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A MODIFICATION
OF THE HARTUNG–KNAPP CONFIDENCE INTERVAL
ON THE VARIANCE COMPONENT
IN TWO–VARIANCE–COMPONENT MODELS

Barbora Arendacká

We consider a construction of approximate confidence intervals on the variance com-
ponent σ2

1 in mixed linear models with two variance components with non-zero degrees
of freedom for error. An approximate interval that seems to perform well in such a case,
except that it is rather conservative for large σ2

1/σ
2, was considered by Hartung and Knapp

in [6]. The expression for its asymptotic coverage when σ2
1/σ

2 →∞ suggests a modification
of this interval that preserves some nice properties of the original and that is, in addition,
exact when σ2

1/σ
2 → ∞. It turns out that this modification is an interval suggested by

El-Bassiouni in [5]. We comment on its properties that were not emphasized in the orig-
inal paper [5], but which support use of the procedure. Also a small simulation study is
provided.
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1. INTRODUCTION

We will consider the problem of constructing a confidence interval on the variance
component σ2

1 in a mixed linear model with two variance components, i. e. in a
situation when the n-dimensional vector of observations y is supposed to come from
Nn(Xβ, σ2

1ZZ
T + σ2I) distribution, where X,Z are known matrices and β and

(σ2
1 , σ

2)T are vectors of unknown parameters, σ2
1 ≥ 0, σ2 > 0. We suppose that

R(Z) 6⊆ R(X), where R(A) denotes the linear subspace generated by the columns
of the matrix A. As the variance component σ2

1 is not influenced by a transla-
tion in mean, the usual step is to exploit the principle of invariance and reduce
the problem by constructing a maximal invariant, i. e. transform y into BT y ∼
Nn−rank(X)(0, σ2

1B
TZZTB + σ2I), where BBT = M = I −X(XTX)−XT , BTB =

In−rank(X). A minimal sufficient statistic for (σ2
1 , σ

2)T in the family of distributions
of BT y is a vector consisting of mutually independent quadratic forms

Ui = yTBFiB
T y ∼ (λiσ2

1 + σ2)χ2
νi , i = 1, . . . , r
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where λ1 > λ2 > · · · > λr ≥ 0 are the distinct eigenvalues of the matrix BTZZTB,
νi, i = 1, .., r are their multiplicities and Fi, i = 1, . . . , r are the symmetric, idempo-
tent and pairwise orthogonal (FiFj = 0, i 6= j) matrices belonging to λi, i = 1, . . . , r
in the spectral decomposition of BTZZTB. In models with n > rank([X, Z]), λr = 0
and the nuisance parameter σ2 can be estimated using solely Ur. That is what we
will further suppose. It means that from now on

Ur ∼ σ2χ2
νr .

The construction of confidence intervals on σ2
1 is complicated by the presence

of the nuisance parameter σ2, owing to which the exact solutions are not known.
Approximate confidence intervals that can be constructed in a general situation,
without any special assumptions on X,Z, except for n > rank([X, Z]), include those
derived by Park and Burdick (TINGM in [7]), or Hartung and Knapp [6] or Thomas
and Hultquist [10]. Based on various simulation studies (see [1, 7, 10]) out of these
three the Hartung–Knapp interval seems to perform the best regarding the fact that
its coverage was at least as great as the nominal level for a whole range of σ2

1/σ
2.

However, according to the simulations, in models with νr not much bigger than
s =

∑r−1
i=1 νi it tends to be conservative with increasing σ2

1/σ
2. The properties of the

Hartung–Knapp interval are discussed in greater detail in Section 2. In Section 3
a modification that preserves some ‘nice’ properties of the original Hartung–Knapp
interval and that is, moreover, exact for σ2

1/σ
2 →∞, is stated, yielding an interval

already proposed by El-Bassiouni [5]. This in turn implies some nice properties of
El-Bassiouni’s procedure, which supports its use. Section 4 is devoted to a small
simulation study illustrating properties of the mentioned intervals.

In the following Fm,n;α and χ2
n;α denote the α quantiles of the corresponding F

and χ2 distributions and s =
∑r−1
i=1 νi (as stated earlier).

2. THE HARTUNG–KNAPP (HK) INTERVAL

Hartung and Knapp [6] considered an (1−α)100% approximate interval on σ2
1 based

on an exact interval for the ratio of the variance components σ2
1/σ

2 derived by
Wald [13] (see also [8]). Bounds of the HK interval, [LHK,UHK], are obtained by
multiplying the bounds of the exact interval1 on σ2

1/σ
2 by an unbiased estimator of

σ2 : Ur/νr. More precisely,
LHK = lUr/νr, UHK = uUr/νr, (1)

where l, u are nonnegative solutions (or zeros if nonnegative solutions do not exist)
to the following equations:

r−1∑

i=1

Ui
λil + 1

= sFs,νr ;1−α/2Ur/νr (2)

r−1∑

i=1

Ui
λiu+ 1

= sFs,νr ;α/2Ur/νr. (3)

1To be precise, the interval is exact for σ2
1/σ

2 > 0, the true zero value is covered with probability
1−α/2 (if the interval is taken equal-tailed). This is caused by putting any negative bounds equal
to zero, as the ratio σ2

1/σ
2 is a non-negative parameter. See also [8].
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If there exists a nonnegative solution to (2) or (3), it is unique as the left side of
(2), (3) is a strictly decreasing function of l, u respectively, on (−1/λ1,∞). The
solutions can be computed, for example, by the Newton–Raphson method. In case
of an unbalanced one-way random effects model another quick approach is to use
the bisection method with starting points suggested by Wald [12], see also [6].

Considering that under the limit νr →∞ the estimator Ur/νr converges to σ2 in
probability, it is obvious that the HK interval becomes exact for νr → ∞ (for true
σ2

1 > 0). Also, the interval contains zero in accordance with the result of the Wald
test of nullity of σ2

1 (on the significance level α/2). (Its lower bound is zero if and only
if the hypothesis of nullity is not rejected, i. e. if νr

∑r−1
i=1 Ui/(sUr) ≤ Fs,νr;1−α/2.)

This causes the interval to cover the true zero value of σ2
1 with probability 1− α/2,

which is greater than the nominal confidence level, however, this is a common feature
of two-sided confidence intervals on σ2

1 . The preceding two optimal features of the
HK interval are not accompanied by being exact when σ2

1/σ
2 →∞.

Let Vi = Ui/(λiσ2
1), i = 1, . . . , r − 1. Then as σ2

1/σ
2 → ∞, (V1, . . . , Vr−1,

Ur
σ2

σ2

σ2
1
)

converges in distribution to (Q1, . . . , Qr−1, 0), where Qi ∼ χ2
νi and Qis are mutually

independent. The probability of covering the true non-zero value of σ2
1 by the HK

interval is:

P
(
LHK≤σ2

1≤UHK

)
=P

(
sFs,νr;α/2Ur/νr≤

r−1∑

i=1

Ui
λiσ2

1νr/Ur+1
≤sFs,νr;1−α/2Ur/νr

)

= P


sFs,νr;α/2 ≤

r−1∑

i=1

Vi

1 + 1
λi

Ur
νrσ

2
σ2

σ2
1

≤ sFs,νr;1−α/2




and under the limit σ2
1/σ

2 →∞ we get

P(LHK ≤ σ2
1 ≤ UHK)→ P

(
sFs,νr;α/2 ≤

r−1∑

i=1

Qi ≤ sFs,νr ;1−α/2

)
. (4)

Denote the limiting probability of coverage Pα,s,νr . The differences between Pα,s,νr

and the desired confidence level 1−α for certain configurations of s, νr and 90 %, 95 %
and 99 % intervals are stated in Table 1. Naturally, these differences are smaller if s
is substantially smaller than νr. The tendency of the HK interval to be conservative
for large values of σ2

1/σ
2 was observed also by Hartung and Knapp [6] in their

simulation study. Apart from that the HK interval seemed to perform well.
In the next section we present a modification of the HK interval that is exact

when σ2
1/σ

2 →∞.

3. A MODIFICATION OF THE HK INTERVAL

The HK interval would be exact for σ2
1/σ

2 →∞, if in (4) we obtained

P

(
χ2
s;α/2 ≤

r−1∑

i=1

Qi ≤ χ2
s;1−α/2

)
.
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Table 1. Differences between the probability of coverage
of an (1− α) 100% HK interval under the limit σ2

1/σ
2 →∞

and the desired confidence level 1− α.

Pα,s,νr − (1− α)

s = 2 s = 2 s = 10 s = 10 s = 30

νr = 1 νr = 25 νr = 25 νr = 50 νr = 50

α = 0.1 0.0474 0.0160 0.0479 0.0294 0.0614

α = 0.05 0.0244 0.0113 0.0283 0.0187 0.0355

α = 0.01 0.0050 0.0036 0.0067 0.0051 0.0083

This can be rewritten as

P

(
sFs,νr ;α/2 ≤

sFs,νr ;α/2

χ2
s;α/2

r−1∑

i=1

Qi &
sFs,νr ;1−α/2
χ2
s;1−α/2

r−1∑

i=1

Qi ≤ sFs,νr;1−α/2

)
. (5)

Denote

H(t) =
r−1∑

i=1

Vi

t+ 1
λi

Ur
νrσ

2
σ2

σ2
1

and kα/2 =
χ2
s;α/2

sFs,νr ;α/2
. It is clear that as σ2

1/σ
2 →∞, H(kα/2) converges in distribu-

tion to 1
kα/2

∑r−1
i=1 Qi and also (e. g. by Cramér–Wold Theorem(see [2], p. 49))

(H(kα/2),H(k1−α/2)) D→
(

1
kα/2

r−1∑

i=1

Qi,
1

k1−α/2

r−1∑

i=1

Qi

)
.

Thus
P(sFs,νr;α/2 ≤ H(kα/2) & H(k1−α/2) ≤ sFs,νr;1−α/2) (6)

converges to the desired result (5). Working on (6) backwards we obtain that it is
equal to

P

(
LHK

sFs,νr ;1−α/2
χ2
s;1−α/2

≤ σ2
1 ≤ UHK

sFs,νr ;α/2

χ2
s;α/2

)
,

which suggests a modification of the HK interval with the lower and upper bounds
as follows:

Lm = LHKsFs,νr;1−α/2/χ
2
s;1−α/2,

Um = UHKsFs,νr;α/2/χ
2
s;α/2. (7)

From (7) it is clear that Lm,Um are zeros if and only if LHK,UHK are zeros and
that for νr →∞ the HK interval and its modified version coincide. So the modified
HK interval has the two optimal properties of the HK interval and moreover, it is
exact for σ2

1/σ
2 →∞.
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The interval given in (7) was originally proposed by El-Bassiouni [5] who at
first considered the case with r = 2. In such a situation, Boardman [3] commented
that the interval (1) should be slightly wider and thus more conservative than the
Williams–Tukey interval (see [11, 14]), which had coverage close to the nominal value
in his simulation study. El-Bassiouni observed that the Williams–Tukey interval can
be written in the form:

[c1lUr/νr, c2uUr/νr], (8)

where c1 = sFs,νr;1−α/2/χ2
s;1−α/2, c2 = sFs,νr;α/2/χ

2
s;α/2 and l, u, are the bounds of

the exact interval on σ2
1/σ

2. He remarked that c1, c2 can be regarded as correction
factors adjusting for the fact that the exact bounds of the interval on σ2

1/σ
2 are

multiplied by an estimator of σ2. Based on the previous, El-Bassiouni’s suggestion
for an approximate interval in case r > 2 was to use expression (8) with l, u as
in (2), (3). In the simulation study in [5] only this proposed interval gave coverage
not lower than the nominal confidence level across all designs and for all considered
values of parameters. In addition to this favourable result we have just shown that
this interval possesses some nice properties: namely that it behaves as an exact
interval for σ2

1/σ
2 →∞, σ2

1 = 0 and νr →∞. From derivation of (7) it is also clear
how the constants c1, c2, called correction factors by El-Bassiouni, really improve
the behaviour of the interval in comparison to the HK interval.

From El-Bassiouni’s derivation of (7) follows that in case r = 2, the interval
reduces to the Williams–Tukey interval. Thus besides being regarded as a modifi-
cation of the HK interval, it is also a generalization of the Williams–Tukey interval.
In fact, it can be obtained by applying Williams’s approach used in [14] (the bounds
of the approximate interval are obtained as the intersections of the lower and upper
bounds of two exact intervals on σ2

1 constructed for a known value of σ2). Although
this is not surprising, it was not explicitly stated by El-Bassiouni and we emphasize
it here because we think it makes the procedure more attractive (e. g. immediately
it is guaranteed that the probability of coverage of the resulting interval is always at
least 1− 2α, see [14]). Also, it resolves any doubts that might have arisen, whether
after the modification as given in (7) it still holds Lm ≤ Um.

The two exact intervals on σ2
1 constructed for a known value of σ2, required by

the Williams’s approach are:

1. an interval derived from an exact interval on σ2
1/σ

2, I1(σ2), whose lower and
upper bounds Bl = lσ2, Bu = uσ2 (l, u defined by (2), (3)) can be obtained
by solving the following equations

r−1∑

i=1

Ui
λiBl + σ2 =

1
σ2 sFs,νr;1−α/2Ur/νr

r−1∑

i=1

Ui
λiBu + σ2 =

1
σ2 sFs,νr;α/2Ur/νr. (9)

2. an interval based on the fact that for a known σ2,
∑r−1
i=1

Ui
λiσ

2
1 + σ2 ∼ χ2

s.

Bounds of this interval, I2(σ2), can be obtained by solving the following equa-
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tions r−1∑

i=1

Ui

λiB̃l + σ2
= χ2

s;1−α/2,
r−1∑

i=1

Ui

λiB̃u + σ2
= χ2

s;α/2. (10)

Comparing (9) with (10) we see, that the lower bounds of I1 and I2 intersect at
σ2 = c1Ur/νr and the upper bounds at σ2 = c2Ur/νr with the value of the lower
and the upper bounds B̃l = Bl = c1lUr/νr and B̃u = Bu = c2uUr/νr.

Considering all the above stated facts, we will refer to the interval defined in (7)
as the El-Bassiouni–Williams–Tukey (EBWT) interval.

Comparison of length. Looking into F tables, from (7) we can see that for all
commonly used values of α(≤ 0.1) and s ≥ 3, the EBWT interval is shorter (for small
and moderate values of νr) than the HK interval and we may expect it to be overally
less conservative. For s ≤ 2, still Lm ≥ LHK, however Um ≥ UHK, so the EBWT
interval can be larger than the HK interval. Actually, in all examples with s = 2
considered in our simulation study (see Section 4) the EBWT interval was always
larger (or of zero length) than the HK interval. To see how much larger the EBWT
interval can be, consider the difference between the lengths of the two intervals:
LengthEBWT − LengthHK = (c2 − 1)UHK − (c1 − 1)LHK. For s = 2, νr = 30 the
difference can be bounded from above by (c2−1)LengthHK, from which it follows that
the EBWT interval can be larger than the HK interval by at most 0.18 %, 0.09 %,
0.02 % of LengthHK in case of 90%, 95%, 99% confidence intervals, respectively.
Similarly, for s = 1, νr = 50, LengthEBWT can be greater than LengthHK by at
most 1.01 % of the length of the HK interval in case of 90 %, 95 % or 99 % intervals.
However, for more extreme cases the difference can be larger.

In [5] El-Bassiouni suggested so-called short intervals obtained when in (7), in-
stead of the equal-tailed χ2 quantiles χ2

α/2, χ
2
1−α/2, we use χ2 quantiles such as in

Table 678 in [9], while in F quantiles α/2, 1 − α/2 are applied. Such intervals re-
main exact for σ2

1/σ
2 → ∞ and cover the true zero value with probability 1 − α/2

(however, for νr → ∞ the constants c1, c2 do not converge to 1). We will refer to
these intervals as the short EBWT intervals.

4. SIMULATION STUDY

To illustrate the behaviour of the HK, the EBWT and the short EBWT intervals
we conducted the following simulation study: in each of 7 concrete examples of our
model, as they are stated in Table 2, the vector of observations y was generated
10 000-times for σ2

1 = 0.001, 0.1, . . . , 0.9, 0.999, σ2 = 1 − σ2
1 and fixed value of β.

The bounds of the HK interval were computed by the Newton–Raphson method
with tolerance 10−14 (using (2), (3)), the bounds of the EBWT interval and its short
version were then obtained using (7) with appropriate quantiles. The choice of
the values of the variance components was inspired by their choice in [7]. Designs of
Examples 2, 3, 6 were considered also in [1, 6, 7], Examples 4, 5 in [1]. Figure 1 shows
the simulated probabilities of coverage of the 95 % HK, EBWT and short EBWT
intervals and limits (0.946, 0.954) between which the simulated values should fall
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Table 2. Forms of the matrices X,Z (together with values of s, νr) in the examples
considered in the simulation study. vk is a (k × 1) vector of real numbers
between 0 and 1, 1k is a (k × 1) vector of ones. If not stated otherwise,

Z is a block matrix with 1ni on the diagonal.

Example X Z s νr

1 14 ni : 1, 1, 2 2 1

2 [130 v30] ni : 5, 10, 15 2 26

3 [1102 v102] ni : 1, 1, 100 2 98

4 [130 t] [diag(16, 16, 16, 16, 16)w] 5 23
t : 30× 1, w : 30× 1,

ti = −3 + 6 ∗ (i− 1)/29 wi = (−2 + 4 ∗ (i− 1)/29)2

5 114 ni : 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 9 4

6 [159 v59] ni : 1, 1, 4, 5, 6, 6, 8, 8, 10, 10 9 48

7 112 ni : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 10 1

with probability 0.95 if the true probability of coverage is 0.95 (using the normal
approximation to the binomial). Figure 2 presents the average lengths obtained in
the different situations. Note that increasing σ2

1 implies increasing ratio σ2
1/σ

2(from
approximately 0.001 to 999).

Comparing results in Examples 1, 2, 3 or 5, 6 one can see the positive effect of
higher νr in the model on the conservativeness of the HK interval. On the other
hand, Examples 1, 4, and especially 5 and 7 show how much conservative the HK
interval can be in case of small νr. As expected, in all examples the EBWT interval
is less conservative than the HK interval and moreover, its confidence coefficients do
not seem to be less than 0.95. Only in Example 7 with σ2

1 = 0.001 the simulated
probability of coverage is slightly below the lower limit 0.946. The situation is similar
for the short EBWT interval, however, unlike the two other ones, it seems to remain
a bit conservative for large νr and smaller values of σ2

1/σ
2 as can be seen from results

in Example 3.
Comparing the average lengths, the HK interval is shorter compared to the EBWT

interval in the first three examples (s = 2), while the situation is opposite considering
the rest. The biggest differences between the lengths of the HK and EBWT intervals
are seen in examples with small νr. The short version of the EBWT interval yields the
shortest intervals in all examples, the difference is remarkable especially in models
with s = 2, which agrees with El-Bassiouni’s findings in [5].

5. CONCLUSIONS

We have pointed out some favourable properties of the approximate interval on a
variance component suggested by El-Bassiouni [5], which supports its use besides
the good results it yielded in a simulation study in [5]. The interval can be regarded
as a modification of an interval considered e. g. by Hartung and Knapp in [6] or as
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Fig. 1. Simulated probabilities of coverage of 95 % HK(¦), EBWT(*) and short

EBWT(o) confidence intervals in examples from Table 2.(10 000 simulations).
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Fig. 2. Average lengths of 95 % HK(¦), EBWT(*) and short EBWT(o)

confidence intervals in examples from Table 2 (10 000 simulations).
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a generalization of the well-known Willimas–Tukey interval. We have shown how
exactly the modification improves the properties of the resulting interval and pointed
out that the interval can be derived by directly applying Williams’s approach. This
is not surprising, however, it was not mentioned explicitly by El-Bassiouni and we
think it makes the procedure more attractive. A small simulation study was used
to illustrate the behaviour of the approximate interval, referred to as El-Bassiouni–
Williams–Tukey with respect to the preceding, its short version (see [5]) and the
Hartung–Knapp interval.
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