images) or closed surfaces (in 3D images), and, if they are moving in direction of
inner normal vector field the encompassing area (volume) is decreasing and finally
they disappear. However, the level sets with a small diameter, representing a noise,
disappear (shrink) in a fast way, while level sets representing real image objects “live”
for much longer time during such evolution (they are observable in long time-scales).
Due to disappearing of the noise in a short scale we observe an intermediate state
of evolution as shown in Figure 2 middle raw. The initial function is evolving and
“filtered” (or denoised) due to shrinking of noisy level sets. It is also well-known
that if the evolution of curves or surfaces depends on the local (mean) curvature
then a speed of shrinking tends to infinity as diameter of level set tends to zero,
cf. e. g. [4]. This fact is used in the so-called “curvature filters”. So, in order to
even speed up denoising in the above mentioned mechanism we can use additional
slight dependence of the evolution of u0

n and 1− u0
m on the local curvature of their
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level sets. In such case the evolutionary process can be represented by a geometrical
equation

V = δ + µk , (1)

where the normal velocity V of any level set is given by a constant δ plus the mean
curvature k multiplied by a positive constant µ.

However, as mentioned above, we do not want to treat the level sets separately
but all at once. Then the so-called level set formulation of equation (1) is very useful
model [7]. It is given by the following geometrical advection-diffusion equation

∂tu = δ
∇u
|∇u| · ∇u+ µ|∇u|∇ ·

( ∇u
|∇u|

)
, (2)

which can be applied to the initial conditions u0
n and 1− u0

m, respectively. In both
cases during the evolution the solution is shrinking and smoothed as shown in Fig-
ure 2 or Figure 4. We can also observe that the number of local maxima is fast
decreasing in the beginning of the process, and, that there exists a period of time
(a range of scales) when this number is stabilized. Solving equation (2) numerically
(we explain our method in Appendix) we can find the number of local maxima and
their spatial positions in every time step. If we observe no decrease in the number of
local maxima in several subsequent time steps we stop the evolutionary process. The
positions of the local maxima at this time-scale give us the approximate nuclei and
cell centers. Counting of them give us an estimate on the number of cells in embryo-
genesis images. Applying this strategy to 3D image sequences can give us the rate
of growth of the number of cells, and, finding correspondences between approximate
cell centers can give us a specific representation of their morphogenesis. Moreover
the spatially precise cell segmentation can be done using membranes images by the
subjective surface method.

When the approximate cell centers are extracted we can construct automatically
an initial peak-like profile of a segmentation function for each cell. Then, in order
to extract the cell shapes, we can evolve every initial segmentation function using
the subjective surface equation [8, 9]

∂tu =
√
ε2 + |∇u|2∇.

(
g(|∇Gσ ∗ u0

m|)
∇u√

ε2 + |∇u|2

)
. (3)

Let us note that the equation can be solved in parallel for different (families of)
cells using a parallel computational strategies. Since the solution of the equation (3)
tends to a shock profile we can easily extract the cell boundary taking proper isoline
(in 2D) and isosurface (in 3D), cf. Figure 6. Equation (3) has similar structure as
the mean curvature part of the advection-diffusion equation (2). However, now the
mean curvature driven motion is influenced by the edge indicator function g(s) =
1/(1 + s2) applied to (a smoothed by the Gaussian kernel) intensity u0

m of the
membranes image. We are also free in choosing the parameter ε coming from the
Evans and Spruck regularization used in theoretical analysis of the mean curvature
flow models [2]. Here, the parameter ε shifts the model from the Riemannian mean
curvature flow of level sets of u (ε = 0) to the Riemannian mean curvature flow of
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the graph of u (ε = 1), cf. [9]. Let us note that the Evans and Spruck regularization
with small ε is used in denominators of equation (2) as well.

Since the equations (2) and (3) are both nonlinear geometric advection-diffusion
partial differential equations we use the same numerical strategies to solve them,
namely the semi-implicit finite volume schemes developed in [1, 3, 4, 5, 6]. Our
computational methods are presented in Appendix. In the next sections we discuss
their application to the cell number counting and segmentation.

2. EXTRACTION THE NUMBER OF CELLS
AND APPROXIMATE CELL CENTERS

Let us choose first a relatively good detail (260 × 260 pixels) of a 2D slice from
the zebra-fish embryogenesis image series. Majority of nuclei and membranes are
well observable and the membranes image corresponds well to the nuclei one, see
Figure 1. The graph of functions u0

n and 1−u0
m, respectively, are plotted in Figure 2

top. First, the function u0
n is used as initial condition and we applied equation

(2) using parameters δ = 1, µ = 0.0025 and ε = 10−3. In all our computations,
the spatial step (pixel/voxel size) is equal to 0.01 and here we chose the time step
τ = 0.0025. We stopped the evolutionary process when the number of local maxima
did not decrease in five subsequent time steps. In this experiment it occurred in 48th
time step and number of detected nuclei was equal to 51. The resulting solution is
plotted in Figure 2 middle left. The positions of detected approximate nuclei centers
are superimposed to greyscale image in Figure 2 bottom left. Next we applied the
same strategy to the function 1 − u0

m. In this case we used the same parameters
but µ = 0.025 (i. e., the result was obtained slightly increasing the mean curvature
flow type diffusion). The process was stopped in 62 time step and the number of
detected local maxima was 55. The resulting solution is plotted in Figure 2 middle
right. The positions of detected approximate cell centers are superimposed to the
greyscale image in Figure 2 bottom right.

Further example is given by 2D nuclei image with resolution 512 × 512 pixels
chosen from the more noisy series. We used parameters δ = 1, µ = 0.025, ε = 10−3

and τ = 0.0025. In this slice we detected 91 nuclei centers after 40 time steps, the
results are plotted in Figure 3.

In 3D case we first tested the method using an artificial 3D phantom image with
resolution 1003 voxels, see Figure 4 top. We built 125 spheres with centers located
on a grid inside the 3D image and with randomly generated radii from 4h to 10h,
where h is a voxel size. Then we added different type and level of noise and tested
number of spheres detected by the algorithm with very promising results. As an
illustration, in Figure 4 middle and bottom rows, we show experiment where we put
50 % additive noise to 50 % of randomly chosen voxels and salt-and-pepper noise
with range [0,0.5] to 10 % of randomly chosen voxels. 125 spheres were detected and
the evolution of solution in central slice is shown, where one can clearly see correct
25 local maxima after process stabilization. For the artificial 3D testing examples
we used parameters δ = 1, µ = 0.00125, ε = 10−3 and τ = 0.00125.

In the next real 3D example we consider volume containing 30 slices in z-direction,
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Fig. 2. Examples of detecting approximate nuclei and cell centers in 2D embryogenesis

images using the flux-based level set method applied to equation (2).
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Fig. 3. Another example of detecting approximate nuclei centers.

where each slice has a resolution of 512×512 pixels. One can see approximate nuclei
centers superimposed to isosurface visualization of 3D data set in Figure 5. The
visual inspection prove that number of found nuclei is very realistic. The parameters
of the method were δ = 1, µ = 0.00125, ε = 10−3, τ = 0.00125 and it was stopped
after 26 steps.

3. CELLS SEGMENTATION

Let us assume that si ∈ R2 (or R3), i = 1, . . . , S are the approximate cell centers
which have been detected. We start the cell segmentation first constructing the
initial segmentation function given as a peak centered in a “focus point” (one of
detected approximate cell centers) inside the segmented cell. Such function can
be described at a circle with center si and radius Ri by u0

i (x) = 1
|x−si|+v , where

si, i = 1, . . . , S is the focus point and 1
v gives maximum of u0

i , e. g. v = 1. Outside
the circle we take value u0

i equals to 1
Ri+v

. The choice of Ri depend on estimate
how large is a segmented cell. That can also restrict computation to a small image
subdomain and consequently speed up computation.

Then the initial function of every cell is evolved numerically solving equation (3)
using the semi-implicit co-volume subjective surface method described in Appendix.
By the model equation, the solution evolves to a “piecewise constant steady state”
which gives the result of the segmentation process. As the criterion to recognize the
“steady state” we check whether squared L2 norm of difference in solution between
subsequent time steps is less than a threshold δ. Reasonable choice of δ = 10−5 and
then our numerical scheme yields the segmentation results in few tens of time steps.
In Figure 6 we show 2D example of cell segmentation of the image presented in Fig-
ure 1. We show four final “steady states” of the solution to equation (3). To extract
the cell shapes we take level line of the final segmentation function which is slightly
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Fig. 4. Testing 3D example with 125 spheres of random radii (top), and graphs of image

intensity in the central slice at time 0 (middle left) and after 10 time steps (middle right),

20 time steps (bottom left), 30 time steps (bottom right), the process was stopped after

55 time steps when exactly 125 spheres were detected.
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Fig. 5. Detection of nuclei centers in 3D embryogenesis image.

bellow its maximum and we superimpose those level-lines onto the membranes image
for several cells. In 3D case one can use the same strategy, cf. [1].

4. COMPUTATIONAL METHODS

Both equations (2), (3) are considered in a polygonal (image) domain Ω ⊂ Rd,
d = 2 or d = 3, and in a time interval [0, T ]. In case of equation (2) we consider
zero Neumann boundary condition at ∂Ω while for (3) we prescribe zero Dirichlet
boundary condition. We assume that a finite volume mesh of polygonal subsets
Ωi ⊂ Ω, i = 1, . . . , I is given that covers Ω, i. e.,

Ω =
I⋃

i=1

Ωi , Ωi 6= ∅ , Ωi ∩ Ωj = ∅ , if i 6= j , (4)

and let ~ni = ~ni(γ) is the outward unit normal vector to ∂Ωi. In our image processing
application the polygonal mesh corresponds simply to image pixel/voxel structure
and the finite volumes are given as pixels/voxels of the image. The time interval
is also split into (uniform) subintervals [tn , tn+1], n = 0, 1, . . . , with time step τ :=
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Fig. 6. Segmentation of the cells in membranes image of embryogenesis. In the top we

see final states of segmentation function for four segmented cells. In the bottom we see

several contours representing segmented cells boundaries (including four from above).
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Fig. 7. Segmentation of the cell from 3D image of embryogenesis. On the left we plot the

isosurface representing the cell superimposed to the x− y image intensity slice, on the

right we show the cuts of the isosurface (two isocontours) together with image intensity in

the x− y and x− z cutting planes.

tn+1 − tn. One can split the boundary ∂Ωi to several segments Γij ,

∂Ωi :=
⋃

j∈Λi

Γij , Γij := ∂Ωi ∩ ∂Ωj , (5)

where the set Λi contains the indices of neighbouring cells Ωj of Ωi with Γij having
a nonzero measure in Rd−1. To introduce the finite volume discretization of (2), we
define the velocity field ~v = −δ ∇u|∇u| and the integrated fluxes

vij :=
∫

Γij

~ni(γ) · ~v(γ) dγ , (6)

and distinguish between the outflow and inflow boundaries Γij of ∂Ωi by defining the
sets of indices Λouti := {j ∈ Λi , vij > 0} , Λini := {j ∈ Λi , vij ≤ 0} . Integrating
the advective part ∂tu+~v ·∇u = 0 of equation (2), considering a piecewise constant
approximation uni of u in finite volumes Ωi and time intervals [tn , tn+1), applying
the upwind principle and the Green formula we get following finite volume scheme

un+1
i |Ωi| = uni (|Ωi| − τvi) +

∑

j∈Λini

unj τvji , (7)

with vi :=
∑
j∈Λini

vji denoting the total inflow flux.

For numerical solution of the diffusive part ∂tu = µ|∇u|∇ ·
(
∇u
|∇u|

)
of (2) as well

as for the evaluation of velocity field ~v in advective part and in discretization of
the subjective surface segmentation equation we use the so-called complementary
volume (co-volume) technique, see e. g. [3, 4], which is used to construct the finite
volume mesh from a finite element (FE) grid. Let T e ⊂ Ω, e = 1, . . . , E be a
mesh of finite elements for Ω (with the properties analogous to (4)), and let xi,
i = 1, . . . , I be the vertices of this grid. Further, let Ni = Ni(x) be the standard
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continuous finite element test functions that are polynomial for x ∈ T e and that
fulfill Ni(xj) = δij . In such a way, the FE interpolation û(tn, x) of the values uni can
be defined, û(tn, x) :=

∑I
i=1 u

n
i Ni(x), and the gradient of û(tn, x) is well defined for

x ∈ T e and is given by ∇û(tn, x) =
∑
k∈Λe u

n
k∇Nk(x) where the set Λe contains

all indices k such that xk ∈ T e. The complementary mesh of finite volumes (co-
volumes) that fulfills (4) can be constructed by defining Ωi around each vertex xi.
There exists some freedom in the construction of such vertex-centered finite volumes,
but the most common choice is the so called barycenter-based finite volumes. In 2D,
they are obtained by connecting the edge-midpoints of elements with the barycenter
of elements, and, analogically in 3D case. In our image processing applications
with rectangular pixels/voxels, the pixel/voxel centers correspond to the vertices of
the finite element grid and co-volumes constructed in such way around the vertices
correspond to pixel/voxel image structure. Let indices e ∈ Λij denote all elements
T e that contain the vertices xi and xj . Then, the boundary ∂Ωi of co-volume has
the form

∂Ωi :=
⋃

j∈Λi

⋃

e∈Λij

Γeij , Γeij := ∂Ωi ∩ ∂Ωj ∩ T e . (8)

We use the following notation for the gradient of u at xij ∈ T e, xij := 0.5(xi + xj),

∇eunij := ∇ûn|T e(xij) , (9)

and we define an approximate average gradient of u in a co-volume by

|∇uni | :=
1
|Ωi|

∑

j∈Λi

∑

e∈Λij

|Ωi ∩ T e|
2

|∇eunij |. (10)

Integrating equation (2) in the finite volume Ωi, and using the Green theorem, (9),
(10) and semi-implicit treatment of time stepping (which means that the nonlinear
terms are evaluated from the old time step while linear terms are taken on the new
time level), we end up with the following co-volume discretization scheme of diffusive
part

un+1
i |Ωi|+ τ µ |∇uni |

∑

j∈Λi

∑

e∈Λij

|Γeij |
~neij · ∇eun+1

ij

|∇eunij |
= uni |Ωi| , (11)

where ~neij denotes the outer unit normal to Γeij . Using boundary conditions, (11)
represents a linear system of equations which can be solved efficiently and for which
the discrete minimum-maximum principle is valid for our type of rectangular grids
and any length of time step τ .

Since the discretization of the advective and diffusive parts of the level set equa-
tion (2) can be realized on the same finite volume mesh given by the co-volume
method they are easy to combine. Such combination can be straightforwardly ex-
plained using the operator splitting procedure. The first step consists in solving the
advective part for a given result at time tn. The second step is realized afterwards
by taking the result of the first step and solving the diffusive part of (2). In such a
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way we get the flux-based level set method [3]

un+1
i |Ωi|+ τµ|∇uni |

∑

j∈Λi

∑

e∈Λij

|Γeij |
~neij · ∇eun+1

ij

|∇eunij |
= uni |Ωi|+ τ

∑

j∈Λini

unj v
n
ji − τvni uni ,

where vnij and vni are computed using ~v(x) = −δ ∇û
n(x)

|∇ûn(x)| , and the Evans and Spruck

regularization |s| ≈
√
ε2 + |s|2 is used in denominators.

Using the same strategy as deriving (11) we get the semi-implicit co-volume sub-
jective surface method [1] for approximation of equation (3)

un+1
i |Ωi|+ τ

√
ε2 + |∇uni |

∑

j∈Λi

∑

e∈Λij

|Γeij |g(|∇eIij |)
~neij · ∇eun+1

ij√
ε2 + |∇eunij |

= uni |Ωi| ,

where I is a finite element interpolation of nodal values ofGσ∗u0
m taken in pixel/voxel

centers. From Dirichlet boundary condition, the above scheme again represents
a uniquely solvable linear system of equations for which the discrete minimum-
maximum principle is valid for our type of rectangular grids and any length of
time step τ and which can be solved efficiently using preconditioned linear iterative
solvers.
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