
K Y B E R N E T I K A — V O L U M E 4 3 (2 0 0 7) , N U M B E R 4 , P A G E S 5 4 7 – 5 5 9

PIECEWISE APPROXIMATION
AND NEURAL NETWORKS

Martina Révayová and Csaba Török

The paper deals with the recently proposed autotracking piecewise cubic approxima-
tion (APCA) based on the discrete projective transformation, and neural networks (NN).
The suggested new approach facilitates the analysis of data with complex dependence and
relatively small errors. We introduce a new representation of polynomials that can pro-
vide different local approximation models. We demonstrate how APCA can be applied to
especially noisy data thanks to NN and local estimations. On the other hand, the new
approximation method also has its impact on neural networks. We show how APCA helps
to decrease the computation time of feed forward NN.

Keywords: data smoothing, least squares and related methods, linear regression, approx-
imation by polynomials, neural networks

AMS Subject Classification: 93E14, 93E24, 62J05, 41A10, 62M45

1. INTRODUCTION

Methods of approximation and the associated problems are of wide interest in data
analysis and information gain process. To address these problems diverse approaches
have been proposed. On one side there are the parametric methods, such as regres-
sion and splines [3, 7], and on the other side the nonparametric ones, such as wavelets
and neural networks (NN) that do not result in functional equations [4, 6].

The nature of dependence and accuracy of data points define the tools and tech-
niques the researchers can use. Recently a new approach to the analysis of com-
plex dependence with relatively small noise has been proposed [2]. The suggested
autotracking piecewise cubic approximation divides the interval/curve into subin-
tervals/segments of various lengths (stage 1) and gives a technique for obtaining
integral cubic approximants (stage 2). Finding the breakpoints in an autotrack-
ing mode and the iterative computation scheme of approximants are the two main
features of the proposed method that uses a special approximation model.

It is well known that if the measurements of a polynomial f(x) of degree p are
taken with equidistant step, then the difference ∆fk = fk+1−fk yields a polynomial
of degree p − 1, and the difference of second order ∆2fk is a polynomial of degree
p−2. We will see that the discrete projective transformation (DPT), based on which
APCA is developed, decreases the polynomial degree by two, regardless the step’s
character.

548 M. RÉVAYOVÁ AND Cs. TÖRÖK

The paper deals with APCA and NN. Our aim is to show that when one needs to
describe the dependence of strongly noised data with equations, APCA can be used
due to NN, too. But not only NN can help in applying APCA. We show how the
application of APCA results in speeding up the computation of certain types of NN.

Section two provides the definitions of the forward and the backward DPT and
some enhanced properties of the transformation. Its main result is the representation
theorem. Section three gives a brief introduction to APCA and the underlying
theory. The next section is devoted to neural networks. Part 5.1 shows how to
approximate noisy data based on NN and APCA. Here we use a new modified version
of APCA. The last part of the paper describes how to decrease the computation time
of NN.

The algorithms were implemented in Visual C# based on the component library
LinAlg described in [10].

2. DISCRETE PROJECTIVE TRANSFORMATION

The discrete projective transformation is a new operation, forward and backward,
over a continuous function defined by a formula or a table. The DPT was intro-
duced by N.D.Dikoussar [1]. The DP transformation of a function f(x) is defined
by two pivot points [x1, f(x1)], [x2, f(x2)] and the abscissa of a fix point [x0, f(x0)].
Although DPT is a four point transformation (the fourth one is [x, f(x)]), the equa-
tions and formulas of methods based on DPT use only three of them, [x0, f(x0)] is
absent [1, 2, 8, 9]. It is possible due to two further transformations. Before applying
the specified methods, the data points are shifted along the x axis the way that
the origin of the new coordinate system will be at x0. At the end of the process
the resulting data are transformed back to the original coordinates. There are two
main arguments for such a process. The formulae with three points are simpler and
computation with data scattered along zero may be in many cases preferable.

This section is devoted to a short description of DPT. The definitions are refor-
mulated and the enhanced results are derived using [x0, f(x0)]. The main benefit of
using formulas with [x0, f(x0)] is a straight proof of the representation theorem.

Definition 1. The forward DPT of any continuous function f(x) based on arbi-
trary two pivot points [x1, f(x1)], [x2, f(x2)] and x0 is given by

Df(x) = h0(x)f(x) + h1(x)f(x1) + h2(x)f(x2), (1)

where x0 6= x1 6= x2, x 6= x1 6= x2 and

h0(x) =
(x0 − x1)(x0 − x2)
(x− x1)(x− x2)

, h1(x) =
(x0 − x)(x0 − x2)
(x1 − x)(x1 − x2)

, (2)

h2(x) =
(x0 − x)(x0 − x1)
(x2 − x)(x2 − x1)

.

Remark 1. As we can see the Definition 1 does not use f(x0). The point [x0, f(x0)]
is a special one, its ordinate appears in the result of the transformation, see Lemma 1
and Theorem 1.

Piecewise Approximation and Neural Networks 549

Definition 2. The backward DPT of any continuous function f(x) based on arbi-
trary two pivot points [x1, f(x1)], [x2, f(x2)] and x0 is defined by

D−1Df(x) = p0(x)Df(x) + p1(x)f(x1) + p2(x)f(x2), (3)

where x0 6= x1 6= x2 and

p0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
, p1(x) =

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

, (4)

p2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

From (2) and (4) it follows that

p0(x) =
1

h0(x)
, p1(x) = −h1(x)

h0(x)
, p2(x) = −h2(x)

h0(x)
,

and
h0(x) + h1(x) + h2(x) = p0(x) + p1(x) + p2(x) = 1.

Hence and from the Definition 1 we get one of the main features of DPT, the linearity

D(af(x) + b) = h0(x)(af(x) + b) + h1(x)(af(x1) + b) + h2(x)(af(x2) + b)
= aDf(x) + b(h0(x) + h1(x) + h2(x)) = aDf(x) + b.

The properties of DP transformation with x0 = 0 are studied most detailed for power
functions and polynomials [8, 9]. Although we are dealing with cubic approximation
we give general formulas for power functions and polynomials of degree p ≥ 3.

From Definition 1 after some algebraic computations we get

Lemma 1. Let p be a nonnegative integer. The DP transformation of the power
function xp is

a) a constant for p = 0, 1, 2
Dxp = xp0,

b) a polynomial of degree p− 2 for p ≥ 3

Dxp = xp0 + z1(x)
p−3∑

i=0

Rix
p−3−i, (5)

where
z1(x) = (x− x0)(x1 − x0)(x2 − x0) (6)

and Ri =
i∑

k0=0

i−k0∑
k1=0

xk0
0 x

k1
1 x

i−k0−k1
2 , i ∈ Z+

0 .

550 M. RÉVAYOVÁ AND Cs. TÖRÖK

P r o o f . b) Let qi =
i∑

j=0

xj1x
i−j
2 = Ri − x0Ri−1. From the Definition 1 we obtain

Dxp = h0(x)xp + h1(x)xp1 + h2(x)xp2.

Since
h0(x)xp =

(x0 − x1)(x0 − x2)
(x− x1)(x− x2)

xp,

xp

(x− x1)(x− x2)
=

p−2∑

i=0

qix
p−2−i +

xp1
(x− x1)(x1 − x2)

− xp2
(x− x2)(x1 − x2)

,

and
(x0 − x1)(x0 − x2)
(x− x1)(x1 − x2)

xp1 −
(x0 − x1)(x0 − x2)
(x− x2)(x1 − x2)

xp2 + h1(x)xp1 + h2(x)xp2

=
x0 − x2

x1 − x2
xp1 −

x0 − x1

x1 − x2
xp2,

we get
Dxp = (x0 − x1)(x0 − x2)

p−2∑

i=0

qix
p−2−i

+
x0 − x2

x1 − x2
xp1 −

x0 − x1

x1 − x2
xp2 + xp0 − xp0

= xp0 + (x0 − x1)(x0 − x2)

(
p−2∑

i=0

qix
p−2−i +Rp−2

)
.

For the completion of the proof it is sufficient to mention that

(x− x0)
p−3∑

i=0

Rix
p−3−i =

p−2∑

i=0

qix
p−2−i +Rp−2. ¤

Notice the different use of xp0 in a) and b). In (5) the use of xp0 enables the
factorization, however it is canceled after simplification.

Let us denote the sum in (5) by

Ti(x) =
i∑

j=0

Rjx
i−j , i ∈ Z+

0 . (7)

The following two lemmas show that both Ri and Ti can be computed either by
recursion or as a dot product.

Lemma 2. Ri, i ∈ Z+
0 , can be computed

a) recursively
Ri = ri + x2Ri−1, R0 = 1,

b) as a dot product
Ri = (x0, x1, x2) ◦ (xi−1

0 , ri−1, Ri−1),or
Ri = (1, x2, . . . , x

i−1
2 , xi2) ◦ (ri, ri−1, . . . , r1, 1),

where ri = xi0 + x1ri−1, r0 = 1,

or ri = (1, x0, . . . , x
i−1
0 , xi0) ◦ (xi1, x

i−1
1 , . . . , x1, 1).

Piecewise Approximation and Neural Networks 551

Lemma 3. Ti(x), i ∈ Z+
0 , can be computed

a) recursively
Ti(x) = xTi−1(x) +Ri, T0(x) = 1,

b) as a dot product

Ti(x) = (1, x, . . . , xi−1, xi) ◦ (Ri, Ri−1, . . . , R1, 1).

Example 1. Let us see some examples of ri, Ri and the DP transformation of
power functions:

r1 = x0 + x1r0 = x0 + x1,

r2 = x2
0 + x1r1 = x2

0 + x1(x0 + x1),
R1 = r1 + x2R0 = x0 + x1 + x2,

R2 = r2 + x2R1 = x2
0 + x1(x0 + x1) + x2(x0 + x1 + x2),

Dx3 = x3
0 + z1(x) R0︸︷︷︸

T0(x)

,

Dx4 = x4
0 + z1(x) (R0x+R1)︸ ︷︷ ︸

T1(x)

,

Dx5 = x5
0 + z1(x) (R0x

2 +R1x+R2)︸ ︷︷ ︸
T2(x))

.

Lemma 1 and the linearity of D imply that D decreases the degree of a polynomial

Pp(x) =
p∑

i=0

aix
i

by two. The exact formula is given by

Theorem 1. Let p be a nonnegative integer. The DP transformation of a polyno-
mial Pp(x) is

a) a constant for p = 0, 1, 2
DPp(x) = Pp(x0),

b) a polynomial of degree p− 2 for p ≥ 3

DPp(x) = Pp(x0) + z1(x)
p∑

i=3

aiTi−3(x). (8)

P r o o f .

b) From Lemma 1 and linearity of D we get

DPp(x) =
p∑
i=0

aiD(xi) =
2∑
i=0

aiD(xi) +
p∑
i=3

aiD(xi)

=
2∑
i=0

aix
i
0 +

p∑
i=3

ai(xi0 + z1(x)Ti−3(x)) = Pp(x0) + z1(x)
p∑
i=3

aiTi−3(x). ¤

552 M. RÉVAYOVÁ AND Cs. TÖRÖK

Remark 2. The exact formulae for the DPT of power functions and polynomials
were given by Dikoussar and Török in [1] and [8], respectively. Their result is gained
under the assumption x0 = 0. The result in [8] differs from (8) in two additional
points: it uses matrices and a slightly different iterative schema for the computation
of Ti(x).

Example 2. From (8) we get

DP3(x) = P3(x0) + z1(x)a3,

DP4(x) = P4(x0) + z1(x)(a3 + a4T1(x)),
DP5(x) = P5(x0) + z1(x)(a3 + a4T1(x) + a5T2(x)).

Based on the backward DPT and the previous theorem we get a new representa-
tion of polynomials P = I + ZA

Theorem 2. Let p be an integer greater than or equals three. Then the polynomial
Pp(x) can be expressed in the form

Pp(x) = I(x) + Z(x)A(x), (9)

where

I(x) = p0(x)f(x0) + p1(x)f(x1) + p2(x)f(x2),
Z(x) = (x− x0)(x− x1)(x− x2),

A(x) =
p∑

i=3

aiTi−3(x). (10)

Before proving this result let us notice that I is a classical interpolating polyno-
mial, A is a polynomial of degree p− 3, and

I(x0) = f(x0), I(x1) = f(x1), I(x2) = f(x2),

Z(x0) = 0, Z(x1) = 0 and Z(x2) = 0.

P r o o f . Based on the backward DP transformation D−1, Theorem 1 and the
assumption about Pp we get:

Pp(x) = D−1(DPp(x)) = p0(x)DPp(x) + p1(x)Pp(x1) + p2(x)Pp(x2)

= p0(x)

(
Pp(x0) + z1(x)

p∑

i=3

aiTi−3(x)

)
+ p1(x)f(x1) + p2(x)f(x2)

= I(x) + p0(x)z1(x)A(x) = I(x) + Z(x)A(x). ¤

Piecewise Approximation and Neural Networks 553

3. APCA

The autotracking piecewise cubic approximation is based upon a cubic approxima-
tion model with a free parameter α

f ≈ I + Zα, (11)

proposed in [1, 2]. The right hands side of (11) is a particular case of the representa-
tion theorem. It is get from (9) for p = 3. Although one can leverage instead of the
single approximation parameter α more general approximants A given by (10), this
paper uses for modeling in place of the representation (9) of polynomials of degree
greater than three the simplest one (11).

The model (11) and its components are illustrated in Figure 1, where the poly-
nomial f(x) = −36 + 96x− 97x2 + 47x3 − 11x4 − x5 is approximated by the cubic
approximant C = I+Zα over the interval [x1, x2], x1 = 1.1 and x2 = 1.8. In addition
to f(x) and C(x), the functions I(x) and Z(x)α are also plotted (α = 4.38833) and
you can see their behavior in the arguments x0, x1 and x2. Although the role of x0,
x1, x2 can be played in the DPT by any three real different values, in APCA x1 and
x2 are associated with the left and right end of the given subinterval, respectively,
and x0 belongs to [x1, x2].

Fig. 1. Approximation by model f ≈ I(x) + Z(x)α.

The following codelines in MS Visual C# illustrate a fragment of the algorithm
of computation and plotting of the APCA approximant – notice that in addition to
the data X, Y one has also to provide information about the three pivot points:

xy = FileRead("XY.txt");
n = xy.RowsCount; // the count of points
apca = new IZA(xy, 0, (n-1)/2, n-1); // the indices of pivots
apca.YApproximant.Plot();

APCA has two stages. The first stage results in the subintervals and the second
one in the cubic approximants. The model

C(x) = I(x) + Z(x)α

554 M. RÉVAYOVÁ AND Cs. TÖRÖK

with a free parameter α, parabola I(x) and cubic parabola Z(x), is used in both
stages of APCA. The main task in stage 1 is to detect subintervals, over which
the function/data can be approximated by cubic polynomials. The estimation of α
is computed by a recursive least-squares method based on the model (11) and the
criterion for knot detection uses a control parameter δ, see [2] and also Section 5.

Once the right end of the interval is detected, an integral cubic approximant can
be constructed in various ways (stage 2). To ensure the continuity of two neighbour
approximants, splines can be used or once again the model (11). The nice feature of
the model is that it comprises both interpolation (I) and approximation (Zα). I(x)
is computed by the two endpoints of the interval and an arbitrary inner point, and
either the corresponding function values/measurements or their approximations. To
complete the construction of the integral estimation C(x) the unknown α can be
estimated for example by regression based on Y − I = Zα or by a method proposed
in [2].

4. FEED–FORWARD NEURAL NETWORKS

In the theory of NN the two most used methods for approximation and prediction
are feed forward neural networks (FFNN) and radial basis functions. We shortly
describe the former. Figure 2 depicts FFNN with n input neurons, one hidden layer
with h neurons, and m output neurons.

Fig. 2. Feed-forward neural network, n = 5, h = 3, m = 2.

The weighted input of the jth hidden neuron is computed as

uj = tj +
n∑

i=1

wijxi, j = 1, h,

where tj is the threshold value of the hidden neuron, wij are the weights of the
connections between neurons from neighbour layers, and xi is the ith input. A hidden
neuron transforms its weighted input by activation function. Nonlinear activation
functions for hidden layers may be e. g.:

Piecewise Approximation and Neural Networks 555

• ϕ(x) =
1

1 + e−x
standard sigmoid,

• ϕ(x) =
1− e−x
1 + e−x

hyperbolic tangent type.

The output of the jth hidden neuron can be written as

yj = ϕ(uj) = ϕ

(
tj +

n∑

i=1

wijxi

)
.

The activation functions for output neurons are mostly linear functions. The NN
from Figure 2 can be expressed by

yk = tk +
h∑

j=1

wjkyj = tk +
h∑

j=1

wjkϕ

(
tj +

n∑

i=1

wijxi

)
, k = 1,m.

Consider a set of training patterns T = {[xl,yl], l = 1, . . . , p}. Our aim is to
teach the NN based on the input xl = (x1, . . . , xn) and output yl = (y1, . . . , ym)
vectors from the training set, i. e. evaluate the estimations of weights and thresholds
w, t. The error function of NN is defined by

E(w, t) =
1
2

p∑

l=1

∥∥∥yl − ŷl
∥∥∥

2

,

where ŷl is the estimated output of NN for input xl. The weights and thresholds are
estimated by minimization of the error function. To detect the minimum of function
E(w, t) one can use the steepest descent method. The change in weights can be
expressed as

wij = wij − lr
∂E

∂wij
,

where lr is the learning rate.
In NN, approximation or prediction is made based on the gained estimations of

w, t and a new input vector x. How approximation based on NN and APCA works
is shown in the next part. We shall return to the activation functions in the last
part.

5. APCA AND NEURAL NETWORKS

5.1. Noisy data

The present section suggests a new approach to smoothing data by autotracked
piecewise splines based on the combination of NN, APCA and splines that result in
local estimates and smoothing, reducing the number of segments and cubic polyno-
mials, respectively.

Consider real data D = {[xi, yi+ εi] : i = 1, 211}, where x gives the slip and y the
resistance ratio P/Pexp, with non equidistant step that are strongly destroyed with

556 M. RÉVAYOVÁ AND Cs. TÖRÖK

errors, see Figure 3. Our aim is to express the functional dependence between x and
y. Regression polynomials of order 7 – 9 are either wavy or decline too rapidly at the
right end, see Figure 3. Instead of searching the functional dependence based on the
nonlinear regression let us look at the autotracking piecewise cubic approximation.
Since the pivot points of APCA may be sensitive to irregularities, before applying
APCA it is preferable either to use point estimations of the pivot points or smooth
the data. We will follow the second case.

Fig. 3. Polynomials of degree 8, 9.

There are several nonparametric smoothing techniques, such as wavelets, neural
networks or Friedmans’s SuperSmoother. For wavelet analysis there are few data
points, and since NN and the supersmoother are similar techniques, we decided for
NN.

The proper choice of the training data is a key moment in the learning process
of NN. Let us denote the training set by

T = {[xl,yl], l = 1, p},

where p is the count of the training patterns, xl = (xtl1 , . . . , xtlN) is the input to the
NN, yl = (ytl1 , . . . , ytlN) is the output and tlj is the coordinate index of the original
data, l = 1, p and j = 1, N . Notice that the lth training pattern can be simply
expressed by the vector of indices Tl = (tl1, . . . , tlN), where N < n is the length of
the training pattern (the number of input and output neurons). We selected the
indices of the training patterns (i. e. the training patterns themselves) based on sets
of indices Ij , j = 1, N

• with the same number of indices

• with different number of indices.

The investigation showed that training patterns with intervals of equal lengths
along the axis x (the second case) and p = 20 provided the most satisfactory smooth-
ing.

To get a function dependence we applied the polynomial regression once again,
however without acceptable result – the approximants remained wavy (we remind

Piecewise Approximation and Neural Networks 557

that NN does not result in functional equation – it is hidden in the topology of
NN and its parameters w and t). APCA reduced the number of segments to five
and the cubic splines constructed over them between the four verticals are shown in
Figure 4. The data points on the left are more dense, hence they are zoomed-in in
the right picture.

Fig. 4. NN-APCA-Spline approximant.

The overall process of executing the NN, APCA and construction of the spline
approximants illustrates the following fragment of codelines

nnArgs.intervalsNb = 21; nnArgs.trainSampNb = 20;
nnArgs.TD = Training.SamePointsNb;
nnArgs.delta = 0.008;
trDat = new Training(X, Y, nnArgs);

nnAppr = trDat.NNApprox();
apca = new Apca(nnAppr.X, nnAppr.Y, delta);
spline = Spline(X2, apca.SegmentEndX, apca.SegmentEndY);
spline.Plot();

5.2. Error free data

This section illustrates how the number of segments in APCA can be decreased
thanks to a new way of selecting the position of the inner pivot point [b, f(b)] and
how the computation time of NN can be reduced using APCA approximants for the
activation function.

The learning process of NN requires in some cases, such as pattern recognition
or prediction based on many thousand data points, heavy computation [5]. In these
cases every enhancement or modification that leads to the decrease of the computa-
tion time is valuable.

Feed forward neural networks by default use the computationally expensive acti-
vation function ϕ(x) = 1−e−x

1+e−x . We analyzed this function by APCA over intervals
[−2, 2] and [−8, 8] with two different choices for the pivot point b. As mentioned

558 M. RÉVAYOVÁ AND Cs. TÖRÖK

above, in APCA two of the pivot points, a and c (x0 and xm−1), form the endpoints
of the searched segment (a is fixed and c is moving to the right). From the compu-
tation point of view fixing a and b (= x1) is acceptable. However, as the analysis
revealed, putting b (= xm

2
for even m) to the center of the searched segment may

result in a smaller number of segments. Table shows the dependence of the segments’
number on the choice of the pivot point b, interval and δ.

Table. The number of segments detected by APCA.

[−2, 2] [−8, 8]
(δ = 0.02) (δ = 0.0015)

b = x1 1 5
b = xm

2
1 4

The computation of the APCA estimated (δ = 0.02, b = xm
2

) cubic polynomial
y = 0.489812381x − 0.028332611x3 for the interval [−2, 2] is more than six times
faster than the computation of the activation function. Although the computation
of the activation function is only a part of the FFNN, it is not a negligible result
when NN based computation takes several days. The computation time of the whole
FFNN after replacement of the activation function with the given cubic polynomial
requires by 5 percent less time.

6. CONCLUSION

In the first part of the paper a new representation of polynomials is given. Although
the paper uses only cubic model, the representation enables to use approximation
models of higher degree. The proof, based on the backward DPT, can be applied to
the derivation of more complex approximation models that incorporate additional
pivot points.

The second part is devoted to the neural networks and application of APCA. The
combination of NN, APCA and splines enabled us to develop a novel approach to
smoothing noisy data that consist of three steps: in the first step local estimations
are computed by NN in several points, in the second one the APCA is used to
reduce the number of the segments and in the third cubic splines are constructed.
This combined method gave the most satisfied result for the given data among the
methods considered in the paper.

ACKNOWLEDGEMENT

We thank A. Ďuricová and M. Rovňák for providing the data.

This work was partially supported by VEGA Grant 1/1006/04 9150 MŠ.

(Received March 23, 2006.)

Piecewise Approximation and Neural Networks 559

R E F E R E N C E S

[1] N. D. Dikoussar: Function parametrization by using 4-point transforms. Comput.
Phys. Comm. 99 (1997), 235–254.

[2] N. D. Dikoussar and Cs. Török: Automatic knot finding for piecewise-cubic approxi-
mation. Mat. Model. T–18 (2006), 3, 23–40.

[3] D. Kahaner, C. Moler, and S. Nash: Numerical Methods and Software. Practice–Hall,
Englewood Cliffs, N.J. 1989.

[4] S. Mallat: A Wavelet Tour of Signal Processing. Academic Press, New York 1999.
[5] M. Révayová and Cs. Török: Analysis of prediction with neural networks. In: Prastan

2004, Bratislava, pp. 85–93.
[6] B. D. Riplay: Pattern Recognition and Neural Networks. Cambridge University Press,

Cambridge 1996.
[7] G. A. F. Seber: Linear Regression Analysis. Wiley, New York 1977.
[8] Cs. Török: 4-Point transforms and approximation. Comput. Phys. Comm. 125 (2000),

154–166.
[9] Cs. Török and N. D. Dikoussar: Approximation with discrete projective transforma-

tion. Comput. Math. Appl. 38 (1999), 211–220.
[10] Cs. Török: Visualization and data analysis in the MS.NET framework. In: Comm.

JINR 2004, E10-2004-136, pp. 1–22.

Martina Révayová and Csaba Török, Department of Mathematics, Technical University

of Košice, Vysokoškolská 4, 042 00 Košice. Slovak Republic.

e-mails: csaba.torok2@gmail.com, martina.revayova@gmail.com

