
K Y B E R N E T I K A — V O L U M E 4 3 (2 0 0 7) , N U M B E R 3 , P A G E S 2 6 5 – 2 7 8

AUTOMATA WITH TWO–SIDED PUSHDOWNS
DEFINED OVER FREE GROUPS
GENERATED BY REDUCED ALPHABETS

Petr Blatný, Radek Bidlo and Alexander Meduna

This paper introduces and discusses a modification of pushdown automata. This mod-
ification is based on two-sided pushdowns into which symbols are pushed from both ends.
These pushdowns are defined over free groups, not free monoids, and they can be shortened
only by the standard group reduction. We demonstrate that these automata characterize
the family of recursively enumerable languages even if the free groups are generated by no
more than four symbols.

Keywords: pushdown automata, modifications, recursively enumerable languages

AMS Subject Classification: 68Q05, 68Q45

1. INTRODUCTION

Undoubtedly, the pushdown automata fulfill a crucial role in the automata theory.
Viewed as a language acceptor, pushdown automaton consists of an input tape, a
read head, a pushdown and a finite state control. The input tape is divided into
squares, each of which contains one symbol of an input string. The finite control
is represented by a finite set of states together with a finite set of computational
rules. According to these rules, pushdown automaton changes states, moves the
read head on the tape to the right and replaces the top symbol on the pushdown
by an arbitrary sequence of another symbols contained in the pushdown alphabet.
Every next computational step is performed with respect to the current symbol
under the read head on the input tape, the current state and the current symbol on
the top of the pushdown. The input string is accepted by the pushdown automaton,
if its last symbol is read from the input tape and (1) a state marked as final is
reached, or, (2) the pushdown is empty, or, (3) a state marked as final is reached
and the pushdown is empty. Note that the acceptance method is defined for every
pushdown automaton and these three methods are equivalent. In other words, every
pushdown automaton with one of the three acceptance method can be transformed
to another two pushdown automatons which accept every string with the other two
acceptance methods and define the same language as the original automaton.

The automata theory has modified pushdown automata in many different ways
including various modifications concerning their pushdown stores. To give some ex-

266 P. BLATNÝ, R. BIDLO AND A. MEDUNA

amples, we mention some of their modifications. To understand the first one, we
introduce the pushdown turn. Consider a pushdown automaton and two consecu-
tive moves performed by this automaton. If during the first move the automaton
does not shorten its pushdown, while during the second move it shortens it, then
the pushdown automaton makes a turn during the second move. If the pushdown
automaton performs no more than one turn in every computation, it is called as one-
turn pushdown automaton. One-turn pushdown automata represent an important
restricted version of automata, and the formal language theory has studied their
properties in detail (see Section 5.7 in [9] and Section 6.1 in [4]).

Let us introduce another modification of pushdown automata. By attaching an
additional pushdown, the pushdown automaton is extended to the two-pushdown au-
tomaton. A two-pushdown automaton consists of a finite state control, an input tape
with its read head, and two pushdowns. During a move, two-pushdown automaton
rewrites the top symbols of both pushdowns; otherwise, it works by analogy with a
pushdown automaton. It is proved that two-pushdown automata are more powerful
than pushdown automata (see [13]).

By putting together the previously mentioned variations of pushdown automata
(i. e. one-turn pushdown automata and two-pushdown automata), the simultane-
ously one-turn two pushdown automata can be introduced (see [14]). If the two-
pushdown automaton makes a turn in both its pushdowns in one computational
step, this turn is simultaneous. A two-pushdown automaton is simultaneously one-
turn if it makes either no turn or one simultaneous turn in its pushdowns during
any computation. As expected, this modification changes the power of pushdown
automata.

There are another modifications of pushdown automata in the automata theory.
Some of them can be found in [5, 6, 7, 8, 14, 15], and [17].

The present paper continues with this vivid topic and introduces automata with
two-sided pushdowns. As their name indicates, we can insert symbol into these
pushdowns from both ends. The two-sided pushdown automaton thus consists of an
input tape with read head, a finite state control, and a two-sided pushdown. Every
computational step is performed according to the current symbol under the read
head on the input tape, the current state and the current symbols on both tops of
the two-sided pushdown.

Pushdowns are usually defined over free monoids generated by the pushdown al-
phabets of the pushdown automata under the operation of concatenation. However,
in this paper, we leave this concept and define these two-sided pushdowns over free
groups rather than free monoids. To put it more precisely, we require that during
every move, the string representing the current pushdown is over the free group
generated by the pushdown alphabet under the operation of concatenation, and the
standard group reduction is the only way by which the pushdown string can be
shorten. We demonstrate that the pushdown automata modified in this way are as
powerful as the Turing machines. In fact, they characterize the family of recursively
enumerable languages. Moreover, the free groups are generated by no more than
four symbols.

Two-Sided PDA Defined over Free Groups Generated by Reduced Alphabets 267

2. DEFINITIONS

This paper assumes that the reader is familiar with the language theory and algebra
(see [1, 3, 4, 9, 11, 12, 13], and [18]).

Next, this section recalls only the notions used in this paper.
For a set, W , card(W) denotes its cardinality. For an alphabet, V , V ∗ represents

the free monoid generated by V under the operation of concatenation. Furthermore,
V ◦ represents the free group generated by V under the operation of concatenation.
The unit of V ◦ is denoted by ε. For every string, w ∈ V ◦, there is the inverse string
of w, denoted by w, with the property that ww = ww = ε. For w ∈ V ∗ or w ∈ V ◦,
|w| denotes the length of w.

The inverse string of w = a1a2 . . . an, where ai ∈ V for i = 1, 2, . . . , n, n ≥ 0, is
defined as w = anan−1 . . . a1. The string is said to be reduced, if it contains no pairs
of the form xx or xx, where x, x ∈ V ◦.

For example, if V = {a, b, c, a, b, c}, then the inverse string of bcaa ∈ V ◦ is
aacb ∈ V ◦. Because aa = aa = ε, bb = bb = ε and cc = cc = ε, it is obvious that
bcaaaacb = aacbbcaa = ε.

A queue grammar (see [2]) is a sextuple, Q = (V, T,W,F, s, P), where V and W
are alphabets satisfying V ∩W = ∅, T ⊆ V , F ⊆ W , s ∈ (V − T)(W − F), and
P ⊆ V × (W − F) × V ∗ ×W is a finite relation such that for every a ∈ V , there
exists an element (a, b, x, c) ∈ P . If u, v ∈ V ∗W , u = arb, v = rxc, a ∈ V , r, x ∈ V ∗,
b, c ∈ W , and (a, b, x, c) ∈ P , then u⇒ v[(a, b, x, c)] in Q, or, simply, u⇒ v. In the
standard manner, extend⇒ to⇒n, where n ≥ 0; then, based on⇒n, define⇒+ and
⇒∗. The language of Q, L(Q), is defined as L(Q) = {w : s⇒∗ wf,w ∈ T ∗, f ∈ F}.

As an example, consider a queue grammar G = (V, T,W,F, s, P), where V =
{S,A, a, b}, T = {a, b}, W = {Q, f}, F = {f}, s = SQ and P = {p1, p2}, p1 =
(S,Q,Aaa,Q) and p2 = (A,Q, bb, f). Then, there exists a derivation

s = SQ⇒ AaaQ[p1]⇒ aabbf [p2]

in this queue grammar, which generates aabb.
A left-extended queue grammar (see [14]) is similar to an ordinary queue grammar

except that it records the members of V used when it works. Formally, a left-
extended queue grammar is a six-tuple, Q = (V, T,W,F, s, P), where V, T,W,F ,
and s have the same meaning as in a queue grammar. P ⊆ V × (W −F)×V ∗×W is
a finite relation (as opposed to an ordinary queue grammar, this definition does not
require that for every a ∈ V , there exists an element (a, b, x, c) ∈ P). Furthermore,
assume that # 6∈ V ∪W . If u, v ∈ V ∗{#}V ∗W so that u = w#arb, v = wa#rxc,
a ∈ V , r, x, w ∈ V ∗, b, c ∈ W , and (a, b, x, c) ∈ P , then u ⇒ v[(a, b, x, c)] in
Q, or, simply, u ⇒ v. In the standard manner, extend ⇒ to ⇒n, where n ≥ 0;
then, based on ⇒n, define ⇒+ and ⇒∗. The language of Q, L(Q), is defined as
L(Q) = {v : #s⇒∗ w#vf for some w ∈ V ∗, v ∈ T ∗ and f ∈ F}.

For example, consider a left-extended queue grammar, which has the same compo-
nents as the previously mentioned queue grammar G. Then, there exists a derivation

#s = #SQ⇒ S#AaaQ[p1]⇒ AS#aabbf [p2]

268 P. BLATNÝ, R. BIDLO AND A. MEDUNA

in this left-extended queue grammar, which generates aabb. Moreover, this type of
queue grammar saves symbols from the first components of productions which were
used in the derivation.

A string-reading two-sided pushdown automaton over a free group is an eight-
tuple, M = (Q,Σ,Γ, R, z, Z1, Z2, F), where Q is a finite set of states, Σ is an input
alphabet, Γ is a pushdown alphabet, Q ∩ (Σ ∪ Γ) = ∅, R is a finite set of rules of
the form u1|u2qw → v1|v2p with u1, u2 ∈ Γ, v1, v2 ∈ Γ◦, p, q ∈ Q, and w ∈ Σ∗,
z ∈ Q is the start state, Z1 ∈ Γ is the start symbol of the left-hand side of the
pushdown, Z2 ∈ Γ is the start symbol of the right-hand side of the pushdown, and
F ⊆ Q is a set of final states. A configuration of M is any string of the form vqy,
where v ∈ Γ◦, y ∈ Σ∗, and q ∈ Q. If u1|u2qw → v1|v2p ∈ R, y = u1hu2qwz, and
x = v1hv2pz, where u1, u2 ∈ Γ, h, v1, v2 ∈ Γ◦, q, p ∈ Q, and w, z ∈ Σ∗, then M
makes a move from y to x in M , symbolically written as y ` x[u1|u2qw → v1|v2q],
or, simply, y ` x. In the standard manner, extend ` to `n, where n ≥ 0; based on
`n, define `+ and `∗. We call Z1Z2zw `∗ vqx a computation, where v ∈ Γ◦, q ∈ Q,
w, x ∈ Σ∗; a computation of the form Z1Z2zw `∗ εf with f ∈ F is a successful
computation. The language of M , L(M), is defined as L(M) = {w : Z1Z2zw `∗ εf,
where f ∈ F,w ∈ Σ∗}.

A two-sided pushdown automaton over a free group is a string-reading two-sided
pushdown automaton over a free group, M = (Q,Σ,Γ, R, z, Z1, Z2, F), in which
every u1|u2qw → v1|v2p ∈ R satisfies 0 ≤ |w| ≤ 1, where u1, u2 ∈ Γ, v1v2 ∈ Γ◦,
q, p ∈ Q, and w ∈ Σ∗.

3. RESULTS

In this section, we study the power of the modified versions of pushdown automata
defined in Section 2. We demonstrate that they are as powerful as the Turing
machines. In fact, they characterize the family of recursively enumerable languages
even if the free groups over which their pushdowns are defined are generated by no
more than four symbols.

Lemma 1. For every recursively enumerable language, L, there exists a left-
extended queue grammar, G = (V, T,W,F, s, P), such that L(G) = L and every
(A, q, x, p) ∈ P satisfies A ∈ (V −T), q ∈ (W −F), and x ∈ ((V −T)∗∪T ∗). Formal
proof is described in [14].

Corollary 1. Let G = (V, T,W,F, Sq0, P) be a left-extended queue grammar sat-
isfying the properties given in Lemma 1. Grammar G generates every w ∈ L(G) in
this way

#Sq0

⇒ x1#y1q1 [p1]
⇒ x2#y2q2 [p2]

...

Two-Sided PDA Defined over Free Groups Generated by Reduced Alphabets 269

...
⇒ xk#ykqk [pk]
⇒ xk+1#yk+1z1qk+1 [pk+1]

...
⇒ xk+j−1#yk+j−1zj−1qk+j−1 [pk+j−1]
⇒ xk+j#yk+jzjqk+j [pk+j]
⇒ xk+jyk+j#zj+1qk+j+1 [pk+j+1]

where x1, . . . , xk+j ∈ (V − T)∗, y1, . . . , yk+j−1 ∈ (V − T)∗, yk+j ∈ (V − T),
z1, . . . , zj+1 ∈ T ∗, zj+1 = w, q1, . . . , qk+j ∈ (W − F), qk+j+1 ∈ F . p1, . . . , pk
are of the form (A, q, x, p), where A ∈ (V − T), p, q ∈ (W − F) and x ∈ (V − T)∗.
pk+1, . . . , pk+j are of the form (A, q, y, p), where A ∈ (V − T), p, q ∈ (W − F)
and y ∈ T ∗. The last used production, pk+j+1, is of the form (A, p, y, t), where
A ∈ (V − T), p ∈ (W − F), y ∈ T ∗ and t ∈ F .

For the proof of the main result in this paper presented later, we use a left-extended
queue grammar, since the derivation method of these grammars is closer to the be-
haviour of our two-sided pushdowns. Recall that left-extended queue grammars
characterize the family of recursively enumerable languages (see [14]). Observe
that according to the definition of left-extended queue grammars, every symbol
A ∈ (V −T) which appears in the first component of any rule used in the derivation
will be moved from the place right from # to the place left from #. Every string
generated right from # in the queue grammar will be inserted into the two-sided
pushdown from the right-hand side. Moreover, every symbol moved to the place left
from # in the queue grammar is then inserted as inverse from the left-hand side on
the two-sided pushdown. At the end of every successful computation, the left half of
the two-sided pushdown is equal to the inverted right half, so it can be discharged
by the group reduction.

Theorem 1. For every left-extended queue grammar, G = (V, T,W,F, Sq0, P),
satisfying the properties described in Lemma 1, there exists a string-reading two-
sided pushdown automaton over a free group with the reduced pushdown alphabet,
M = (Q,T, Z,R, z, 1, 1, FM), such that L(G) = L(M).

P r o o f . We construct a string-reading two-sided pushdown automaton over a free
group with the reduced pushdown alphabet as follows.

Construction. Define the injections, h : (V − T) → {0, 1}n+2 and h : (V − T) →
{0, 1}n+2, where n = dlog2(card(V −T))e, such that for every A ∈ (V −T), h(A) =
{0}{0, 1}n{0} and h(A) = h(A). Extend the domain of h to (V − T)∗. After this
extension, h is now an injective homomorphism from (V − T)∗ to ({0}{0, 1}n{0})∗.
Note that the inverses to 0 and 1 ∈ V − T are 0 and 1 ∈ V − T , respectively.

Construct the set of states, Q, the pushdown alphabet, Z, and the set of final
states, FM , as Q = {f, z} ∪ {〈q, 1〉, 〈q, 2〉|q ∈ W}, Z = {0, 0, 1, 1}, and FM = {f},
respectively.

The set of rules, R, is constructed in the following way.

270 P. BLATNÝ, R. BIDLO AND A. MEDUNA

1) for the start axiom of G, Sq0, where S ∈ (V − T), q0 ∈ (W − F),
add 1|1z → 1|h(S)1〈q0, 1〉 to R

2) for every (A, q, x, p) ∈ P , where A ∈ (V − T), p, q ∈ (W − F), x ∈ (V − T)∗,
add 1|1〈q, 1〉 → 1h(A)|h(x)1〈p, 1〉 to R

3) for every q ∈W
add 1|1〈q, 1〉 → 1|1〈q, 2〉 to R

4) for every (A, q, y, p) ∈ P , where A ∈ (V − T), p, q ∈ (W − F), y ∈ T ∗,
add 1|1〈q, 2〉y → 1h(A)|1〈p, 2〉 to R

5) for every (A, q, y, t) ∈ P , where A ∈ (V − T), q ∈ (W − F), y ∈ T ∗, t ∈ F ,
add 1|1〈q, 2〉y → h(A)|εf to R

The construction of M is completed. For the next parts of this proof, we intro-
duce the following notation. If 〈q, 1〉 is the actual state of M , we say that M is in
nonterminal-generating mode. Similarly, if 〈q, 2〉 is the actual state of M , we say
that M is in terminal-reading mode, where q ∈W .

Basic Idea. M simulates derivations in the left-extended queue grammar, G, and
codes the symbols from V −T on its pushdown in a binary way. First, consider that in
G, w#Avp is the actual sentential form, where w, v ∈ (V −T)∗, A ∈ (V −T), and p ∈
(W−F). Then, the corresponding configuration ofM is 1h(w)h(w)h(A)h(v)1〈p, 1〉ω,
where ω ∈ T ∗. Let (A, p, x, q) ∈ P , where x ∈ (V −T)∗ Then, w#Avp⇒ wA#vxq in
G. In this case, M must be in the nonterminal-generating mode and the correspond-
ing M ’s rule is by construction 1|1〈p, 1〉 → 1h(A)|h(x)1〈q, 1〉 ∈ R. By using this rule,
M moves to a new configuration of the form 1h(A)h(w)h(w)h(A)h(v)h(x)1〈q, 1〉ω.
Observe that A is encoded by h and the resulting binary string is inserted to the
left-hand side of pushdown. Next, x is encoded by h and the result is inserted into
the pushdown from the right-hand side.

Second, let w#Avup is the actual sentential form, where u ∈ T ∗, and (A, p, y, q) ∈
P , y ∈ T ∗. Then, w#Avup ⇒ wA#vuyq in G. By construction, the corre-
sponding M ’s rule is 1|1〈p, 2〉y → 1h(A)|1〈q, 2〉 ∈ R and M makes a transition
1h(w)h(w)h(A)h(v)1〈p, 2〉yω′ ` 1h(A)h(w)h(w)h(A)h(v)1〈q, 2〉ω′, where ω′ ∈ T ∗.
Note that in this case, M must be in terminal-reading mode. In this mode, only the
encoded A, h(A), is inserted into the left-hand side of the pushdown.

In other words, every A ∈ (V −T), that is generated behind the # in G, is inserted
as h(A) into the right-hand side of the pushdown. Note that all these symbols in
the left-extended queue grammar G satisfying the Lemma 1 are moved in front of #
during every successful derivation. That is the reason why M inserts their encoded
inverses into the left-hand side of the pushdown to correctly simulate the derivation
in G. To make the pushdown empty, M uses the inverses from the free group.

Let us now present an example of automaton construction for better under-
standing. Consider a left-extended queue grammar, G = (V, T,W,F, s, P), where
V = {S,A,B, a, b}, T = {a, b}, W = {Q, f}, F = {f}, s = SQ and P = {p1, p2, p3},
p1 = (S,Q,AB,Q), p2 = (A,Q, aa,Q) and p3 = (B,Q, bb, f). For example, G
generates sentence aabb by the following derivation.

#s = #SQ⇒ S#ABQ[p1]⇒ SA#BaaQ[p2]⇒ SAB#aabbf [p3]

Two-Sided PDA Defined over Free Groups Generated by Reduced Alphabets 271

We construct a string-reading two-sided pushdown automaton over a free group with
the reduced pushdown alphabet, M = (Q,T, Z,R, z, 1, 1, FM), as follows:

• Q = {z, f, 〈Q, 1〉 〈Q, 2〉},

• T = {a, b},

• Z = {0, 0, 1, 1},

• R = {
p1: 1|1z → 1|h(S)1〈Q, 1〉 for the start axiom SQ,
p2: 1|1〈Q, 1〉 → 1h(S)|h(AB)1〈Q, 1〉 for (S,Q,AB,Q) ∈ P ,
p3: 1|1〈Q, 1〉 → 1|1〈Q, 2〉 for Q ∈W ,
p4: 1|1〈Q, 2〉aa→ 1h(A)|1〈Q, 2〉 for (A,Q, aa,Q) ∈ P ,
p5: 1|1〈Q, 2〉bb→ h(B)|εf for (B,Q, bb, f) ∈ P},

• FM = {f}
Encoding h of symbols from (V − T):

h(S) = 00010 h(S) = 01000
h(A) = 00110 h(A) = 01100
h(B) = 01000 h(B) = 00010

Now, observe the acceptance progress of the string aabb by M .

two-sided pushdown state input production
11 z aabb
1h(S)1 〈Q, 1〉 aabb p1

1h(S)h(S)h(AB)1 〈Q, 1〉 aabb p2

1h(A)h(B)1 〈Q, 1〉 aabb free group reduction
1h(A)h(B)1 〈Q, 2〉 aabb p3

1h(A)h(A)h(B)1 〈Q, 2〉 bb p4

1h(B)1 〈Q, 2〉 bb free group reduction
h(B)h(B) f ε p5

ε f ε free group reduction

Since the two-sided pushdown is empty and the current state f is the final state,
aabb is accepted by M .

R i g o r o u s p r o o f . Next, we prove L(G) = L(M), thus L(G) ⊆ L(M) and
L(M) ⊆ L(G). First, we demonstrate Claims A, B and C to prove L(G) ⊆ L(M).

Claim A. If A1 . . . An#B1 . . . Bmu ⇒i A1 . . . AnB1 . . . Bi#Bi+1 . . . Bmx1 . . . xip
in G, then 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 1〉ω `i
1h(Bi) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)h(x1) . . . h(xi)1〈p, 1〉ω
inM , where A1, . . . , An, B1, . . . , Bm ∈ (V −T), x1, . . . , xi ∈ (V −T)∗, u, p ∈ (W−F),
n ≥ 0, ω ∈ T ∗, 0 ≤ i ≤ m.

Basis. Let i = 0. Then A1 . . . An#B1 . . . Bmu ⇒0 A1 . . . An#B1 . . . Bmu in G.

272 P. BLATNÝ, R. BIDLO AND A. MEDUNA

Clearly, 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 1〉ω `0

1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 1〉ω in M .

Induction Hypothesis. Assume that Claim A holds for every i ≤ l, where l is a
positive integer.

Induction Step. Consider any derivation of the form A1 . . . An#B1 . . . Bmu⇒l+1

A1 . . . AnB1 . . . BlBl+1#Bl+2 . . . Bmx1 . . . xlxl+1q. Express this derivation as
A1 . . . An#B1 . . . Bmu⇒l A1 . . . AnB1 . . . Bl#Bl+1 . . . Bmx1 . . . xlp⇒
A1 . . . AnB1 . . . BlBl+1#Bl+2 . . . Bmx1 . . . xlxl+1q in G, where 0 ≤ l ≤ m, q ∈ (W −
F).

By the induction hypothesis, 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 1〉
ω `l 1h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)h(x1) . . . h(xl)1
〈p, 1〉ω ` 1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)
h(x1) . . . h(xl)h(xl+1)1〈q, 1〉ω in M . There is only one type of productions in P able
to perform the derivation A1 . . . AnB1 . . . Bl#Bl+1 . . . Bmx1 . . . xlp⇒
A1 . . . AnB1 . . . BlBl+1#Bl+2 . . . Bmx1 . . . xlxl+1q in G, namely productions of the
form (Bl+1, p, xl+1, q) ∈ P , where Bl+1 ∈ (V − T), p, q ∈ (W − F) and xl+1 ∈
(V − T)∗. Observe that by point 2 in construction, there is a rule 1|1〈p, 1〉 →
1h(Bl+1)|h(xl+1)1〈q, 1〉 in R, so 1h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)
h(B1) . . . h(Bm)h(x1) . . . h(xl)1〈p, 1〉ω ` 1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)
h(A1) . . . h(An)h(B1) . . . h(Bm)h(x1) . . . h(xl)h(xl+1)1〈q, 1〉ω in M and Claim A
holds. ¤

Claim B. If A1 . . . An#B1 . . . Bma1 . . . aku⇒i A1 . . . AnB1 . . . Bi#Bi+1 . . . Bm
a1 . . . akb1 . . . bip in G, then 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 2〉
b1 . . . bj `i 1h(Bi) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bi)h(Bi+1)
. . . h(Bm)1〈p, 2〉bi+1 . . . bj in M , where A1, . . . , An, B1, . . . , Bm ∈ (V −T), a1, . . . , ak,
b1, . . . , bj ∈ T ∗, u, p ∈ (W − F), 0 ≤ k, 0 ≤ i ≤ j ≤ m.

Basis. Let i = 0. Then A1 . . . An#B1 . . . Bma1 . . . aku⇒0 A1 . . . An#B1 . . . Bm
a1 . . . aku in G. Clearly, 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 2〉
b1 . . . bj `0 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 2〉b1 . . . bj in M .

Induction Hypothesis. Assume that Claim B holds for every i ≤ l, where l is a
positive integer.

Induction Step. Consider any derivation of the form A1 . . . An#B1 . . . Bma1 . . . aku
⇒l+1 A1 . . . AnB1 . . . BlBl+1#Bl+2 . . . Bma1 . . . akb1 . . . blbl+1q and express this deriva-
tion as A1 . . . An#B1 . . . Bma1 . . . aku⇒l A1 . . . AnB1 . . . Bl#Bl+1 . . . Bma1 . . . ak
b1 . . . blp ⇒ A1 . . . AnB1 . . . BlBl+1#Bl+2 . . . Bma1 . . . akb1 . . . blbl+1q in G, where
0 ≤ k, 0 ≤ l ≤ m, q ∈ (W − F).

By the induction hypothesis, 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 2〉
b1 . . . bj `l 1h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈p, 2〉
bl+1 . . . bj ` 1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1
〈q, 2〉bl+2 . . . bj in M .

In this case, there is only one possibility how G can make the derivation

Two-Sided PDA Defined over Free Groups Generated by Reduced Alphabets 273

A1 . . . AnB1 . . . Bl#Bl+1 . . . Bma1 . . . akb1 . . . blp⇒ A1 . . . AnB1 . . . BlBl+1

#Bl+2 . . . Bma1 . . . akb1 . . . blbl+1q. Observe that it is done by a production of the
form (Bl+1, p, bl+1, q) ∈ P , where Bl+1 ∈ (V − T), p, q ∈ (W − F), bl+1 ∈ T ∗.
By point 4 in construction, there is a rule 1|1〈p, 2〉bl+1 → 1h(Bl+1)|1〈q, 2〉 in R, so
1h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈p, 2〉bl+1 . . . bj `
1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈q, 2〉bl+2 . . .
bj in M and Claim B holds. ¤

Claim C. If A1 . . . An−1#Anyq ⇒ A1 . . . An−1An#yzt in G, where A1, . . . , An ∈
(V −T), y, z ∈ T ∗, q ∈ (W−F), t ∈ F , then 1h(An−1) . . . h(A1)h(A1) . . . h(An)1〈q, 2〉
z ` h(An) . . . h(A1)h(A1) . . . h(An)f = εf in M , where f ∈ FM .

Grammar G performs the described derivation by a production of the form
(An, q, z, t) ∈ P , where An ∈ (V − T), z ∈ T ∗, q ∈ (W − F), t ∈ F . By point
5 of construction, there is a rule 1|1〈q, 2〉z → h(An)|εf in R, so the corresponding
computational step described in Claim C indeed occurs in M , so Claim C holds. ¤

Claims A, B and C prove that L(G) ⊆ L(M). Next, we demonstrate Claims D,
E and F to prove L(M) ⊆ L(G).

Claim D. Automaton M accepts every w ∈ L(M) in this way

11zw1w2 . . . wr `
1h(S)1〈q0, 1〉w1w2 . . . wr `
1h(S)h(S)h(X1

1)h(X1
2) . . . h(X1

n1
)1〈q1, 1〉w1w2 . . . wr `

1h(X1
1)h(S)h(S)h(X1

1)h(X1
2) . . . h(X1

n1
)h(X2

1)h(X2
2) . . . h(X2

n2
)1〈q2, 1〉w1w2 . . . wr `

1h(X1
2)h(X1

1)h(S)h(S)h(X1
1)h(X1

2) . . . h(X1
n1

)h(X2
1)h(X2

2) . . . h(X2
n2

)h(X3
1)h(X3

2) . . .
h(X3

n3
)1〈q3, 1〉w1w2 . . . wr ` . . .

1h(Xk
j) . . . h(X1

2)h(X1
1)h(S)h(S)h(X1

1)h(X1
2) . . . h(X1

n1
)h(X2

1)h(X2
2) . . . h(X2

n2
)

h(X3
1)h(X3

2) . . . h(X3
n3

) . . . h(Xm
1)h(Xm

2) . . . h(Xm
nm)1〈qm, 1〉w1w2 . . . wr `

1h(Xk
j) . . . h(X1

2)h(X1
1)h(S)h(S)h(X1

1)h(X1
2) . . . h(X1

n1
)h(X2

1)h(X2
2) . . . h(X2

n2
)

h(X3
1)h(X3

2) . . . h(X3
n3

) . . . h(Xm
1)h(Xm

2) . . . h(Xm
nm)1〈qm, 2〉w1w2 . . . wr `

1h(Xk
j+1)h(Xk

j) . . . h(X1
2)h(X1

1)h(S)h(S)h(X1
1)h(X1

2) . . . h(X1
n1

)h(X2
1)h(X2

2) . . .
h(X2

n2
)h(X3

1)h(X3
2) . . . h(X3

n3
) . . . h(Xm

1)h(Xm
2) . . . h(Xm

nm)1〈qm+1, 2〉w2 . . . wr `
1h(Xk

j+2)h(Xk
j+1)h(Xk

j) . . . h(X1
2)h(X1

1)h(S)h(S)h(X1
1)h(X1

2) . . . h(X1
n1

)h(X2
1)h(X2

2)
. . . h(X2

n2
)h(X3

1)h(X3
2) . . . h(X3

n3
) . . . h(Xm

1)h(Xm
2) . . . h(Xm

nm)1〈qm+2, 2〉w3 . . . wr `
. . .
1h(Xm

nm−1) . . . h(Xk
j+2)h(Xk

j+1)h(Xk
j) . . . h(X1

2)h(X1
1)h(S)h(S)h(X1

1)h(X1
2) . . .

h(X1
n1

)h(X2
1)h(X2

2) . . . h(X2
n2

)h(X3
1)h(X3

2) . . . h(X3
n3

) . . .
. . . h(Xm

1)h(Xm
2) . . . h(Xm

nm)1〈qm+r−1, 2〉wr `
h(Xm

nm)h(Xm
nm−1) . . . h(Xk

j+2)h(Xk
j+1)h(Xk

j) . . . h(X1
2)h(X1

1)h(S)h(S)h(X1
1)h(X1

2) . . .
h(X1

n1
)h(X2

1)h(X2
2) . . . h(X2

n2
)h(X3

1)h(X3
2) . . . h(X3

n3
) . . .

. . . h(Xm
1)h(Xm

2) . . . h(Xm
nm)f = εf

where w = w1w2 . . . wr, r ≥ 1, w1, . . . , wr ∈ T ∗, q0, q1, . . . , qm+r−1 ∈ (W − F),
X1

1 , . . . , X
1
n1
, X2

1 , . . . , X
2
n2
, . . . , Xm

1 , . . . , X
m
nm ∈(V −T), n1, n2, . . . , nm≥0, 0≤k≤m.

274 P. BLATNÝ, R. BIDLO AND A. MEDUNA

P r o o f o f C l a i m D. We examine steps 1 through 5 of the construction of R.
Note that in every successful computation, M uses rules created in step b before it
uses rules created in step b+ 1, for b = 1, . . . , 4.

In the first computational step, M applies the production 1|1z → 1|h(S)1〈q0, 1〉
introduced in 1, where Sq0 is the axiom of G. This is the only way by which M can
make the transition 11zw1w2 . . . wr ` 1h(S)1〈q0, 1〉w1w2 . . . wr. Observe that this
production is used exactly once during one successful computation. By this step,
automaton is switched to the nonterminal-generating mode.

In the next part of computation, namely

1h(S)1〈q0, 1〉w1w2 . . . wr `∗
1h(Xk

j) . . . h(X1
2)h(X1

1)h(S)h(S)h(X1
1)h(X1

2) . . . h(X1
n1

)h(X2
1)h(X2

2) . . . h(X2
n2

)
h(X3

1)h(X3
2) . . . h(X3

n3
) . . . h(Xm

1)h(Xm
2) . . . h(Xm

nm)1〈qm, 1〉w1w2 . . . wr

M uses rules of the form 1|1〈q, 1〉 → 1h(A)|h(x)1〈p, 1〉 constructed in 2, where
A ∈ (V −T), x ∈ (V −T)∗, p, q ∈ (W−F). This part of computation is characterized
by M ’s states of the form 〈q, 1〉, q ∈ (W − F). For the more detailed proof of this
part, see Claim E.

By the next computational step,

1h(Xk
j) . . . h(X1

2)h(X1
1)h(S)h(S)h(X1

1)h(X1
2) . . . h(X1

n1
)h(X2

1)h(X2
2) . . . h(X2

n2
)

h(X3
1)h(X3

2) . . . h(X3
n3

) . . . h(Xm
1)h(Xm

2) . . . h(Xm
nm)1〈qm, 1〉w1w2 . . . wr `

1h(Xk
j) . . . h(X1

2)h(X1
1)h(S)h(S)h(X1

1)h(X1
2) . . . h(X1

n1
)h(X2

1)h(X2
2) . . . h(X2

n2
)

h(X3
1)h(X3

2) . . . h(X3
n3

) . . . h(Xm
1)h(Xm

2) . . . h(Xm
nm)1〈qm, 2〉w1w2 . . . wr

M switches to the terminal-reading mode by a rule of the form 1|1〈q, 1〉 → 1|1〈q, 2〉
constructed in 3. Observe that this production is used exactly once during one
successful computation. Since this production changes an actual state of automaton
of the form 〈q, 1〉 to the state of the form 〈q, 2〉, q ∈ (W − F), there is no further
possibility of using any productions constructed in parts 1 through 3.

In the next part of computation, namely

1h(Xk
j) . . . h(X1

2)h(X1
1)h(S)h(S)h(X1

1)h(X1
2) . . . h(X1

n1
)h(X2

1)h(X2
2) . . . h(X2

n2
)

h(X3
1)h(X3

2) . . . h(X3
n3

) . . . h(Xm
1)h(Xm

2) . . . h(Xm
nm)1〈qm, 2〉w1w2 . . . wr `∗

1h(Xm
nm−1) . . . h(Xk

j+2)h(Xk
j+1)h(Xk

j) . . . h(X1
2)h(X1

1)h(S)h(S)h(X1
1)h(X1

2) . . .
h(X1

n1
)h(X2

1)h(X2
2) . . . h(X2

n2
)h(X3

1)h(X3
2) . . . h(X3

n3
) . . .

. . . h(Xm
1)h(Xm

2) . . . h(Xm
nm)1〈qm+r−1, 2〉wr

M uses rules constructed in 4 and reads input strings of terminals. The detailed
proof of this part of computation is described in Claim F.

The last computational step switches M to the final state. It is done by a rule
of the form 1|1〈q, 2〉y → h(A)|εf constructed in 5, where q ∈ (W − T), y ∈ T ∗,
A ∈ (V − T) and f ∈ FM . After that, if the two-sided pushdown is empty by
a group reduction and the input string is read, then M accepts the input string.
Otherwise, the input string is not accepted, since there is no rule with the left-hand
side of the form 1|1fy, where f ∈ FM , y ∈ T ∗, so Claim D holds. ¤

Two-Sided PDA Defined over Free Groups Generated by Reduced Alphabets 275

Claim E. If 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 1〉ω `i
1h(Bi) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)h(x1) . . . h(xi)1〈p, 1〉ω
in M , then A1 . . . An#B1 . . . Bmu⇒i A1 . . . AnB1 . . . Bi#Bi+1 . . . Bmx1 . . . xip in G,
where A1, . . . , An, B1, . . . , Bm ∈ (V − T), x1, . . . , xi ∈ (V − T)∗, u, p ∈ (W − F),
0 ≤ i ≤ m.

Basis. Let i = 0. Then 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 1〉ω `0

1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 1〉ω in M . Clearly, A1 . . . An#
B1 . . . Bmu⇒0 A1 . . . An#B1 . . . Bmu in G.

Induction Hypothesis. Assume that Claim E holds for every i ≤ l, where l is a
positive integer.

Induction Step. Consider any computation of the form
1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 1〉ω `l+1

1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)h(x1) . . .
h(xl)h(xl+1)1〈q, 1〉ω and express this derivation as 1h(An) . . . h(A1)h(A1) . . . h(An)
h(B1) . . . h(Bm)1〈u, 1〉ω `l 1h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . .
h(Bm)h(x1) . . . h(xl)1〈p, 1〉ω ` 1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . .
h(An)h(B1) . . . h(Bm)h(x1) . . . h(xl)h(xl+1)1〈q, 1〉ω in M , where q ∈ (W − F), 0 ≤
l ≤ m.

By the induction hypothesis, A1 . . . An#B1 . . . Bmu⇒l A1 . . . AnB1 . . . Bl#
Bl+1 . . . Bmx1 . . . xlp⇒ A1 . . . AnB1 . . . BlBl+1#Bl+2 . . . Bmx1 . . . xlxl+1q inG. There
is only one type of productions inR able to perform the computation 1h(Bl) . . . h(B1)
h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)h(x1) . . . h(xl)1〈p, 1〉ω ` 1h(Bl+1)h(Bl)
. . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)h(x1) . . . h(xl)h(xl+1)1〈q, 1〉ω
in M , namely productions of the form 1|1〈p, 1〉 → 1h(Bl+1)|h(xl+1)1〈q, 1〉 ∈ R. Ob-
serve that by construction, there is a rule (Bl+1, p, xl+1, q) in P , so A1 . . . An#B1 . . .
Bmu⇒l A1 . . . AnB1 . . . Bl#Bl+1 . . . Bmx1 . . . xlp⇒ A1 . . . AnB1 . . . BlBl+1#Bl+2 . . .
Bmx1 . . . xlxl+1q in G and Claim E holds. ¤

Claim F. If 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 2〉b1 . . . bj `i
1h(Bi) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bi)h(Bi+1) . . . h(Bm)1
〈p, 2〉bi+1 . . . bj in M , then A1 . . . An#B1 . . . Bma1 . . . aku⇒i A1 . . . AnB1 . . . Bi#
Bi+1 . . . Bma1 . . . akb1 . . . bip in G, where A1, . . . , An, B1, . . . , Bm ∈ V −T , a1, . . . , ak,
b1, . . . , bj ∈ T ∗ and p, u ∈W − F , 0 ≤ i ≤ m.

Basis. Let i = 0. Then 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 2〉
b1 . . . bj `0 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 2〉b1 . . . bj in M .
Clearly, A1 . . . An#B1 . . . Bma1 . . . aku⇒0 A1 . . . An#B1 . . . Bma1 . . . aku in G.

Induction Hypothesis. Assume that Claim F holds for every i ≤ l, where l is a
positive integer.

276 P. BLATNÝ, R. BIDLO AND A. MEDUNA

Induction Step. Consider any computation of the form
1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈u, 2〉b1 . . . bj `l+1

1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈q, 2〉
bl+2 . . . bj and express this derivation as 1h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . .
h(Bm)1〈u, 2〉b1 . . . bj `l 1h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . .
h(Bm)1〈p, 2〉bl+1 . . . bj ` 1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)
h(B1) . . . h(Bm)1〈q, 2〉bl+2 . . . bj in M , where 0 ≤ l ≤ j ≤ m, q ∈ (W − F).

By the induction hypothesis, A1 . . . An#B1 . . . Bma1 . . . aku⇒l

A1 . . . AnB1 . . . Bl#Bl+1 . . . Bma1 . . . akb1 . . . blp⇒
A1 . . . AnB1 . . . BlBl+1#Bl+2 . . . Bma1 . . . akb1 . . . blbl+1q in G, where 0 ≤ l ≤ m.

In this case, there is the only way by which M can make the computational step
1h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈p, 2〉bl+1 . . . bj `
1h(Bl+1)h(Bl) . . . h(B1)h(An) . . . h(A1)h(A1) . . . h(An)h(B1) . . . h(Bm)1〈q, 2〉
bl+2 . . . bj . Observe that it is done by a production of the form 1|1〈p, 2〉bl+1

→ 1h(Bl+1)|1〈q, 2〉 ∈ R. By point 4 in construction, there is a production
(Bl+1, p, bl+1, q) ∈ P where Bl+1 ∈ (V − T), p, q ∈ (W − F), bl+1 ∈ T ∗, so
A1 . . . AnB1 . . . Bl#Bl+1 . . . Bma1 . . . akb1 . . . blp⇒ A1 . . . AnB1 . . . BlBl+1#
Bl+2 . . . Bma1 . . . akb1 . . . blbl+1q in G and Claim F holds. ¤

By Claims D, E and F, we proved that L(M) ⊆ L(G). As a result, L(G) = L(M),
so Theorem 1 is proved.

Theorem 2. For every string-reading two-sided pushdown automaton over a free
group with the reduced pushdown alphabet, Q′, there exists a two-sided pushdown
automaton over a free group with the reduced pushdown alphabet, Q, such that
L(Q′) = L(Q).

P r o o f . The formal proof of this theorem is simple and left to the reader. ¤

4. CONCLUSIONS

In this paper, we proved that the power of two-sided pushdown automata with
pushdowns defined over free groups is equal to the power of Turing machines, so these
automata generate the whole family of recursively enumerable languages. Moreover,
the pushdown alphabet contains no more than four symbols. Note that the same
result can be also reached with two-sided pushdowns defined over free monoids. This
modification affects only the set of rules with their construction, and it is left for
the reader.

Another modifications of pushdown automata have been studied in theory of
automata and formal languages. We can mention simultaneously one-turn two-
pushdown automata introduced in [14], regulated pushdown automata described in

Two-Sided PDA Defined over Free Groups Generated by Reduced Alphabets 277

[15], or finite-turn pushdown automata (see [8]). Very simple and natural modifica-
tion of pushdown automata is also presented in [5] and [4], where there is the ability
for pushdown reversal added. The main goal of all these modifications is to increase
the generative power of ordinary pushdown automata. In our paper, we significantly
increased the power and moreover, the number of transition rules was reduced by
defining of the two-sided pushdowns over free groups.

ACKNOWLEDGEMENT

This work was supported by the Czech Science Foundation under Grant 201/04/0441.

(Received February 16, 2006.)

R E F E R E N C E S

[1] N. Jacobson: Basic Algebra. Second edition. W. H. Freeman, New York 1989.
[2] H. C. M. Kleijn and G. Rozenberg: On the generative power of regular pattern gram-

mars. Acta Informatica 20 (1983), 391–411.
[3] A. V. Aho and J. D. Ullman: The Theory of Parsing, Translation and Compiling.

Volume I: Parsing. Prentice Hall, Englewood Cliffs, NJ 1972.
[4] J. Autebert, J. Berstel, and L. Boasson: Context-Free Languages and Pushdown Au-

tomata. In: Handbook of Formal Languages (G. Rozenberg, and A. Salomaa, eds.),
Springer, Berlin 1997.

[5] B. Courcelle: On jump deterministic pushdown automata. Math. Systems Theory 11
(1977), 87–109.

[6] S. A. Greibach: Checking automata and one-way stack languages. J. Comput. Systems
Sci. 3 (1969), 196–217.

[7] S. Ginsburg, S. A. Greibach, and M. A. Harrison: One-way stack automata. J. Assoc.
Comput. Mach. 14 (1967), 389–418.

[8] S. Ginsburg and E. Spanier: Finite-turn pushdown automata. SIAM J. Control 4
(1968), 429–453.

[9] M. A. Harrison: Introduction to Formal Language Theory. Addison-Wesley, Reading,
Mass. 1978

[10] M. Holzer and M. Kutrib: Flip-pushdown automata: k + 1 pushdown reversals are
better than k. In: Languages and Programming – ICALP 2003 (Lecture Notes in
Computer Science 2719), Springer, Berlin 2003, pp. 490–501.

[11] H. R. Lewis and C. H. Papadimitriou: Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, NJ 1981.

[12] J. C. Martin: Introduction to Languages and the Theory of Computation. McGraw-
Hill, New York 1991.

[13] A. Meduna: Automata and Languages: Theory and Applications. Springer, London
2000.

[14] A. Meduna: Simultaneously one-turn two-pushdown automata. Internat. Computer
Math. 82 (2003), 679–687.

[15] A. Meduna and D. Kolář: Regulated pushdown automata. Acta Cybernet. 14 (2000),
653–664.

[16] J. Sakarovitch: Pushdown automata with terminating languages. In: Languages and
Automata Symposium, RIMS 421 (1981), 15–29.

[17] P. Sarkar: Pushdown automaton with the ability to flip its stack. TR01-081, Electronic
Colloquium on Computational Complexity (ECCC), November 2001.

278 P. BLATNÝ, R. BIDLO AND A. MEDUNA

[18] T. A. Sudkamp: Languages and Machines. Addison Wesley, Reading, Mass. 1988.
[19] L. Valiant: The equivalence problem for ceterministic finite turn pushdown automata.

Inform. and Control 81 (1989), 265–279.

Petr Blatný, Radek Biblo, and Alexander Meduna, Brno University of Technology,

Faculty of Information Technology, Department of Information Systems, Božetěchova 2,

612 66 Brno. Czech Republic.

e-mails: blatny@fit.vutbr.cz, bidlor@fit.vutbr.cz, meduna@fit.vutbr.cz

