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TESTING A HOMOGENEITY
OF STOCHASTIC PROCESSES

Jaroḿır Antoch and Daniela Jarušková

The paper concentrates on modeling the data that can be described by a homogeneous
or non-homogeneous Poisson process. The goal is to decide whether the intensity of the
process is constant or not. In technical practice, e.g., it means to decide whether the
reliability of the system remains the same or if it is improving or deteriorating. We assume
two situations. First, when only the counts of events are known and, second, when the
times between the events are available. Several statistical tests for a detection of a change
in an intensity of the Poisson process are described and illustrated by an example. We
cover both the case when the time of the change is assumed to be known or unknown.
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1. INTRODUCTION

The paper concentrates on modeling data that describe occurrences of certain events
in time. The reliability data where the events correspond to a failures of a product is
a typical example. In the scope of mathematical statistics a counting process, often
a homogeneous or non-homogeneous Poisson process, serves as a successful model.

We consider two situations. In the first one all we know are numbers of observed
events

{
Ni

}
, i = 1, . . . , q, in consecutive non-overlapping intervals of the length{

ti
}
, i = 1, . . . , q, t1 + · · ·+ tq = T . In the second one, a sequence of times of event

occurrences, say 0 < τ1 < τ2 < . . ., is observed. It is clear that in such a case we
also know lengths of intervals between events {Yi}.

The basic question that arises when trying to find a good model is the following: Is
the observed process stationary or does its intensity change? In the case of reliability
data changes in the intensity may be caused by improvement or deterioration of the
system. For detection of change(s) the hypotheses testing may be applied, where the
null hypothesis claims that the process is stationary. According to an alternative
under which a certain type of change is considered a test statistic may be developed.
To decide whether the null or the alternative hypothesis holds the distribution of the
suggested test statistic under the null hypothesis has to be derived. As the exact
distribution is often complex an asymptotic distribution (for a large T or a large
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number of observations n) may be applied. In our paper several test statistics are
proposed and their distribution under the null distribution is studied.

After the problem of stationarity is solved and an appropriate parametric model
is chosen, an estimation of parameters concludes the statistical inference. Therefore,
we show how to estimate parameters of several simple models usually applied to data
described above.

2. COUNTING PROCESS

We suppose that we observe a stream of events, failures, e. g., that occurred in times
0 < τ1 < τ2 < . . . Such a sequence of variables {τi} is called a simple point process.
At any time t we can count the number of events N(t) that occurred before or at the
time t. The process {N(t), t ≥ 0} is called a counting process. Between the point
process {τi} and its counting process the following relation holds, i. e.,

P
(
N(t) ≥ n

)
= P

(
τn ≤ t

)
.

A counting process
{
N(t), t ≥ 0

}
is a renewal process if:

1. N
(
0
)

= 0.

2. The variable Y1 = τ1 (the time to the occurrence of the first event from t = 0)
and the variables Yj = τj − τj−1, j ≥ 2, Yj being time between the

(
j − 1

)
st

and jth event, form a sequence of i.i.d. random variables with a distribution
function F (x).

3. N(t) = sup
{
n : Sn ≤ t

}
, where S0 = 0, Sn =

∑n
i=1 Yi, n ≥ 1.

If times between events {Yi} are i.i.d. with an exponential distribution then the
process is called a homogeneous Poisson process.

Renewal processes do not allow to model improving and deteriorating systems.
For modeling non-stationary systems trend renewal processes may be applied. For
more detailed information about trend renewal processes see [14]. An example of
a trend renewal process is a non-homogeneous Poisson process. Non-homogeneous
as well as homogeneous Poisson processes with intensity {λ(s) > 0, s ≥ 0} may be
defined by the following set of properties:

1. For every n and every 0 < t1 < t2 < · · · < tn the variables N(t1), N(t2) −
N(t1),. . . , N(tn)−N(tn−1) are independent.

2. For every 0 ≤ s < t the variable N(t) − N(s) has a Poisson distribution
with the parameter

∫ t
s
λ(z) dz. Denoting {Λ(t), t ≥ 0} a cumulative intensity

Λ(t) =
∫ t

0
λ(z) dz, it holds

P
((
N(t)−N(s)

)
= k

)
= exp

(
−

(
Λ(t)−Λ(s)

))(
Λ(t)−Λ(s)

)k

k!
, k=0, 1, . . . .
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Suppose that the interval [0, T ] is divided into smaller time intervals of the lengths
t1, t2, . . . , tq such that t1 + t2 + · · ·+ tq = T and N1 denotes the number of events in
the interval [0, t1], N2 the number of events in the interval (t1, t1 + t2] etc. Denote
by N(T ) the total number of events in the time interval [0, T ]. Clearly, N(T ) =
N1 + · · · + Nq. The variables {Ni, i = 1, . . . , q} are independent and each has
a Poisson distribution with the parameter Λi, where

• Λ1 = Λ(t1);

• Λi = Λ(t1 + · · ·+ ti)− Λ(t1 + · · ·+ ti−1), i = 2, . . . , q.

If the intensity of the underlying Poisson process does not change in time then the
variable Ni follows a Poisson distribution with parameter λ · ti, i = 1, . . . , q, and
the distribution of Ni, given the number of all observations N(T ) = n, is binomial
with parameters n and pi = Λi/Λ(T ). For a homogeneous Poisson process the
distribution does not depend on the intensity λ and is binomial with parameters n
and pi = ti/T , i. e.,

P
(
Ni = x |N(T ) = n

)
=

(
n
x

)(
ti
T

)x(1− ti
T

)n−x
.

For large N(T ) an approximation of binomial distribution by a normal distribu-
tion yields

L
(
Ni |N(T ) = n

)
∼ N

(
n ti
T , n

ti
T

(
1− ti

T

))

or

L




Ni
N(T ) − ti

T√
ti
T (1− ti

T )

√
N(T )

∣∣∣N(T ) = n


 ∼ N(0, 1),

where N(µ, σ2) denotes a normal distribution with a mean µ and a variance σ2.
Similarly, the distribution of the vector (N1, . . . , Nq), given N(T ) = n, is multi-

nomial with parameters p1, . . . , pq and n. For a homogeneous Poisson process we
have

P
(
N1 = x1, . . . , Nq = xq

)
=

n!
x1! . . . xq!

(
t1
T

)x1
. . .

( tq
T

)xq if
∑q

i=1
xi = n, xi ≥ 0,

= 0 otherwise.

3. STATISTICAL ANALYSIS OF TREND IN INTENSITY

For the proper statistical analysis of a system it is important to detect possible
changes in the length of intervals between events. For example, reliability growth
corresponds to times between failures becoming longer as time goes on (improving
system), whereas aging effects often lead to decreasing inter-failure times (deterio-
rating system). The intensity may change in many different ways. The change may
be sudden or gradual. For the decision whether the intensity is constant one may
use statistical tests. We describe here statistical tests suitable for testing that the
process is stationary against alternatives depending on the kind of trend to detect.
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3.1. Detection of a change in an intensity of a Poisson process

3.1.1. Inspections at several discrete time points

Suppose that the interval [0, T ] is divided into smaller intervals of the lengths ti, i =
1, . . . , q, and that all we know are the corresponding numbers of events Ni, i =
1, . . . , q, in the respective intervals. The decision whether a change in an intensity
occurred may be based on hypotheses testing. The null hypothesis claims that
Ni, i = 1, . . . , q, are independent random variables distributed according to a Poisson
distribution Po(λ ti). The alternative claims that there exists an index k such that
Nk is not distributed according to the Poisson distribution with the parameter λ tk.

First, we deal with a simple situation when the interval [0, T ] is divided into two
intervals [0, t1] and (t1, T ], where N1 denotes a number of events in the interval [0, t1]
and N2 = N(T )−N1 a number of events in the interval (t1, T ]. We decide that the
intensity changed, i. e., we reject the null hypothesis of no change at the significance
level α, either if

N1∑

i=0

(
N(T )
i

) (
t1
T

)i (
1− t1

T

)N(T )−i
≤ α

2

or if

N(T )∑

i=N1

(
N(T )
i

)(
t1
T

)i (
1− t1

T

)N(T )−i
≤ α

2
.

For N(T ) large the rule for rejecting the null hypothesis of no change has the
form

∣∣∣ N1
N(T ) − t1

T

∣∣∣
√

t1
T

(
1− t1

T

)
√
N(T ) > u1−α/2

where u1−α/2 is a (1− α/2)100 % quantile of N(0, 1).
In the case that all we know are numbers of observed events

{
Ni

}
, i=1, . . . , q, in

consecutive non-overlapping intervals of the length
{
ti

}
, i=1, . . . , q, t1+· · ·+tq=T ,

and if the number of all events N(T ) is large, we decide that the intensity changed if

q∑

i=1

(
Ni − ti

T N(T )
)2

ti
T N(T )

> χ2
1−α(q − 1), (1)

where χ2
1−α(q − 1) is a (1 − α)100 % quantile of χ2 distribution with q − 1 degrees

of freedom.

3.1.2. Decision based on all events

In the preceding paragraph we supposed that we observed a counting process of
a underlying Poisson process in several discrete time points t1, t1 + t2, t1 + t2 +
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t3, . . . , t1 +t2 + · · ·+tq = T . Therefore, our decision whether the intensity of the pro-
cess is constant was based only on the values of the counting process {N(t1), N(t1 +
t2), . . . , N(T )} or on the values {N1, . . . , Nq}, where N(t1 + · · ·+ ti) = N1 + · · ·+Ni.
However, it can happen that we follow the process continuously so that we know
all time points 0 < τ1 < τ2 < · · · < τn ≤ T in which the events occurred. As we
have already explained, if the intensity is constant then for every fixed t ∈ [0, T ] the
distribution of N(t), given N(T ) = n, is binomial Bi

(
n, t/T

)
.

The process has a non-constant intensity if at least for one 0 < t < T the variable
∣∣∣ N(t)
N(T ) − t

T

∣∣∣
√

t
T (1− t

T )

√
N(T )

is large. Therefore, we may base our decision on the statistic

CP1 = sup
0<t<T





∣∣∣ N(t)
N(T ) − t

T

∣∣∣
√

t
T (1− t

T )

√
N(T )



 . (2)

If the intensity is constant and the number of observations N(T ) large, one may
replace t/T in the denominator of (2) by N(t)/N(T ) and apply the statistic

CP2 = sup
0<t<T





∣∣∣ N(t)
N(T ) − t

T

∣∣∣
√

N(t)
N(T ) (1− N(t)

N(T ) )

√
N(T )



 . (3)

For large T it holds under the null hypothesis that

P


 sup

0<t<T





∣∣∣ N(t)
N(T ) − t

T

∣∣∣
√

t
T (1− t

T )

√
N(T )



 ≤

x+ bT
aT


 ≈ exp(−2 e−x) (4)

and

P


 sup

0<t<T





∣∣∣ N(t)
N(T ) − t

T

∣∣∣
√

N(t)
N(T ) (1− N(t)

N(T ) )

√
N(T )



 ≤

x+ bT
aT


 ≈ exp(−2 e−x), (5)

where ≈ denotes that the distribution of the LHS can be for large values of T
approximated by the RHS, aT =

√
2 log log T and bT = 2 log log T + 1

2 log log log T −
1
2 log π. The approximations (4) and (5) provide us with approximate critical values.
For more details see [6]. Another interesting approach is described in [17].

3.2. Detection of a change in mean time between events

We suppose again that we register a sequence of times of events 0 < τ1 < τ2 < . . .
Until now we were interested in a counting process {N(t)}, where N(t) denotes
the number of occurrences of an event in the interval [0, t]. However, a different
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approach for decision whether a change in the process occurred may be based on
times between events {Yi = τi − τi−1}. If studied Poisson process is homogeneous
then all the variables

{
Yi

}
are i.i.d. with an exponential distribution. We will discuss

this situation more profoundly in the following paragraphs.

3.2.1. Testing for a change with a known change point

It can happen that after having observed kth event the conditions that rule the
process changed and we ask whether this change affected the mean time between
events. In the case of a constant intensity the times between events are exponentially
distributed so that the problem is to decide whether all variables Y1, . . . , Yn have the
same mean δ or whether the mean δ1 of the variables Y1, . . . , Yk differs from the mean
δ2 of the variables Yk+1, . . . , Yn. If we formulate the problem within the theory of
hypotheses testing, we are to test the null hypothesis H0 against the alternative A:

H0 : Yi ∼ Exp (δ), i = 1, . . . , n,
A : Yi ∼ Exp (δ1), i = 1, . . . , k,

Yi ∼ Exp (δ2), i = k + 1, . . . , n,
(6)

where δ > 0, δ1 > 0 and δ2 > 0 are unknown. It depends on our prior knowledge
about the sign of δ2− δ1 whether we consider a one-sided or a two-sided alternative.
We consider a two-sided alternative δ1 6= δ2 if we do not know a priori whether
the change causes an increase or decrease of the mean time between events. We
consider a one-sided alternative δ1 < δ2 (resp. δ1 > δ2) if we expect that the change
might increase (resp. decrease) the mean time between events. The problem is so
called two–samples problem for exponentially distributed random variables. It is
often used if we compare the life–times of two sets of products. The most frequently
applied test statistics are equivalent to the log-likelihood ratio

supδ1,δ2
∏k
i=1 f(yi; δ1)

∏n
i=k+1 f(yi; δ2)

supδ
∏n
i=1 f(yi; δ)

.

Denoting

Sk =
∑k

i=1
Yi, S0

k =
∑n

i=k+1
Yi, Yk = Sk/k and Y

0

k = S0
k/(n− k),

the maximum likelihood estimates of δ, δ1 and δ2 are

δ̂ = Yn, δ̂1 = Yk and δ̂2 = Y
0

k ,

and the logarithm of the likelihood ratio is equal to

Z2
k = −k log

Yk

Yn
− (n− k) log

Y
0

k

Yn

= −k log
(n
k
· Sk
Sn

)
− (n− k) log

( n

n− k ·
S0
k

Sn

)
(7)

= −k log
(n
k
· Sk/S

0
k

1 + Sk/S0
k

)
− (n− k) log

( n

n− k ·
1

1 + Sk/S0
k

)
.
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Clearly, we reject H0 against the two-sided alternative A with δ1 6= δ2 if the
value of Z2

k is larger than a value C which corresponds to a chosen significance level.
Moreover,

P
(
Z2
k < C

)
= P

(
ak(C) < Sk/Sn < bk(C)

)
,

where ak(C) and bk(C) are solutions of the equation

−k log
(n
k
· x

)
− (n− k) log

( n

n− k · (1− x)
)

= C. (8)

Further, note that

P
(
ak(C) < Sk/Sn < bk(C)

)
= P

(
dk(C) < Yk/Y

0

k < hk(C)
)
,

where
dk(C) =

ak(C)
1− ak(C)

n− k
k

and hk(C) =
bk(C)

1− bk(C)
n− k
k

.

Under H0 the statistic Sk/Sn has a beta distribution Be(k, n− k) with the density

fBe(y; k, n− k) =
yk−1(1− y)n−k−1

B(k, n− k)
,

while Yk/Y
0

k has a F distribution with 2k and 2(n− k) degrees of freedom. Thus

P

(
1

F1−α/2
(
2(n− k), 2k

) < Yk

Y
0

k

< F1−α/2
(
2k, 2(n− k)

)
)

= 1− α,

where F1−β(p, q) is a (1 − β) 100 % quantile of the F distribution with p and q
degrees of freedom. Therefore, we reject the null hypothesis H0 against the two-
sided alternative δ1 6= δ2 at the significance level α if either Yk/Y

0

k is larger than
F1−α/2

(
2k, 2(n − k)

)
or if it is smaller than 1/F1−α/2

(
2(n − k), 2k

)
. Analogously

we reject H0 against the one-sided alternative δ1 > δ2 if Yk/Y
0

k is larger than
F1−α

(
2k, 2(n− k)

)
, and similarly against the one-sided alternative δ1 < δ2 if Yk/Y

0

k

is smaller than 1/F1−α
(
2(n− k), 2k

)
.

3.2.2. Testing for a change with an unknown change point
– maximum type test statistics

In the preceding paragraph we suspected that after we observed the kth event the
change in the mean time between events might occur. The problem was to decide
whether it really happened. The situation is more complicated if we would like
to know whether the mean time between events remains the same all the time or
whether it changed but we have no idea where the change might occur. In the scope
of hypotheses testing the problem may be specified as follows:

H0 : Yi ∼ Exp (δ), i = 1, . . . , n,
A : ∃ k ∈ { 1, . . . , n− 1} such that

Yi ∼ Exp (δ1), i = 1, . . . , k,
Yi ∼ Exp (δ2), i = k + 1, . . . , n,

(9)
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where δ > 0, δ1 > 0 and δ2 > 0. We reject the null hypothesis against the two-sided
alternative with δ1 6= δ2 if at least one of the statistics

{
Z2
k , k = 1, . . . , n− 1

}
given

by (7) is large or, more precisely, if max1≤k≤n−1{Z2
k} is larger than an appropriate

critical value. Unfortunately, the distribution of max1≤k≤n−1{Z2
k} under H0 is so

complex that it is not possible to use it for finding critical values and this is why
some approximations are needed.

The simple approximation is obtained by the Bonferroni inequality

P
(

max
1≤k≤n−1

{
Z2
k

}
> C

)
= P

( n−1⋃

k=1

{
Z2
k > C

})
≤
n−1∑

k=1

P
(
Z2
k > C

)
(10)

=
n−1∑

k=1

P
(
ak(C) <

Sk
Sn

< bk(C)
)

=
n−1∑

k=1

P

(
dk(C) <

Yk

Y
0

k

< hk(C)

)
,

where ak(C), bk(C), dk(C) and hk(C) were introduced in the previous section. If we
find a constant C such that P(Z2

k > C) ≤ α
n−1 for all k, then it is obvious that the

exact α100 % critical value is smaller than C or, in other words, C is a conservative
estimate of the α100 % critical value. The inequality (10) may also serve for finding
an upper bound of the p-value.

Despite the distribution of statistics
{
Z2
k

}
being of the same type,

{
Z2
k

}
are

not identically distributed (parameters depend on k), and that is why the smallest
bound C that fulfills P

(
Z2
k > C

)
≤ α

n−1 for all k is unnecessarily large. As the
contributions of different terms of the sum (10) are for fixed C different, it is better
to look for such a C? that

n−1∑

k=1

P
(
ak(C?) <

Sk
Sn

< bk(C?)
)

=
n−1∑

k=1

P

(
dk(C?) <

Yk

Y
0

k

< hk(C?)

)
= α.

As a result we obtain a less conservative estimate of the α100 % critical value.
To get an idea about the magnitude of the critical values, following table presents

the critical values calculated using simulations and the Bonferroni inequality. We
recommend to apply the Bonferroni inequality for smaller samples with a number
of observations less than 70.

Table 1. Critical values for the maximum type statistics (11) calculated using simula-

tions, the Bonferroni inequality and asymptotic approximation for standard exponential

distribution Exp (1).

α = 0.1 α = 0.05 α = 0.01

n Simul. Bonf. Asymp. Simul. Bonf. Asymp. Simul. Bonf. Asymp.

20 2.625 2.858 3.113 2.895 3.079 3.599 3.429 3.545 4.700
50 2.788 3.123 3.181 3.046 3.325 3.617 3.583 3.758 4.604

100 2.867 3.312 3.226 3.123 3.505 3.637 3.639 3.916 4.570
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If the number of observations n is large, we can use the asymptotic distribution
of max1≤k≤n−1

{
Z2
k

}
to find approximate critical values. Under H0, the Taylor

expansion yields that
max

1≤k≤n−1

{
2Z2

k

}

is equivalent to

max
1≤k≤n−1





n
k(n−k)

(
Sk − k

nSn
)2

(Sn/n)2



 .

From the theory of extremes of random processes, cf. [6], we have

P
(

max
1≤k≤n−1

{√
2 |Zk|

}
>
x+ bn
an

)
≈ 1− exp

(
− 2e−x

)
, (11)

where an =
√

2 log log n and bn = 2 log log n+ 1
2 log log log n− 1

2 log π.

For one-sided alternative δ1>δ2 we may use the test statistic max1≤k≤n−1

{
Sk/Sn

}

or equivalently max1≤k≤n−1

{
Yk/Y

0

k

}
. To find approximate critical values we rec-

ommend again to use the Bonferroni inequality for small n, while for large n we
recommend to use the asymptotic distribution

P


 max

1≤k≤n−1

{√
n

k(n−k) (Sk − k
nSn)

Sn/n

}
>
x+ bn
an


 ≈ 1− exp(−e−x). (12)

Another results based on the “strong invariance principle” can be found in [8].

3.2.3. Sum – type test statistics

A different approach how to derive test statistics for testing problem (6) is a so
called pseudo–Bayesian approach. This approach was applied for the first time by
[4] and [10] for testing a sudden change in a mean of normally distributed random
variables. The test statistic is again an analogue to the log-likelihood ratio under H0

provided a prior distribution of a change point is known and the amount of change
(i. e. |δ2 − δ1|) tends to zero. For the problem (9) with the one-sided alternative
δ2 > δ1 (resp. δ2 < δ1) and under the assumption of a uniform prior distribution of
k over {1, . . . , n− 1}, the statistic

T1 =
√

12
n
√
n

n−1∑

k=1

n∑

j=k+1

(
Yj

Yn
− 1

)
= −

√
12

n
√
nYn

n−1∑

k=1

(
Sk −

k

n
Sn

)

is obtained. The exact distribution of T1 under H0 is again complex but it is pos-
sible to calculate explicitly all its moments since

(
Y1P
Yi
, . . . , YnP

Yi

)
has a Dirichlet

distribution with parameters (1, 1, . . . , 1). Using the central limit theorem it may
be shown that the statistic T1 has asymptotically a standard normal distribution
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N(0, 1). Hence, appropriate quantiles of a normal distribution may serve as approx-
imate critical values. For a better approximation of critical values we may use the
Edgeworth expansion.

It is interesting that the statistic T1 is asymptotically “equivalent” (for large
values of n) to the Laplace test statistic

L =
1

n−1

∑n−1
i=1 τi − 1

2τn

τn
√

1
12(n−1)

.

More precisely, it holds that T1 = −
√

n−1
n L. The Laplace test statistic was sug-

gested to test the null hypothesis that a process is a homogeneous Poisson process
against the alternative that it is a non-homogeneous Poisson process with an inten-
sity λ(t) = eα+β t, for details see Cox and Lewis [5].

It is also worth to notice that the test statistic L is asymptotically equivalent to
a standardized least squares estimator of a slope parameter b in a linear regression

E (Yi) = a+ b i, i = 1, . . . , n− 1,

where the standard deviation is estimated by Yn = n−1
∑n
i=1 Yi = τn/n. If b = 0

then the variables {Yi} have the same exponential distribution with EYi = std Yi = δ
and Yn is a good estimate of the standard deviation. However, if the variables {Yi}
are distributed according to another distribution with smaller variability then it is
reasonable to replace the estimator of the standard deviation by another estimator.
If we estimate the variance by the standard sample variance

s2
LR = (n− 1)−1

∑n

i=1

(
Yi − Yn

)2
,

we get the Lewis–Robinson test statistic

LR1 =
Yn
sLR
·
∑n−1
i=1 τi − n−1

2 τn

τn

√
n−1
12

.

Clearly, the statistic s2
LR is a good estimator of the variance under the null hy-

pothesis claiming that there is no trend. In the case where there is a trend then s2
LR

overestimates the true variance. Therefore some authors recommend to estimate the
variance by

s2
LI =

1
2 (n− 1)

n−1∑

i=1

(
Yi+1 − Yi

)2

and to use the test statistic

LR2 =
Yn
sLI
·
∑n−1
i=1 τi − n−1

2 τn

τn

√
n−1
12

.
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For a two-sided alternative with δ1 6= δ2 we get from the pseudo–Bayesian ap-
proach the statistic

T2 =
1
n

n−1∑

k=1


 1√

n

n∑

j=k+1

(
Yj

Yn
− 1

)


2

=
1

n2 Y
2

n

n−1∑

k=1

(
Sk −

k

n
Sn

)2

.

Under the null hypothesis the statistic T2 converges, as the number of observations
tends to infinity, in distribution to

∫ 1

0
B2(s) ds, where

{
B(t), t ≥ 0

}
is a Brownian

bridge. The distribution of
∫ 1

0
B2(s) ds was studied by Kiefer in [11]. The 5 %

asymptotic critical value is equal to 0.461, the 2.5 % asymptotic critical value to
0.580 and the 1 % asymptotic critical value to 0.743.

Instead of the statistic T2 some authors recommend to use the statistic

T3 =
1
n

n−1∑

k=1

n

k(n− k)




n∑

j=k+1

(Yj
Yn
− 1

)



2

=
1

Y
2

n

n−1∑

k=1

1
k(n− k)

(
Sk −

k

n
Sn

)2

.

The statistic T3 is a so called Anderson–Darling statistic. Under H0 its distribution
tends (as the number of observations n increases) to the distribution of

∫ 1

0
B2(s)
s(1−s) ds.

The 5 % asymptotic critical value is equal to 2.49, the 2.5 % asymptotic critical
value to 3.08 and the 1 % asymptotic critical value to 3.86. In comparison with
T2 the statistic T3 has a larger power when a change occurs in the beginning or
the end of our observations. On the contrary the statistic T2 has a larger power
when a change occurs in the middle of the sample. Similarly as above, if we are
not sure whether the observations {Yi} are distributed according to an exponential
distribution we estimate the true variance by the estimator s2

LI, instead of Y
2

n , and
we get a generalized Anderson–Darling statistic as suggested by Kvaløy in [14].

If nothing is known about the distribution of the variables {Yi = τi+1 − τi}, the
Mann test may be applied. The Mann test is a rank test for testing the null hy-
pothesis that all variables {Yi} are independent identically distributed (i.e a renewal
process is observed) against an alternative of a monotone trend. The test statistic M
is computed by counting the number of reverse arrangements among the interarrival
times {Yi}. We speak about a reverse arrangement of Yi and Yj if Yi < Yj for
i < j. Thus

M =
n−1∑

i=1

n∑

j=i+1

I
(
Yi < Yj

)
,

where I(·) is an indicator function. Under the null hypothesis M is approximately
normally distributed with the expectation n(n− 1)/4 and the variance (2n3 + 3n2−
5n)/72. If the variables {Yi} are stochastically increasing (the intensity of the un-
derlying processes decreases), then the statistic M attains large values. On the other
hand, if the variables {Yi} are stochastically decreasing (the intensity increases) the
statistic M attains small values. For more details see, e. g., classical monograph [9].
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4. ESTIMATION OF INTENSITY OF A POISSON PROCESS

For a homogeneous Poisson process on the interval [0, T ], the maximum likelihood
estimate of λ is of the form

λ̂ =
N(T )
T

.

Notice that all the information about the intensity λ is contained in the value of
the counting process N(T ) so that it is not necessary to know times when events
(failures) occurred. For large T we have

N(T )
T
→ λ and

√
T

λ

(
N(T )
T
− λ

)
∼ N(0, 1).

The maximum likelihood estimate of the mean time between events δ = 1/λ is

δ̂ =
T

N(T )
.

The exact (1− α) 100 % confidence interval for λ has the form
(
χ2
α/2(2N(T ) + 2)

2T
,
χ2

1−α/2(2N(T ) + 2)

2T

)
. (13)

For large T a normal approximation may be used, giving the interval



N(T )+ 1

2u
2
α/2−u1−α/2

√
u2
α/2

4 +N(T )

T
,
N(T )+ 1

2u
2
α/2+u1−α/2

√
u2
α/2

4 +N(T )

T


 .

(14)
Now we will turn to the estimation of a trend in intensity. We start with a

situation that the times 0 < τ1 < · · · < τn ≤ t when the events occurred are known.
Let Y1 = τ1 and Yi = τi − τi−1 denote the times between events. We are especially
interested in models with a monotone intensity to model the reliability growth or
decrease. The goal of statistical inference is to estimate the unknown parameters.

A class of models which have been widely used because of its simplicity is the
non-homogeneous Poisson process described earlier. We focus here on two models.

In the first one the intensity is given by λ(t) = αβ tβ−1 and the cumulative
intensity function is thus Λ(t) = α tβ . The model is called the Weibull process or the
power-law process. It describes either a reliability growth when β > 1 or a reliability
decrease when β < 1. When β = 1, it reduces to a homogeneous Poisson process.
The maximum likelihood estimators of the parameters based on the observation of
the n event times τ1, . . . , τn, have a very simple closed form

α̂ =
n

τ
bβ
n

and β̂ =
n∑n

i=1 ln τn
τi

.
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In the second model, so called exponential-law model, the intensity is given by
λ(t) = eα+β t and the cumulative intensity is thus Λ(t) = eα

β

(
eβt − 1

)
. It describes

a reliability growth if β > 0 or a reliability decrease if β < 0. If β < 0 then
Λ(+∞) <∞ and it means that with a positive probability the process dies out and
we do not get more information about the intensity if we observe the process for a
longer time. To obtain the maximum likelihood estimators of the parameters based
on the observation of the n event times τ1, . . . , τn, we have to solve the equation
for β

n

β
− nτn

1− eβτn +
n∑

i=1

τi = 0.

After obtaining the estimator β̂ as the solution of the preceding equation the esti-
mator α̂ of α has a simple form

α̂ = log
(
nβ̂

)
− log

(
e
bβτn − 1

)
.

Finally we consider the situation that all we know are numbers of events {Ni, i =
1, . . . , q} in consecutive intervals {ti, i = 1, . . . , q}. As EN(t) = Λ(t) a regression
analysis can be done directly in terms of the {Ni}. Supposing that {Ni} have a Pois-
son distribution, their variance increases with their mean. Therefore, [5] suggested
to apply one of the following transformations either log(Ni + 1/2) or

√
Ni + 1/2.

If Λ(t) = αtβ , then log
(
Λ(t)

)
= logα + β log t. Considering log t to be indepen-

dent and log
(
N(t

)
dependent variable, logα and β may be obtained by the least

squares method. As the values {log
(
N(ti)

)
} are neither independent nor identically

distributed the regression technique has to be applied cautiously.

5. EXAMPLE

Sigma Re insurance company published in [16] a list of most costly insurance losses
in 1970 – 1995 due to the hurricanes, tornados, earthquakes, floods, etc., worth of
851 · 106 − 16 · 109 US $. These data were republished and analyzed from the point
of view of large deviations by [7]. Let us look on these data from the point of view
of the theory described in this paper.

The times of events, in days starting January 1st, 1970, are following: 215, 1210,
1552, 1721, 2192, 3532, 3698, 4976, 5098, 6761, 6829, 7197, 7229, 7235, 7329, 7338,
7361, 7899, 7939, 7962, 8271, 8289, 8469, 8646, 8699, 8782, 9147, 9151, 9256, 9407.
Moreover, the end of observations, i. e. December 31st, 1995, corresponds to the
value 9495. It follows that times between the catastrophes (in days) are 995, 342,
169, 471, 1340, 166, 1278, 122, 1663, 68, 368, 32, 6, 94, 9, 23, 538, 40, 23, 309, 18,
180, 177, 53, 83, 365, 4, 105, 151.

Figure 1 presents lengths of intervals between the events (in days) versus index.
Figure 2 presents the counting process N(t) versus time t. Looking at these figures
it seems that there is a change around the tenth observation, i. e., around the 7 000th
day, when the frequency of events started to increase. Let us take a look whether
this suspicion can be “confirmed” by the theory described above.
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Fig. 1. Lengths of intervals between events. Fig. 2. Corresponding counting process.

We have calculated values of the test statistics presented in this paper. All of
them were statistically significant of the level 5 %. The following table summarizes
the values of them.

Test statistic CP1 CP2 T1 L LR1 LR2 T2 T3

Value 5.00 4.93 –3.43 3.49 2.51 2.46 1.36 6.53

5 % asympt. crit.value 3.76 3.76 –1.65 1.76 1.65 1.65 0.46 2.49

In Figure 3 we present the values of statistics forming CP1 and CP2, for details
see (2) and (3), while in Figure 4 we present the values of statistics

√
n

k(n−k) (Sk − k
nSn)

Sn/n

corresponding to the statistic (12) of the max-type considered in Subsection 3.2.2.
We can see that their maximum is larger than both asymptotical critical value as well
as the critical value obtained using the Bonferroni approach, so that we can reject
the null hypothesis of no change in the intensity of appearances of the catastrophes.
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Fig. 3. Statistics forming CP1 and CP2. Fig. 4. Statistics forming (11).
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[1] J. Antoch and M. Hušková: Estimators of changes. In: Nonparametrics, Asymptotics
an Time Series (S. Ghosh, ed.), M. Dekker, New York 1998, pp. 533–578.

[2] J. Antoch, M. Hušková, and D. Jarušková: Off-line quality control. In: Multivariate
Total Quality Control: Foundations and Recent Advances (N. C. Lauro et al. eds.),
Springer–Verlag, Heidelberg 2002, pp. 1–86.

[3] R. E. Barlow and F. Proschan: Mathematical Theory of Reliability. Wiley, New York
1964.

[4] H. Chernoff and S. Zacks: Estimating the current mean of normal distribution which
is subjected to changes in time. Ann. Math. Statist. 35 (1964), 999–1018.

[5] D. R. Cox and P. A. W. Lewis: The Statistical Analysis of Series of Events. Wiley, New
York 1966.
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