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IDEMPOTENT VERSIONS OF HAAR’S LEMMA:
LINKS BETWEEN COMPARISON OF DISCRETE EVENT
SYSTEMS WITH DIFFERENT STATE SPACES
AND CONTROL
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Haar’s Lemma (1918) deals with the algebraic characterization of the inclusion of poly-
hedral sets. This Lemma has been involved many times in automatic control of linear
dynamical systems via positive invariance of polyhedrons. More recently, it has been used
to characterize stochastic comparison w.r.t. linear/integral ordering of Markov (reward)
chains.

In this paper we develop a state space oriented approach to the control of Discrete
Event Systems (DES) based on the remark that most of control constraints of practical
interest are naturally expressed as the inclusion of two systems of linear (w.r.t. idempotent
semiring or semifield operations) inequalities. Thus, we establish tropical version of Haar’s
Lemma to obtain the algebraic characterization of such inclusion. As in the linear case this
Lemma exhibits the links between two apparently different problems: comparison of DES
and control via positive invariance. Our approach to the control differs from the ones based
on formal series and is a kind of dual approach of the geometric one recently developed.

Control oriented applications of the main results of the paper are given. One of these
applications concerns the study of transportation networks which evolve according to a
time table. Although complexity of calculus is discussed the algorithmic implementation
needs further work and is beyond the scope of this paper.
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1. INTRODUCTION

In 1918, Haar demonstrated the following result which provides an algebraic char-
acterization of the inclusion of two polyhedral sets. For more details see e. g. [20].
Let ≤n denotes the component-wise order or product order on Xn where (X ,≤) is
a poset, i. e. x ≤n y def⇔ ∀ i, xi ≤ yi. Let (R,≤) be the naturally ordered set of real
numbers, we have.
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Result 1. (Lemma of Haar) Let P (resp. Q) be an m×d (resp. m′×d) matrix. Let
p (resp. q) be a m (resp. m′) dimensional column vector. The following assertion

∅ 6= {x ∈ Rd : Px ≤m p} ⊆ {x ∈ Rd : Qx ≤m′ q},

is true if and only if (iff) there exists an m′ ×m matrix H which entries are non-
negative and such that the following conditions hold:

(i) Q = HP, (ii) Hp ≤m′ q.

In the case where p and q are equal to the null vector (i. e. the homogeneous
case), Haar’s Lemma reduces to Farkas’ lemma [16]. A recent reference for such
material is [22, p. 58–61]. Recall that Haar’s Lemma has been involved many times
in automatic control of linear dynamical systems when the constraint domains (state
and/or control) are polyhedrons (see e. g. [21, 29]).

From Haar’s Lemma, we deduce our main reference result dealing with the inclu-
sion of polyhedrons included in the non-negative orthant.

Result 2. The following assertion

∅ 6= {x ∈ Rd : Px ≤m p} ∩ Rd+ ⊆ {x ∈ Rd : Qx ≤m′ q} ∩ Rd+,

is true iff there exists an m′ ×m matrix H which entries are non-negative and such
that the following conditions hold:

(i) Q ≤ HP, (ii) Hp ≤m′ q.

Up to a change of operations, it will be noticed that Result 2 is very similar to
Corollary 1 (see also Remark 3).

In [1, 2] it has been shown that the algebraic characterization of the inclusion
of two polyhedral sets provided by Haar’s Lemma is the fundamental notion for
the characterization of the comparison and the positive invariance of discrete-time
Markov (reward) chains in particular and linear systems in general. Here this idea
is investigated in the context of the comparison and the control of DES.

The main results of this paper are as follows. In the first part we establish two
idempotent forms of Haar’s Lemma corresponding to two important idempotent
structures, that are complete idempotent semirings and complete idempotent semi-
fields. The second formulation (i. e. Corollary 1) is a specification of the first one
(i. e. Theorem 1) and is very similar to Result 2. The proof of the two idempotent
forms of Haar’s Lemma is based on the residuation theory and therefore stresses
the relationship between residuation and duality early noticed by Wagneur (see e. g.
[34]) in a very simple way. This relation seems to be very natural in quantales theory
or Heyting algebra but not so familiar in the context of DES.

In a second part we study two apparently different problems: (A) the comparison
of DES and (B) the control of DES.
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A: Comparison of DES. The arguments for the relevance of the development
of a theory of the comparison of DES are the same as the ones for comparison of
stochastic processes (see e. g. the preface of [28]). One argument is that it is useful to
establish comparison between the two systems (d,⊗, A) and (d′,⊗, B) respectively
defined below by (1) and (2) to obtain tractable calculus for performance criteria of
DES keeping control on approximation error made. For further explanations in the
context of DES see also [33]. In this paper we study a particular type of comparison
called in this paper (K,K′)-comparison. The (K,K′)-comparison is defined as fol-
lows. Let (S,⊕,⊗, ε, e) be a complete idempotent semiring or complete idempotent
semifield (see definitions in Subsection 2.3). Let us now consider the two linear sys-
tems over (S,⊕,⊗, ε, e) specified by (d,⊗, A) and (d′,⊗, B) and respectively defined
by:

(d,⊗, A) :

{
x(0) ∈ Sd,
x(n) = A⊗ x(n− 1), n ≥ 1,

(1)

and
(d′,⊗, B) :

{
y(0) ∈ Sd′ ,
y(n) = B ⊗ y(n− 1), n ≥ 1,

(2)

with d, d′ ∈ N, N denotes the set of non-negative integers, and A (resp. B) is a d×d
(resp. d′ × d′) matrix. The ith (resp. i′th) component of vector A⊗ x, i = 1, . . . , d,
(resp. B ⊗ y, i′ = 1, . . . d′) is defined by:

⊕d
j=1 ai,j ⊗ xj (resp.

⊕d′

j′=1 bi′,j′ ⊗ yj′).
Let K (resp. K′) be an m×d (resp. m×d′) matrix. Now, let us consider the binary
relation denoted ≤K,K′ and defined by:

∀x ∈ Sd, ∀, y ∈ Sd′ : x≤K,K′y def⇔ K⊗ x ≤m K′ ⊗ y. (3)

The choice of the matrices K and K′ is generally guided by the nature of the problem
(see e. g. the example of Subsection 5.2 and also the discussion in [33, Introduction]).
The systems (d,⊗, A) and (d′,⊗, B) are said to be (K,K′)-comparable if the following
assertion

∀x(0) ∈ Sd, ∀ y(0) ∈ Sd′ ,
(
x(0)≤K,K′y(0)⇒ ∀n ∈ N, x(n)≤K,K′y(n)

)
(4)

is true. Based on Haar’s Lemma we characterize the assertion (4). The main re-
sults are Theorem 2 (semiring case) and Corollaries 2 and 3 (semifield case). We
generalize a pioneer paper on this subject [31], and also [25] and [33]. When the
assertion (4, with d = d′ and A = B) is true we say that the system (d,⊗, A) is
(K,K′)-monotone. The characterization of the (K,K′)-monotonicity is given in The-
orem 3 and Corollary 4. As mentioned in Remark 4 the Corollary 4 generalizes [30,
Theorem 4.2]. Note that when d = d′, K = K′ = I, where I denotes the identity
matrix over S, ≤K,K′ is reduced to ≤d, (4) is true iff A ≤ B (entry-wise comparison)
and the (I, I)-monotonicity is verified by any matrix over S. Monotonicity is of
particular importance because part of the results concerning monotonicity will be
used to solve some control problems studied in this paper. In the case of complete
idempotent semifield we comment on the complexity of the computations involved
as follows. The computation of the optimal (in the sense of the entry-wise order
between matrices) lower bound, i. e. the matrix A associated to the system (1) only
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requires product of the given matrices K, K′ and B. The computation of an upper
bound, i. e. a matrix B associated with system (2) for given matrices K, K′ and
A, seems to be tractable but mainly depends on the structure of the matrices K
and K′. Partial answer to these problems can be found elsewhere in e. g. [33] but
a detailed study needs further work. The characterization of a (K,K′)-monotone
operator for given matrices K and K′ is naturally expressed as a sub-fixed point of
a Min-Max type function for which there exist computational algorithms (see e. g.
[11, 13, 17]) which behave well in practice although no precise information about
their complexities is known this time.

B: Control of DES. Our approach to the control of DES is based on a state
space representation and positive invariance of some domain. So, it differs from
the ones based on transfer series methods [6] which have been successfully applied
to solve control problems via positive invariance (see e. g. [26, Chapter 5], [27]).
Because transfer series are particular cases of formal series we mention that similar
concepts have been developed and applied in language theory (see e. g. [24]). We
study a particular case of geometric approach applied to the control of DES which
concerns the problem of the algebraically (A,B)-invariance also known as (A ⊕
B ⊗ F )-invariance of some domain to be defined in the sequel. It seems that the
closest referenced work on the subject we study is [23, Section 5]. For a more
complete overview of methods we refer the reader to [23, and references therein].
More precisely our problem is formalized as follows. Let us consider the linear
system over a complete idempotent semiring or semifield (S,⊕,⊗, ε, e) defined by:





x(0) ∈ Sd,
x(n) = A⊗ x(n− 1)⊕B ⊗ u(n), ∀n ≥ 1
u(n) = F ⊗ x(n− 1),

(5)

with A a d×d matrix, B a d×m matrix, and F is an m×d matrix to be determined.
Any F is called a linear feedback. Note that (5) can be rewritten as the resulting
closed loop system: {

x(0) ∈ Sd,
x(n) = Ω⊗ x(n− 1)

(6)

with Ω := A⊕B ⊗ F .
We study two kind of domains. The first one is inspired by [7, Sections 3 and 4]

which is related to the viability theory [5]. We study the property that the entire
state trajectory for all possible trajectories of the closed loop system (5) is kept
in a given domain called target tube modelled by a series of subsets of Sd (Tn)n∈T,
T = {0, 1, 2, . . .} ⊆ N. It means that we require the following assertion:

∀n ∈ T \ {0}, ∀x ∈ Sd, (x ∈ Tn−1 ⇒ Ω⊗ x ∈ Tn) (7)

to be true. When the sets Tn are idempotent polyhedral sets (as defined by (11)) the
results are as follows. We derive necessary and sufficient condition for the existence
of the optimal linear feedback such that (7) is true (see Theorem 4). For finite target
tube of idempotent polyhedral sets the computation of F can be done in polynomial
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time. When T = N we only give a partial answer to the problem of computation in
Proposition 3 of Section 5. But this problem needs further work.

The second kind of domains concerns the idempotent semimodules of the form:

SG,G′ def= {x ∈ Sd : G⊗ x ≤m G′ ⊗ x}, (8)

with G and G′ m × d matrices. The approach of the control is based on the (Ω :=
A ⊕ B ⊗ F )-invariance of the semimodule SG,G′ . Note that the Ω-invariance of a
domain V ⊆ Sd corresponds to (7, with T = N, ∀n ∈ T, Tn = V), i. e.:

V is Ω-invariant def⇔
(
∀x ∈ Sd, (x ∈ V ⇒ Ω⊗ x ∈ V)

)
. (9)

This kind of domains is involved when the constraints that the controlled system
(d,⊗,Ω) must satisfy are of the form:

∀n ∈ N, G⊗ x(n) ≤m G′ ⊗ x(n). (10)

We remark that the (G,G′)-monotonicity of Ω implies the Ω-invariance of SG,G′ (see
Proposition 2). Thus, if G ⊗ x(0) ≤m G′ ⊗ x(0) and Ω is (G,G′)-monotone then
(10) is true. This latter argument proves Theorem 5 and Corollary 5 which provide
sufficient condition for the existence of a linear feedback. The computation of such
feedback over idempotent semifield is naturally expressed as a sub-fixed point of a
Min-Max type function and previous remarks apply for computational algorithms.
Let us note that in this paper the conditions that the idempotent structure must sat-
isfy are weaker than the one of [23] and [18] which imposed sufficient condition on S
for semimodules defined on S to be finitely generated or rational and then derive nec-
essary and sufficient condition for (A,B)-invariance. Although the (A,B)-invariance
is a more general approach to the control than the (A ⊕ B ⊗ F )-invariance (which
directly concerns our work) the restrictions on the underlying algebraic structure S
are still required for the control via (A⊕B ⊗ F )-invariance in [23]. The theoretical
results based on monotonicity are applied to the study of transportation networks
which evolve according to a time table. The numerical example is borrowed from
[23, Section 6] which corresponds to the particular case: G := K⊗Ω and G′ := I. In
fact the author in [23, Section 5] studies the problem of the existence and the com-
putation of a maximal algebraically (A,B)-invariant semimodule of the form Im(Q)
which denotes the set of all linear combinations of the columns of Q, where Q is a
given matrix with a finite number of columns. When G′ = I we have SG,I = Im(G∗),

where G∗ def= I ⊕G⊕G⊗2 ⊕ · · · ⊕G⊗n ⊕ · · · , if exists. Where G⊗n def= G⊗ . . .⊗G
(n-fold) if n ≥ 1, and I if n = 0. Thus, our approach could be considered as a kind
of dual approach of the one developed in [23]. A numerical example on network
transportation illustrates this discussion in Subsection 5.2.

This paper is organized as follows. In Section 2, we introduce the main notations
used in this paper and we present the main definitions and concepts concerning
idempotent algebra. Our main references are ([6, 8, 19]). In Section 3, we prove two
idempotent versions of Haar’s Lemma over complete idempotent semirings and com-
plete idempotent semifields. In Section 4, we apply Haar’s Lemma in Subsection 4.1
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to characterize the (K,K′)-comparison of DES. Characterization of monotonicity of
idempotent operator is also derived in Subsection 4.2 as a particular case of compar-
ison. In the Subsection 4.3 we study the existence and the computation of a linear
feedback (possibly optimal) such that the resulting closed loop system has its entire
trajectory in a specified domain for all or a part of the trajectories of the closed loop
system. We illustrate theoretical results of the paper in Section 5. Finally, let us
mention that the numerical computations are done by hand and that the implemen-
tation of the algorithms needs further work which is beyond the scope of this paper.
It is also expected that the algorithms provide more accurate numerical results.

2. PRELIMINARIES

In this section we introduce the notations and definitions used throughout the paper
and we recall basic statements on max-plus algebra and residuation theory needed
in the paper. More details can be found in e. g. ([6, 8] and [19]).

2.1. Notations and definitions

• Recall that ≤n denotes the component-wise order or product order on Xn
where (X ,≤) is a poset (i. e. x ≤n y def⇔ ∀ i, xi ≤ yi).
• All vectors are column vectors.

• The set of (m×d)-dimensional matrices with entries in a semiring or semifield
S will be denoted by Mm,d(S).

• For all matrix A, ai,j , al,· and a·,k respectively denote the entry (i, j), the lth
row and the kth column of A.

• If A,B ∈ Mm,n(S) then A ≤ B denotes the entry-wise comparison of the
matrices A and B.

• Let P ∈ Mm,d(S) and p be an m-dimensional vector. The set P(P, p) associ-
ated with (P, p) is defined by:

P(P, p) def= {x ∈ Sd : P ⊗ x ≤m p}. (11)

In the usual linear algebra, P(P, p) is called a polyhedral set.

2.2. Ordered sets and elements of residuation theory

Let (Ω,≤) be a partially ordered set. (Ω,≤) is a sup semilattice (resp. inf semilattice)
iff any set {ω1, ω2} ⊂ Ω has a supremum

∨{ω1, ω2} (resp. an infimum
∧{ω1, ω2}).

(Ω,≤) is a lattice iff (Ω,≤) is a sup and inf semilattice. (Ω,≤) is complete iff any
set A ⊂ Ω has a supremum

∨
A. A complete ordered set is also a complete lattice

because
∧
A

def=
∨{ω ∈ Ω : ∀ a ∈ A, ω ≤ a}. A lattice is distributive iff ∧ and ∨

are distributive with respect to (w.r.t.) one another.
A map f : (Ω,≤) → (Ω′,¹), where (Ω,≤) and (Ω′,¹) are two ordered sets, is

(≤,¹)-monotone if it is a compatible morphism with respect to ≤ and ¹. The map
f : (Ω,≤) → (Ω′,¹) is residuated iff there exists a map f \ : (Ω′,¹) → (Ω,≤) such
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that: ∀ω ∈ Ω, ∀ω′ ∈ Ω′, f(ω) ¹ ω′ ⇔ ω ≤ f \(ω′). This map can be defined as
follows: f \(·) def=

∨
{ω ∈ Ω : f(ω) ≤ · }.

A monotone map f : (Ω,≤) → (Ω′,¹), where (Ω,≤) and (Ω′,¹) are complete
sets, is said to be continuous iff ∀A ⊂ Ω, f(

∨
≤A) =

∨
¹ f(A),

∨
≤ (resp.

∨
¹)

denotes the supremum w.r.t. ≤ (resp. ¹); f(A) def= {f(a) : a ∈ A}. The follow-
ing result (see e. g. [8, Th. 5.2] or [6, Th. 4.50]) provides a characterization for a
residuable function over two complete ordered sets.

Result 3. Let (Ω,≤) and (Ω′,¹) two complete sets. A map f : (Ω,≤) → (Ω′,¹)
is residuated iff f is continuous and f(

∧
Ω) =

∧
Ω′.

2.3. Basic algebraic structures

For any set S, (S,⊕,⊗, ε, e) is a semiring if (S,⊕, ε) is a commutative monoid,
(S,⊗, e) is a monoid, ⊗ distributes over ⊕, the neutral element ε for ⊕ is also
absorbing element for ⊗, i. e. ∀ a ∈ S, ε⊗a = a⊗ε = ε, and e is the neutral element
for ⊗.

(S,⊕,⊗, ε, e) is an idempotent semiring (called also dioid) if (S,⊕,⊗, ε, e) is a
semiring, the internal law ⊕ is idempotent, i. e. ∀ a ∈ S, a ⊕ a = a. If (S,⊗, e)
is a commutative monoid, then the idempotent semiring (S,⊕,⊗, ε, e) is said to be
commutative.

(S,⊕,⊗, ε, e) is a an idempotent semifield if (S,⊕,⊗, ε, e) is an idempotent semir-
ing and (S \ {ε},⊗, e) is a group, i. e. (S \ {ε},⊗, e) is a monoid such that all its
elements are invertible (∀ a ∈ S\{ε}, ∃ a⊗−1 : a ⊗ a⊗−1 = a⊗−1 ⊗ a = e). Also if
(S\{ε},⊗, e) is a commutative monoid, then the idempotent semifield (S,⊕,⊗, ε, e)
is said to be commutative.

Let (S,⊕,⊗, ε, e) be an idempotent semiring. Each element of Sn is a n-dimensional
column vector. We equip Sn with the two laws ⊕ and · as follows: ∀x, y ∈
Sn, (x ⊕ y)i = xi ⊕ yi, ∀ s ∈ S, (s · x)i

not.= (s ⊗ x)i
def= s ⊗ xi, i = 1, . . . , n.

The addition ⊕ and the multiplication ⊗ are naturally extended to matrices with
compatible dimension. Any n × p matrix A is associated with a (⊕,⊗)-linear map
A : Sp → Sn. The (i, j) entry, the lth row-vector and the kth column-vector of
matrix A, are respectively denoted ai,j , al,· and a·,k. Let (S,⊕,⊗, ε, e) be an idem-
potent semiring or an idempotent semifield, then (S,⊕, ε) is an idempotent monoid,
which can be equipped with the natural order relation ≤ defined by:

∀ a, b ∈ S, a ≤ b def⇔ a⊕ b = b. (12)

We say that (S,⊕,⊗, ε, e) is complete if it is complete as a naturally ordered set
and if the respective left and right multiplications, λa, ρa : S → S, λa(x) = a ⊗ x,
ρa(x) = x ⊗ a are continuous for all a ∈ S. In such case we adopt the following
notations for all a, b ∈ S:

λ\a(b) not.= a\b def=
∨{x ∈ S : a⊗ x ≤ b},

ρ\a(b) not.= b/a
def=

∨{x ∈ S : x⊗ a ≤ b}.
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A typical example of complete dioid is the top completion of an idempotent
semifield. Let us note that if a ∈ S is invertible then: a\b = a⊗−1 ⊗ b and b/a =
b ⊗ a⊗−1. And if ⊗ is commutative then: a\b = b/a

not.= a
b . Let us note also that

as S is complete it possesses a top element
∨
S not.= >. We have by convention the

following identities:

ε⊗> = >⊗ ε = ε, and ∀ a ∈ S, a⊕> = >, a ∧ > = > ∧ a = a. (13)

We suppose besides that (for a discussion to this topic, see e. g. ([6, pp. 163–164]):

∀ a 6= ε, a⊗> = >⊗ a = >. (14)

By definition of / (idem for \) and properties of >, ε and of [14] we have for all
a ∈ S:

a/ε = >, >/a = >, (15)

a/> =
{
ε if a 6= >
> if a = > ε/a =

{
ε if a 6= ε
> if a = ε

. (16)

We mention below (Table 1) the list of remarkable identities of the operator /
(similar relations for \) that will serve us thereafter. The left column gives valid for-
mulas for idempotent semirings (see [6, p. 183]) and the right column valid formulas
for idempotent semifields whose elements possess the reflexive property in the sense
of ([12, Section 4.3]).

Table 1. Formulas using the division /.

semiring semifield
(e.1) x/(a⊕ b) = x/a ∧ x/b x/(a⊕ b) = x/a ∧ x/b (f.1)
(e.2) x/(a ∧ b) ≥ x/a⊕ x/b x/(a ∧ b) = x/a⊕ x/b (f.2)
(e.3) (x⊕ y)/a ≥ x/a⊕ y/a (x⊕ y)/a = x/a⊕ y/a (f.3)
(e.4) (x⊗ a)/a ≥ x (x⊗ a)/a ≥ x (f.4)

The operations /, \ are extended to matrices and vectors with compatible dimen-
sions assuming that all the elements of these matrices and vectors are in a complete
set S:

(A\y)i = ∧j (aj,i\yj); (17)

(A\B)i,j
def= (

∨{X : A⊗X ≤ B})i,j = ∧k (ak,i\bk,j); (18)

(D/C)i,j
def= (

∨{X : X ⊗ C ≤ D})i,j = ∧l (di,l/cj,l). (19)

A\B/C def=
∨{X : A⊗X ⊗ C ≤ B} = A\(B/C) = (A\B)/C (20)

with ≤ denoting the entry-wise comparison of matrices.
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3. IDEMPOTENT VERSIONS OF HAAR’S LEMMA

In this section we present two idempotent versions of Haar’s Lemma (cf. Result 1).
The first version (cf. Theorem 1) is given for complete idempotent semirings. This
version is more general than the second version (cf. Corollary 1) that is valid for
complete idempotent semifields. We will note that this second version is very similar
to the initial form of Haar’s Lemma, that was formulated in the usual linear algebra
(cf. Result 2).

Theorem 1. Let (S,⊕,⊗, ε, e) be a complete idempotent semiring and P,Q ∈
Mm,d(S). Let p, q two m-dimensional vectors. The following assertion

P(P, p) ⊆ P(Q, q),
is true iff

Q ≤ q/(P\p). (21)

P r o o f . We proceed by logical equivalence.
The assertion P(P, p) ⊆ P(Q, q) can be rewritten as follows:

∀x ∈ Sd, (P ⊗ x ≤m p⇒ Q⊗ x ≤m q),

which is equivalent to by definition of \:

∀x ∈ Sd, (x ≤d P\p⇒ Q⊗ x ≤m q).

Because ⊗ is non-decreasing the implication above is true iff Q⊗ (P\p) ≤m q. And
by definition of / this last inequality is equivalent to Q ≤ q/(P\p) which proves the
result. ¤

Before expressing the version of Haar’s Lemma for complete idempotent semifields
we need the following result. For any vector v we define the following sets:

supp(v) = {l : vl 6= ε}, Tv = {l : vl 6= >}. (22)

We adopt the following convention:∧

∅
= >,

⊕

∅
= ε. (23)

The set ξ denotes the complementary set of ξ.

Lemma 1. Let (S,⊕,⊗, ε, e) be a complete idempotent semifield. LetA ∈Mm,d(S),
b, g ∈ Sm, and assume that the two following conditions hold:

(H0) : ∀ j ∈ {1, . . . , d}, supp(a·,j) 6= ∅ (A have no null columns),

(H1) : ∀ j ∈ {1, . . . , d}, supp(b) ∩ Ta·,j = ∅.
Then we have:

b/(A\g) = (b/g)⊗A. (24)
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P r o o f . We first calculate every term of the equality (24), using equations (18)
and (19).

Define Lj = supp(a·,j) ∩ Tg . For all i, j, we have:

(b/(A\g))i,j = bi/(∧ml=1(al,j\gl))
= bi/(∧l∈Lj (al,j\gl)) (properties of > and ∧, (13)).

In the same way, using of the sets Lj and Lj , we obtain:

((b/g)⊗A)i,j = ⊕l∈Lj ((bi/gl)⊗ al,j)⊕ (⊕l∈Lj ((bi/gl)⊗ al,j)) .

1st case: Lj = ∅, i. e. ∀ l = 1, . . . ,m, gl = > or al,j = ε.
In this case, using (16), we have on the one hand:

(b/(A\g))i,j = bi/> =

{
> if bi = >
ε if bi 6= >.

On the other hand, we remark that: if bi 6= > then ∀ l ∈ Lj , (bi/gl)⊗ al,j = ε, and
if bi = > then (H0) implies ∃ l, (bi/gl) ⊗ al,j = >. According to these remarks we
have:

((b/g)⊗A)i,j = ⊕l∈Lj ((bi/gl)⊗ al,j) =

{
> if bi = >
ε if bi 6= >

,

and the assertion is verified.

2nd case: Lj 6= ∅ and (∀ l ∈ Lj , gl 6= ε and al,j 6= >).
In this case ∀ l ∈ Lj , al,j and gl are invertible and we have:

(b/(A\g))i,j = bi/(∧l∈Lj (al,j\gl))
= ⊕l∈Lj (bi/(al,j\gl)) (by (f.2))
= ⊕l∈Lj bi ⊗ (a⊗−1

l,j ⊗ gl)⊗−1

= ⊕l∈Lj bi ⊗ g⊗−1
l ⊗ al,j

= ⊕l∈Lj ((bi/gl)⊗ al,j)
= ((b/g)⊗A)i,j .

3rd case: Lj 6= ∅ and (∃ l ∈ Lj , gl = ε or al,j = >).
In this case, either we have: ∃ l ∈ Lj , gl = ε and al,j = > and in this case

according to (13), (14), (15), (16), for all bi ∈ S, (b/(A\g))i,j = > and ((b/g)⊗A)i,j =
> hence the equality holds. Or, we have: ∃ l ∈ Lj , gl 6= ε and al,j = >. According
to (H1) then bi 6= ε and we have: (b/(A\g))i,j = > = ((b/g)⊗A)i,j .

In any case the equality between the two terms of the assertion (24) is verified
for all i, j, therefore the result is proved. ¤

Now we are able to express the following corollary.
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Corollary 1. Let (S,⊕,⊗, ε, e) be a complete idempotent semifield.
Let P,Q ∈ Mm,d(S). Let p and q be two m-dimensional vectors. We assume that
the hypotheses (H0) and (H1) of Lemma 1 are verified for P , p and q. The assertion

P(P, p) ⊆ P(Q, q),

is true iff
∃H ∈Mm,m(S), (i) Q ≤ H ⊗ P, (ii) H ⊗ p ≤m q. (25)

P r o o f . (Necessity.) As a complete idempotent semifield is a particular case of
complete idempotent semiring, Theorem 1 can be applied. Using Lemma 1, the term
q/(P\p)) on the right hand of the equation (21) is equal to ((q/p) ⊗ P ), then (21)
becomes: Q ≤ (q/p)⊗ P. (26)

It is sufficient to take H = q/p. By definition of / it is clear that the condition (ii) of
the corollary holds true, and from (26) it is trivial to check that (i) is also satisfied.
(Sufficiency.) Obvious. ¤

Remark 1. Let us note that the form of this result is very close to the form of
Result 2. This is due to the fact that all elements of a semifield or a semiring are
positive w.r.t. the natural order defined by (12).

4. APPLICATIONS OF IDEMPOTENT VERSIONS OF HAAR’S LEMMA

The main aim of this section is to show as indicated in the introduction that the two
idempotent versions of Haar’s Lemma over the two complete idempotent structures
(semiring and semifield) play a central role in two different problems. The first one
is the characterization of the (K,K′)-comparison of DES which is mainly motivated
by obtaining models for which performance evaluation is simpler. The second one
is the control of DES using the properties of positive invariance of some domains to
be specified. Control of DES based on positive invariance of transfer series has been
successfully applied in e. g. [26] and [27]. Positive invariance has also been used as a
corollary of the geometric approach developed in [23]. Here, we explore a third way.
We also mention a fourth way which is being explored. It is inspired by the second
method of Lyapunov (see [3, 4] and generalized a previous work (see [32]).

4.1. (K,K′)-comparison of discrete event systems

Consider now the two linear systems (d,⊗, A) and (d′,⊗, B) over a complete idempo-
tent semiring or a complete idempotent semifield (S,⊕,⊗, ε, e) respectively defined
by (1) and (2). In this subsection, we use the two idempotent versions of Haar’s
Lemma to give necessary and sufficient conditions for the (K,K′)-comparison of these
two linear systems.

We assume that the matrices K ∈Mm,d(S \ {>}) and K′ ∈Mm,d′(S \ {>}) have
no null columns and matrix K′ has no null rows. In this case the hypotheses (H0)
and (H1) of Lemma 1 are verified.



380 M. AGMANE AND L. TRUFFET

Noticing that the (K,K′) comparison (4) of systems (d,⊗, A) and (d,⊗, A) is
equivalent to:

∀x ∈ Sd, ∀ y ∈ Sd′ : x≤K,K′y ⇒ A⊗ x≤K,K′B ⊗ y, (27)

we have the following theorem.

Theorem 2. (NSC of (K,K′)-comparison) The two systems (d,⊗, A) and (d′,⊗, B)
respectively defined by (1) and (2) over a complete idempotent semiring (S,⊕,⊗, ε, e)
are (K,K′)-comparable iff the following condition holds:

∀ y ∈ Sd′ : K⊗A ≤ (K′ ⊗B ⊗ y)/(K\(K′ ⊗ y)). (28)

P r o o f . By definition of the (K,K′)-comparison (3), the assertion (27) can be
rewritten as follows:

∀x ∈ Sd, ∀ y ∈ Sd′ : K⊗ x ≤m K′ ⊗ y ⇒ K⊗A⊗ x ≤m K′ ⊗B ⊗ y

which is equivalent to:

∀ y ∈ Sd′ : P(K,K′ ⊗ y) ⊆ P(K⊗A,K′ ⊗B ⊗ y).

Applying the first idempotent version of Haar’s Lemma (cf. Theorem 1) with
{

P := K, p := K′ ⊗ y
Q := K⊗A, q := K′ ⊗B ⊗ y,

this last assertion is true iff

∀ y ∈ Sd′ : K⊗A ≤ (K′ ⊗B ⊗ y)/(K\(K′ ⊗ y)). ¤

In the specific case of complete idempotent semifield, we get the following corol-
lary.

Corollary 2. Let (d,⊗, A) and (d′,⊗, B) be the two systems defined by (1) and
(2), respectively, and assume that (S,⊕,⊗, ε, e) is a complete idempotent semifield.
Then, the two systems are (K,K′)-comparable iff

∀ y ∈ Sd′ : K⊗A ≤ (K′ ⊗B ⊗ y/K′ ⊗ y)⊗K. (29)

P r o o f . As a complete idempotent semifield is a particular case of complete
idempotent semiring, Theorem 2 can be applied, hence (28) holds. The result is
then obtained thanks to Lemma 1. ¤

A second characterization for the (K,K′)-comparison of linear systems over a
complete idempotent semifield can be deduced from the following lemma.
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Lemma 2. Let (S,⊕,⊗, ε, e) be a complete idempotent semifield and D,C ∈
Mm,d′(S). The following equality holds true:

∧

y∈Sd′
((D ⊗ y)/(C ⊗ y)) = D/C. (30)

P r o o f . For all i, j we have (D/C)i,j = ∧d′l=1(di,l/cj,l). Now we focus our attention
on ((D ⊗ y)/(C ⊗ y))i,j . And

((D ⊗ y)/(C ⊗ y))i,j = (di,· ⊗ y)/(cj,· ⊗ y)

= (di,· ⊗ y)/(⊕d′l=1(cj,l ⊗ yl))
= ∧d′l=1(di,· ⊗ y)/(cj,l ⊗ yl). (by (f.2))

For all l we have:

(di,· ⊗ y)/(cj,l ⊗ yl) = ⊕k(di,k ⊗ yk)/(cj,l ⊗ yl)
≥ (di,l ⊗ yl)/(cj,l ⊗ yl)

.

Since ⊗ is associative, we notice that for all index l we have:

(((di,l ⊗ yl)/yl)/cj,l)⊗ cj,l ⊗ yl ≤ di,l ⊗ yl.

Therefore:
∀ l : (di,l ⊗ yl)/(cj,l ⊗ yl) ≥ ((di,l ⊗ yl)/yl)/cj,l.

Since (f.4) : (di,l ⊗ yl)/yl ≥ di,l, and since x 7→ x/cj,l is increasing ∀ l, then

(di,l ⊗ yl)/(cj,l ⊗ yl) ≥ (di,l/cj,l).

It remains to show that for all i, j, we can find a vector which reaches (D/C)i,j .
Since {1, . . . , d′} is a finite set, ∃ l∗ : (D/C)i,j = di,l∗/cj,l∗ . In this case we take
y∗ ∈ Sd′ defined by:

y∗ ∈ Sd′ :

{
y∗l = e if l = l∗,

y∗l = ε otherwise.

Then it is easy to check that:

((D ⊗ y∗)/(C ⊗ y∗))i,j = di,l∗/cj,l∗ . ¤

From Lemma 2 we deduce an algebraic characterization of the (K,K′)-comparison
of linear systems over a complete idempotent semifields as follows.

Corollary 3. Let (d,⊗, A) and (d,⊗, B) be the two systems respectively defined by
(1) and (2) over a complete idempotent semifield (S,⊕,⊗, ε, e). A characterization
of the (K,K′)-comparison is

K⊗A ≤ ((K′ ⊗B)/K′)⊗K. (31)
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P r o o f . Thanks to Corollary 4.1, the assertion (29) is equivalent to:

K⊗A ≤
∧

y∈Sd′

[
((K′ ⊗B ⊗ y)/(K′ ⊗ y))⊗K

]

=
[ ∧

y∈Sd′

(
(K′ ⊗B ⊗ y)/(K′ ⊗ y)

)]
⊗K by distributivity of ⊗ over ∧.

Applying Lemma 2, with D := K′ ⊗B and C := K′, the result is obtained. ¤

Remark 2. In the case where (S,⊕,⊗, ε, e) is a complete idempotent semiring, the
condition (31) is a sufficient condition for the (K,K′)-comparison of the two systems
(d,⊗, A) and (d′,⊗, B).

Remark 3. Assuming K, K′ and B known, there exists a unique optimal upper
bound on the set of matrices A satisfying (31) which is K\(((K′⊗B)/K′)⊗K). The
computation of this bound depends on the size of the matrices K, K′ and B.

Assuming K, K′ and A known the computation of a matrix B satisfying (31) can
be done by the following non optimal procedure:

Step 1. Find a matrix C such that: K⊗A ≤ C ⊗K.

Step 2. Then, find a matrix B such that: K′ ⊗B ≥ C ⊗K′.
Because of the assumptions on matrices K and K′ the steps 1 and 2 always have
solution but the existence and the computation of an optimal matrix B seems to be
a more difficult problem which requires further attention.

4.2. (K,K′)-monotonicity of matrix

In this subsection, the matrices K and K′ are assumed to have the same dimensions,
i. e. d = d′, have no null column vectors and are elements ofMm,d(S \ {>}). In this
case the hypotheses (H0) and (H1) of Lemma 1 are verified.

We remark that the system (d,⊗, A) is (K,K′)-monotone, i. e. (4, with d = d′

and A = B) is true, is equivalent to:

∀x, y ∈ Sd, x ≤K,K′ y ⇒ A⊗ x ≤K,K′ A⊗ y. (32)

Thus, we just have to specify Theorem 2 in the case where A = B. And we obtain
the following criteria for the matrix A to be (K,K′)-monotone.

Theorem 3. (NSC of (K,K′)-monotonicity of matrix) Let A ∈ Md,d(S) in a
complete idempotent semiring (S,⊕,⊗, ε, e). The matrix A is (K,K′)-monotone iff

∀ y ∈ Sd : K⊗A ≤ (K′ ⊗A⊗ y)/(K\K′ ⊗ y). (33)

In the case where (S,⊕,⊗, ε, e) is a complete idempotent semifield, we obtain the
following corollary.
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Corollary 4. Let A ∈ Md,d(S) in a complete idempotent semifield (S,⊕,⊗, ε, e).
Then, the matrix A is (K,K′)-monotone iff

K⊗A ≤ (K′ ⊗A/K′)⊗K. (34)

Remark 4. In the case where K = K′ the above-mentioned Corollary coincides
with [30, Theorem 4.2] obtained by a different proof.

Remark 5. Rewriting (34) as follows: A ≤ K\((K′ ⊗ A/K′) ⊗ K) we see that
the computation of a (K,K′)-monotone matrix A is naturally formalized as a sub-
fixed point computation problem of a Min-Max type function for which there exist
computational algorithms which well behave in practice (see e. g. [11, 13, 17]).

4.3. Control of discrete event systems

In this subsection, we study the existence and the computation of a (static) linear
state feedback such that the closed loop system (d,⊗,Ω) defined by (6) enjoys the
property (7): i. e. ∀n ∈ T \ {0}, ∀x ∈ Sd, (x ∈ Tn−1 ⇒ Ω⊗ x ∈ Tn). This approach
is directly inspired by [7] and also works on viability theory [5].

In Subsubsection 4.3.1 we study the case where Tn are idempotent polyhedral
defined by (11). The main results of this part come directly from Haar’s Lemma.

In Subsubsection 4.3.2 we study the case where the sets Tn are all equal to a given
semimodule defined as the set of the solutions of a system of linear inequalities (see
(8)). This formulation seems to be the natural way to define the constraints on the
states of the system.

4.3.1. Reachability of a target tube

We study the property (7) to be satisfied by the closed loop system (d,⊗,Ω) over
a complete idempotent semiring (S,⊕,⊗, ε, e) defined by (6) in the case where:
∀n ∈ T, Tn = P(Pn, pn) with P(Pn, pn) denoting the polyhedral set in the sense of
definition (11).

Remark 6. Even if ∀n ∈ T P(Pn, pn) = P(I, Pn\pn) we prefer to keep the de-
scription of the target tube using the sets P(Pn, pn). Our choice is motivated as
follows. The matrix Pn could be interpreted as a matrix where each row is a reward
function. Usually a reward function is defined as a function of the state system.
The ith component of the vector pn represents the bound of the ith reward function
stored in the matrix Pn. For example if we are interested in the computation of the
top Lyapunov exponent of a system which provides e. g. its cycle time, it is natural
to take Pn = (e, e, . . . , e)T and pn = (γ), where γ ∈ S is interpreted as the maximal
top Lyapunov allowed for the system (which corresponds to the minimal cycle time
allowed).

We assume that ∀n ∈ T the matrix Pn satisfies the hypothesis (H0) of Lemma 1
and ∀n ∈ T \ {0} the vector pn and the matrix Pn−1 verify the hypothesis (H1) of
Lemma 1.
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Proposition 1. The necessary and sufficient condition for the linear system (d,⊗,Ω)
over (S,⊕,⊗, ε, e) to keep its entire state trajectory in the target tube (P(Pn, pn))n∈T
is:

(i) If S is a complete idempotent semiring: Ω ≤ ∧
n∈T\{0} Pn\pn/(Pn−1\pn−1).

(ii) If S is a complete idempotent semifield: Ω ≤ ∧
n∈T\{0} Pn\((pn/pn−1)⊗Pn−1).

P r o o f . Let us prove (i). We just have to remark that assertion (7) with ∀n ∈
T, Tn = P(Pn, pn) is equivalent to:

∀n ∈ T \ {0}, P(Pn−1, pn−1) ⊆ P(Pn ⊗ Ω, pn).

Thus, applying Haar’s Lemma for idempotent semiring (i. e., Theorem 1 with P :=
Pn−1, p := pn−1, Q := Pn ⊗ Ω and q := pn) we have:

∀n ∈ T \ {0}, Pn ⊗ Ω ≤ pn/(Pn−1\pn−1),

which is equivalent to by definition of \:

∀n ∈ T \ {0}, Ω ≤ Pn\pn/(Pn−1\pn−1).

Thus, by definition of
∧

the result (i) is now proved. The proof of (ii) is a direct
consequence of (i) and Corollary 1. ¤

We now derive the main result concerning the existence and the computation of
the optimal linear feedback control.

Theorem 4. Let (S,⊕,⊗, ε, e) denote a complete idempotent semiring or semifield.
There exists an optimal linear feedback in the sense of entry-wise comparison of
matrices that forces the dynamical system (d,⊗, A ⊕ B ⊗ F ) over S to lie in the
region specified by the idempotent polyhedral sets (Tn = P(Pn, pn))n∈T iff:

(E) A ≤
{ ∧

n∈T\{0} Pn\pn/(Pn−1\pn−1)) if S is a semiring,∧
n∈T\{0} Pn\((pn/pn−1)⊗ Pn−1)) if S is a semifield.

Under condition (E) the greatest linear feedback F ∗ is defined by:

F ∗ =

{
B\

(∧
n∈T\{0} Pn\pn/(Pn−1\pn−1) if S is a semiring,

B\
(∧

n∈T\{0} Pn\
(
(pn/pn−1)⊗ Pn−1

)
if S is a semifield.

(35)

P r o o f . The proof is an immediate consequence of the fact that ⊕ = ∨ and
Proposition 1 with Ω := A⊕B ⊗ F . ¤
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4.3.2. Control based on monotonicity

Let us consider the closed loop system (d,⊗,Ω) over a complete idempotent semiring
(S,⊕,⊗, ε, e) defined by (6). Let G,G′ ∈Mm,d(S\{>}) with no null column. Thus,
the hypotheses (H0) and (H1) of Lemma 1 are satisfied.

Let us recall that the matrix Ω is (G,G′)-monotone (see (32, with K := G and
K′ := G′)) if ∀x, y ∈ Sd, G ⊗ x ≤m G′ ⊗ y ⇒ G ⊗ Ω ⊗ x ≤m G′ ⊗ Ω ⊗ y. By
taking y = x in the previous assertion we deduce the following obvious result which
emphasizes the links between comparison and positive invariance.

Proposition 2. If SG,G′ denotes the semimodule defined by (8) then:

Ω is (G,G′)-monotone⇒ SG,G′ is Ω-invariant.

From this proposition we deduce the main result of this part.

Theorem 5. If

(a) G⊗ x(0) ≤m G′ ⊗ x(0) and (b) the matrix Ω is (G,G′)-monotone

then the dynamical system (d,⊗,Ω) verifies:

∀n ∈ N, G⊗ x(n) ≤m G′ ⊗ x(n).

We then specialize the results of the previous theorem in the case where (S,⊕,⊗,
ε, e) is a complete idempotent semifield for control constraints which form is moti-
vated by practical control problems (see e. g. [23]): ∀n ≥ 1,K⊗x(n) ≤m K′⊗x(n−1),
where K,K′ ∈Mm,d(S).

Corollary 5. Let us consider the closed loop system (d,⊗,Ω := A⊕B⊗F ) over a
complete idempotent semifield (S,⊕,⊗, ε, e) defined by (6). Under the assumption
that the matrices K ⊗ A and K′ are elements of Mm,d′(S \ {>}) and have no null
column vector the following implication is true.





Ω ≤ K\(K′ ⊗ x(0))/x(0)
and
Ω ≤ K\

(
(K′ ⊗ Ω/K′)⊗K

)



⇒ ∀n ≥ 1, K⊗ x(n) ≤m K′ ⊗ x(n− 1). (36)

P r o o f . The proof follows from Theorem 5 with G := K⊗Ω, G′ := K′, Corollary 4
and the definitions of / and \. ¤

5. ILLUSTRATIVE EXAMPLES

In this section we study two control problems which concern the computation of
linear state feedback. In Subsection 5.1 we give a partial answer to the computational
issue of an optimal linear state feedback control when the target tube is infinite (see
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formula (35) of Theorem 4). In Subsection 5.2 we illustrate the relationship between
comparison and control on a simple example of network transportation borrowed
from the literature. The computation of a linear feedback is done by hand and is
not yet implemented. It is expected that the implementation leads to better results
(see Remark 7 for a more precise comment).

5.1. Example 1: infinite target tube

Assume that (S,⊕,⊗, ε, e) is a complete commutative idempotent semiring such
that:

∃! lim
n→∞

a⊗n =





ε if a ≤ e, a 6= e

e if a = e

> otherwise.
(37)

Recalling that a⊗n def= a⊗ . . .⊗a (n-fold). Because ⊗ is commutative for all a, b ∈ S:
a/b = a\b not.= a

b .
Define the infinite target tube which corresponds to the case where T = N as

follows. For all n ∈ T, Tn = P(I, pn) where I denotes the d× d identity matrix. In
such case, because I\A = A/I = A for all matrix A:

∧

n∈T\{0}
Pn\pn/(Pn−1\pn−1) =

∧

n∈T\{0}
pn/pn−1.

Now assume that for all n ∈ T, pn = (ν1 ⊗ ρ⊗n1 , . . . , νd ⊗ ρ⊗nd )T with ∀ i = 1, . . . , d
νi, ρi 6= ε and (·)T denotes the transpose operator. And finally let us define for all
i, j = 1, . . . , d:

θi,j
def=

{
νi⊗ρi
νj

if e ≤ ρi
ρj

ε otherwise.

And Θ def= [θi,j ].

Proposition 3. The linear dynamical system (d,⊗, A) over S has its entire tra-
jectory in the above defined infinite target tube if:
(T) A ≤ Θ.

Under condition (T) there exists an optimal linear state feedback control in the
sense of entry-wise comparison of matrices defined by:

F ∗ = B\Θ

that forces the linear dynamical system (d,⊗, A⊕B⊗F ) to stay in the above defined
region (Tn)n∈T. Moreover, if S is a semifield the condition (T) is also necessary.

P r o o f . The proof is based on the formulas [6, (f.9) and (f.12), p. 183] which are
respectively rewritten as follows taking into account that ⊗ is commutative:

(g.1)
a

b⊗ c =
a
c

b
=

a
b

c
, (g.2) a⊗ b

c
≤ a⊗ b

c
=
b⊗ a
c

.
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For all n ∈ T \ {0} and i, j = 1, . . . , d:

(pn/pn−1)i,j = νi⊗ρ⊗ni
νj⊗ρ⊗(n−1)

j

=

(νi⊗ρi)⊗ρ
⊗(n−1)
i

ρ
⊗(n−1)
j

νj
by (g.1) and because ⊗ is associative

(a)

≥
(νi⊗ρi)⊗

ρ
⊗(n−1)
i

ρ
⊗(n−1)
j

νj
by (g.2) with a := νi ⊗ ρi, b := ρ

⊗(n−1)
i

and c := ρ
⊗(n−1)
j

(b)

≥ νi⊗ρi
νj
⊗ ρ

⊗(n−1)
i

ρ
⊗(n−1)
j

by (g.2) with a := νi ⊗ ρi, b := ρ
⊗(n−1)
i

ρ
⊗(n−1)
j

and c := νj
(c)

≥ νi⊗ρi
νj
⊗ ( ρiρj )⊗(n−1) by (g.2) and recurrence on n.

Let us note that in the case of a semifield the inequality (g.2) becomes an equality.
Thus, the above inequalities (a), (b) and (c) become equalities. Based on assumption
(37) and above result one easily deduces that for all i, j = 1, . . . , d:

∧

n∈T\{0}
(pn/pn−1)i,j

{
≥ θi,j if S semiring
= θi,j if S semifield.

Now, the result is an immediate consequence of Theorem 4. ¤

5.2. Example 2: Transportation networks with time table

In this subsection we borrow the example [23, Section 6] which is a simple example
of transportation network studied in e. g. [9, 15]. And we study the problem of the
existence and the computation of a linear (static) feedback control. To do this we
consider the linear dynamical system (4,⊗,Ω := A ⊕ F ), i. e. x(0) ∈ S4, x(n) =
Ω⊗x(n−1), ∀n, over the semifield (S,⊕,⊗, ε, e) := (Z∪{−∞,+∞},max,+,−∞, 0)
where:

A =




ε 17 ε ε
ε ε 11 9
14 ε 11 9
14 ε 11 ε


 , and F is an unknown matrix to be computed.

The constraints we impose on the system (d,⊗, A) are as follows and expressed with
usual operations as:

(c1) ∀ i, xi(n)− xi(n− 1) ≤ li, (c2) ∀ i, j, xj(n) + si,j − xi(n− 1) ≤ mi,j ,

where li denotes the upper bound time between two consecutive train departures in
direction i, mi,j denotes the upper bound on the time of passengers coming from
direction i have to wait for the departure of the train which leaves in direction j.
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And si,j = a⊗−1
j,i if aj,i 6= ε and ε, otherwise. As in [23, Section 6] we assume that:

li = l 6= ε and mi,j = m 6= ε. The constraints (c1) and (c2) can be rewritten as:

K⊗ x(n) ≤4 I ⊗ x(n− 1),

with K = m⊗−1 ⊗ S ⊕ l⊗−1 ⊗ I. Note that K ⊗ A, I ∈ M4,4(S \ {>}) and hence
the hypotheses (H0) and (H1) of Lemma 1 are verified. Thus, the computation of
a linear state feedback control can be done by applying result of (36), Theorem 5.
Thus, the aim is now to construct a matrix Ω which is (ω.1): (K, I)-monotone,
i. e. K ⊗ Ω ≤ Ω ⊗ K (see (34 with A := Ω, K′ := I)), and satisfies (ω.2): A ≤
Ω ≤ K\x(0)/x(0). For the numerical application we take x(0) = (e, e, e, e)T . Then,
x(0)/x(0) = E = [ei,j = e]. Let us remark that (ω.2) is true iff A ≤ K\x(0)/x(0).
And A ≤ K\x(0)/x(0) ⇔ m ≥ 6, l ≥ 17. To simplify the calculus take: m = 8,
l = 17. Then,

K =




17⊗−1 ε 22⊗−1 22⊗−1

25⊗−1 17⊗−1 ε ε
ε 19⊗−1 17⊗−1 19⊗−1

ε 17⊗−1 17⊗−1 17⊗−1


 , K\x(0)/x(0) = 17⊗ E.

Noticing that for all matrix Ω such that Ω ≤ K\x(0)/x(0): K⊗Ω ≤ x(0)/x(0) = E,
our problem is now to construct a matrix Ω such that E ≤ Ω⊗K and A ≤ Ω ≤ 17⊗E.
Take

Ω =




17 17 t 17
17 u v 17
17 w x 17
17 y z 17


 , with t, u, w, y ∈ [ε, 17] and v, x, z ∈ [11, 17].

Taking t = u = w = y = ε and v = x = z = 11 a possible choice for linear feedback
such that

A⊕ F = Ω is F =




17 ε ε 17
17 ε ε 17
17 ε ε 17
17 ε ε 17


 .

The controlled series (x(n))n∈N by linear (static) feedback of matrix F is defined
by: x(n) = 17⊗n ⊗ x(0). Therefore, the timetable (u(n) = F ⊗ x(n − 1))n≥1 is
defined by: u(n) = 17⊗n ⊗ x(0). Noticing that K ⊗ x(0) = 17⊗−1 ⊗ x(0) it is easy
to see that the controlled series x(n) verifies K⊗ x(n) = x(n− 1), n ≥ 1, hence the
constraints (c1) and (c2) are trivially satisfied. Let us note that although the matrix
A is not (K, I)-monotone (e. g. (K ⊗ A)1,3 = 11⊗−1 6≤ (A ⊗ K)1,3 = ε) the series
x(n) = A⊗n ⊗ x(0), n ≥ 0:

x(0) =




e
e
e
e


 , x(1) =




17
11
14
14


 , x(2) =




28
25
31
31


 , x(3) = 42⊗ x(0), . . .

satisfies the constraints (c1) and (c2). This fact confirms that the (G,G′)-monotonicity
of Ω is not a necessary condition for the Ω-invariance of the set SG,G′ .
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Remark 7. The research of a solution for this numerical example has been made
by hand. However, we mention that the problem studied here can be formulated as:
find x, y such that C ⊗ x = D⊗ y, y⊕ ν = ν (ν is a given vector) for which a pseu-
dopolynomial algorithm exists (see e. g. [14]). Finally, let us mention a polynomial
algorithm in the case where S is the set of rational numbers [10].

Remark 8. Following [23] the constraints (c1) and (c2) are rewritten as: Q ⊗
x(n) ≤8 x(n), with x(n) = (xT (n), xT (n − 1))T , Q =

(
ε ε
K ε

)
and ε denotes

the matrix which entries are all ε. Noticing that Q ⊗ x(n) ≤8 x(n) ⇔ x(n) ∈
Im(Q∗) then, the control problem is as follows: find a matrix F such that ∀x ∈
S8, (x ∈ Im(Q∗) ⇒ M ⊗ x ∈ Im(Q∗)) with M :=

(
A⊕ F ε
I ε

)
. This condition

is equivalent to: ∃H M ⊗ Q∗ = Q∗ ⊗H which form coincides with the one of [23,
(10) p. 17]. Thus, our approach based on monotonicity could be considered as a dual
approach to the geometric approach developed in [23].

Remark 9. As a consequence of Remarks 7 and 8 and also [23, Remark 2] the
computation complexity of a linear state feedback control seems to be roughly the
same for both approaches, i. e. ours and the geometric one.
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