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1.. INTRODUCTION AND PRELIMINARIES

The exponential distribution is still one of the most popular distribution in survival
data analysis and has been extensively studied by many authors. The basic ideas
are given in [7]. The comparison of various reliability estimates from the confidential
point of view has been given in [6]. A nice test of fit with the Koziol–Green model
for random censorship has been suggested by Herbst [5]. More advanced models are
treated in Franz [2]. A review of the topic can be found in [8]. Since the processes
studied in reliability theory and survival data analysis are rather evolutionary than
revolutionary, the prior information seems to be useful to improve the inference.
The Bayesian approach is one possible way to implement a prior information into
the model. In estimating reliability function and parameter of exponential distri-
bution, Sarhan [13] exploits past experiments to approximate prior density. Liang
[10] deals with random censorship with exponentially distributed censor, i. e. in the
setting (1..3) but with known parameter of censoring distribution and in fact with
restriction γ < 1 (p > 1/2) imposed by a prior. In [1] Jeffreys priors under several
censoring mechanisms are derived, Bayesian estimates in the case of exponential
distribution being treated in detail. Bayesian estimation for parameters of gener-
alized exponential distribution under Type II censorship is dealt with in [12]. The
present paper discusses Bayesian estimation in the exponential distribution under the
Koziol–Green model of censorship. Several priors are proposed and corresponding
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estimators of characteristics of the distribution and the model are derived. Proper-
ties of the estimators are expressed in terms of almost sure convergence, asymptotic
normality and Bayesian risks. Weak asymptotics of the Bayesian reliability esti-
mator considered as a stochastic process is under the conjugate prior (2..3) studied
in [4].

Let X1, . . . , Xn be independent identically distributed (i.i.d.) random variables
(r.v.’s) with the distribution function F , the density function f and let T1, . . . , Tn
be i.i.d. r.v. which are independent of X ′js and possess the distribution function G
and the density function g. In the model of random censorship we can only observe
the i.i.d. pairs

(W1, I1), . . . , (Wn, In), (1..1)

where Wj = min(Xj , Tj), Ij = I{Xj ≤ Tj}, j = 1, . . . , n. R.v.’s Xj usually represent
the lifetimes or times-to-failure while T ′js represent time censors. The pair (W1, I1)
has the distribution with the density function

h(w, i) = {f(w)[1−G(w)]}i{g(w)[1− F (w)]}1−i, w ∈ R, i = 0, 1 (1..2)

with respect to Lebesgue×counting product measure.
In the Koziol–Green model [9] it is supposed that the distributions of X ′js and

T ′js are connected by 1−G(t) = [1− F (t)]γ (1..3)

for some γ > 0. In this case W1 and I1 are independent (see Herbst [5], e. g.).
Instead of γ, we can consider the parameter

p = Pr[X ≤ T ], (1..4)

p ∈ (0, 1), since p = 1/(1 + γ). The density (1..2) then becomes

f(w)[1− F (w)]γγ1−i w ∈ R, i = 0, 1. (1..5)

In the present paper we suppose that X ′js have an exponential distribution Exp(θ),
i. e., that they possess the density function

f(x; θ) =
1
θ
e−x/θ, x > 0, (1..6)

with the expectation E Exp(θ) = θ and variance var Exp(θ) = θ2, or after introducing
a new parameter λ = 1/θ

f(x;λ) = λe−λx, x > 0, (1..7)

where λ represents the hazard rate of the distribution in question. Note that under
the above assumptions W1 possesses an Exp(p/λ) and I1 is a zero-one r.v. with the
parameter p. Also we will pay attention to the reliability function

R = e−λ (1..8)

at the mission time set to t := 1. Next we will mention further distributions used in
this paper.
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Gamma distribution G(a, q). Gamma distribution with the parameters a > 0,
q > 0 has the density function

aq

Γ(q)
xq−1e−ax, x > 0

with the expectation EG(a, q) = q/a and the variance varG(a, q) = q/a2.

Logarithmic Gamma Distribution LG(a, q). If the distribution of the r.v. X is
G(a, q) then the distribution of Y = e−X is LG(a, q) with the density function

aq

Γ(q)
(− ln y)q−1ya

1
y
, y ∈ (0, 1)

with the expectation
ELG(a, q) =

(
a

a+ 1

)q

and the variance
varLG(a, q) =

(
a

a+ 2

)q
−

(
a

a+ 1

)2q

.

Inverse Gamma distribution IG(a, q). If the distribution of the r.v. X is G(a, q)
then the distribution of Z = 1/X is IG(a, q) with the density function

aq

Γ(q)
1

zq+1
e−a/z, z > 0.

If q > 1 then the expectation is E IG(a, q) = a/(q− 1). If q > 2 then the variance is

var IG(a, q) =
a2

(q − 1)2(q − 2)
.

Beta distribution B(r, s). Beta distribution with the parameters r > 0, s > 0 has
the density function

Γ(r + s)
Γ(r)Γ(s)

xr−1(1− x)s−1 , x ∈ (0, 1).

with the expectation EB(r, s) = r/(r + s) and the variance

varB(r, s) =
rs

(r + s)2(r + s+ 1)
.

Beta distribution of the second order B2(r, s). If the distribution of the r.v. X is
B(r, s), then the distribution of V = 1/X − 1 is B2(r, s) with the density function

Γ(r + s)
Γ(r)Γ(s)

vs−1

(1 + v)r+s
, v > 0.

If r > 1 then the expectation is EB2(r, s) = s/(r − 1). If r > 2 then the variance is

varB2(r, s) =
(s+ 1)s

(r − 1)(r − 2)
−

(
s

r − 1

)2

=
s(r + s− 1)

(r − 1)2(r − 2)
.
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Likelihood. In Bayesian inference we deal with the likelihood function which,
under the above assumptions, reads

L(λ, γ; (W1, I1), . . . , (Wn, In)) =
n∏

j=1

(λe−λWj (e−λWj )γ)γ1−Ij .

If we denote
W =

n∑

j=1

Wj , I =
n∑

j=1

Ij (1..9)

then the likelihood becomes

L(λ, γ;W, I) = λne−λW e−λγW γn−I , λ > 0, γ > 0. (1..10)

For given λ, p, or γ we obtain the expected values and variances of the conditional
distributions of I1 and W1:

E[I1|λ, p] = p, var[I1|λ, p] = p(1− p)
and

E[W1|λ, p] = p/λ, var[W1|λ, p] = p2/λ2.

These facts will be utilized for calculating the unconditional expectations of I and
W (which are the sums of i.i.d. with the same distributions as I1 and W1) utilizing
the a priori knowledge. Also we will use them to establish the law of large numbers
in particular cases.

Bayesian estimation. We restrict ourselves to the Bayesian estimates under the
quadratic loss function, i. e. the estimator minimizing Bayesian risk function E(τ −
τ̂)2 if τ is the parameter in question. Thus the Bayesian estimate is simply the
expected value of τ with respect to the posterior distribution, τ̂ = E(τ |W, I), in our
case. The Bayesian risk of this estimate can be expressed in different ways as

%?τ = E(E[τ − E(τ |W, I)]2|W, I) = E[τ − E(τ |W, I)]2

= E var(τ |W, I) = var τ − var[E(τ |W, I)] = var τ − var τ̂ . (1..11)

As for computational aspects, the formula

%?τ = E var(τ |W, I) (1..12)

is helpful if we know the posterior variance. In words, we just take the expectation
of it.

2.. PRIORS AND BAYESIAN ESTIMATORS

Conjugate prior

The natural conjugate prior for (1..10) is the system of densities
{

ac+1

Γ(c− b+ 1)Γ(b)
λce−λae−λγaγc−b; a > 0, b > 0, c > b− 1

}
(2..1)
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or, after changing the parameters a = a, b = r, and c = s+ r − 1

Kλ,γ =
{

ar+s

Γ(r)Γ(s)
λr+s−1e−λ(1+γ)aγs−1; a > 0, r > 0, s > 0

}
, (2..2)

see also Franz [2].
Denote

Ka,r,s(λ, γ) =
ar+s

Γ(r)Γ(s)
λr+s−1e−λ(1+γ)aγs−1 (2..3)

the corresponding density function.

Theorem 2.1. The system Kλ,γ is conjugate with L(λ, γ|W, I), the marginal dis-
tribution of λ is G(a, r) and that of γ is B2(r, s).

P r o o f . The proof is obvious. ¤

Remark. It follows from the above Theorem that Eλ = r/a and for r > 1, E γ =
s/(r − 1). Moreover, the conditional distributions are

Ka,r,s(λ|γ) ∼ λr+s−1e−λ(1+γ)a ∼ G((1 + γ)a, r + s),
Ka,r,s(γ|λ) ∼ γs−1e−γλa ∼ G(λa, s).

For r > 1 we have cov (λ, γ) = − s
a

1
r−1 and for r > 2 we have corr (λ, γ) =

−
√

s(r−2)
r(r+s−1) .

Theorem 2.2. If we choose the prior density as q(λ, γ) = Ka,r,s(λ, γ) ∈ Kλ,γ

then the a posteriori density is q(λ, γ|W, I) = Ka+W,r+I,s+n−I(λ, γ) ∈ Kλ,γ . The
corresponding Bayesian estimates under the quadratic loss function are

λ̂ =
I + r

W + a
, γ̂ =

n− I + s

I + r − 1
,

R̂ =
(

W + a

W + a+ 1

)I+r
, θ̂ =

W + a

I + r − 1
for r > 1, p̂ =

I + r

n+ r + s
.

P r o o f . The form of the a posteriori density follows from the construction of
the conjugate priors. The first two estimates are simply the expected values with
respect to the a posteriori densities. After substitution R = e−λ, θ = λ−1, and
p = (1 + γ)−1 the marginal priors are Ka,r,s(R) ∼ LG(a, r), Ka,r,s(θ) ∼ IG(a, r),
and Ka,r,s(p) ∼ B(r, s), respectively. Therefore, the respective posterior distribu-
tions are Ka+W,r+I,s+n−I(R), Ka+W,r+I,s+n−I(θ), and Ka+W,r+I,s+n−I(p). Taking
expectations of these distributions we obtain the remaining estimates. ¤

Remark. The expectations of I1 and W1 are

E I1 = E p = r/(r + s),

EW1 = E(p/λ) = E
1

λ(1 + γ)
=

a

r + s− 1
, if r + s > 1.

(2..4)
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Independent priors

A flexible system of independent priors is given by the density function

q(λ, γ) =
ar

Γ(r)
λr−1e−aλ

bs

Γ(s)
γs−1e−bγ , a > 0, r > 0, b > 0, s > 0, (2..5)

i. e., λ and γ are independent with distributions G(a, r) and G(b, s), respectively.
The corresponding posterior distribution possesses the density function

q(λ, γ|W, I) ∼ λn+r−1e−λ(a+w)e−λγwe−bγγn−i+s−1. (2..6)

In this case, it is not possible to express the usual Bayesian estimates in a close form
with integrals evaluated. Still we are able to give so called Bayesian estimates of
the maximum likelihood type or generalized Bayesian estimates which maximize the
posterior density function.

Theorem 2.3. Suppose that λ and γ possess the density function (2..5), n+r > 1,
and n− I + s− 1 > 1. Then

λ̃ =
1
2

[
I + r − s
a+W

− b

W
+

√
(I + r − s)2

(a+W )2
+

b2

W 2
+

2b (2(n+ r − 1)− (I + r − s))
W (a+W )

]

and

γ̃ =
1
2

[
−I + r − s

b
− a+W

W
+

√
(I + r − s)2

b2
+

(a+W )2

W 2

+2
I + r − s

b

a+W

W
+

4(n− I + s− 1)(a+W )
Wb

]

are the generalized Bayesian estimates.

P r o o f . The logarithm of the investigated posterior density function

`(λ, γ) = (n+ r − 1) lnλ− λ(a+ w)− λγW − bγ + (n− I + s− 1) ln γ.

takes its maximum at
γ(λ) =

n− I + s− 1
b+Wλ

,

for fixed λ > 0. Further,

d`(λ, n−I+s−1
b+Wλ )

dλ
=
n+ r − 1

λ
− (a+W )−W n− I + s− 1

b+Wλ
=
∂`(λ, γ)
∂λ

∣∣∣∣
γ=γ(λ)

.

Multiplying the last expression by λ(b + Wλ) and setting it to zero we get the
quadratic equation

−λ2 (W (a+W )) + λ (W (I + r − s)− b(a+W )) + b(n+ r − 1) = 0
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which has two real roots with the opposite signs so that only the positive one, i. e. λ̃,
is meaningful. Then γ̃ = γ(λ̃) provides the desired estimate for γ. It is not difficult
to show that the pair really maximizes the posterior density. ¤

Consider another system of independent priors for the pair (λ, p):

q(λ, p) ∼ λq−1e−aλpr−1(1− p)s−1, λ > 0, p ∈ (0, 1), (2..7)

where a > 0 and q, r, s are arbitrary prior parameters. In case a > 0, q > 0,
r > 0, s > 0 we have λ ∼ G(a, q), p ∼ B(r, s) and λ and γ remain independent with
distributions λ ∼ G(a, q) and γ ∼ B2(r, s), respectively. The density function of the
corresponding posterior distribution is

q(λ, γ|W, I) ∼ λn+q−1e−aλe−λW e−λγW
γn−I+s−1

(1 + γ)r+s
,

with the marginal density of γ

q(γ|W, I) ∼ γn−I+s−1

(1 + γ)r+s(γW +W + a)n+q
,

and the conditional distribution of λ given (γ,W, I) is q(λ|γ,W, I) = G(γW+W+a,
n+ q).

Under a more specific choice of prior parameters we can get explicit results.

Theorem 2.4. If a = 0, q > −n, q > −r, r > 0, s > 0, then

λ̂ =
I + r + q

W

n+ q

n+ q + r + s
, p̂ =

I + r + q

n+ r + q + s

are the Bayesian estimates under the quadratic loss function. If, moreover, I+r+q>1,
then

θ̂ =
W

I + r + q − 1
n+ q + s+ r − 1

n+ q − 1
and γ̂ =

n− I + s

I + r + q − 1

are the Bayesian estimates under the quadratic loss function.

P r o o f . The posterior density function of (λ, p) is

q(λ, p|W, I) ∼ λn+q−1e−λW/pp−n+I+r−1(1− p)n−I+s−1

so that

q(p|W, I) = B(I + r + q, n− I + s), q(λ|p,W, I) = G(W/p, n+ q).

The first two estimates are then calculated as

p̂ = E(p|W, I) =
I + r + q

n+ r + q + s
,

λ̂ = E(λ|W, I) = E(E[λ|p,W, I]|W, I) = E(
n+ q

W
p|W, I).
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Further, γ has the posterior distribution

q(γ|W, I) ∼ γn−I+s−1

(1 + γ)r+s(γW +W )n+q
∼ γn−I+s−1

(1 + γ)n+r+s+q

∼ B2(I + r + q, n− I + s)

so that γ̂ = E(γ|W, I). The conditional distribution of θ given (p,W, I) is

q(θ|p,W, I) ∼ IG(W/p, n+ q)

so that

θ̂ = E(θ|W, I) = E (E[θ|p,W, I]|W, I) = E
(

W

(n+ q − 1)p

∣∣∣∣W, I
)

=
W

n+ q − 1

(
1 + E[(

1
p
− 1)|W, I]

)
=

W

n+ q − 1
(1 + E[γ|W, I])

=
W

n+ q − 1

(
1 +

n− I + s

I + r + q − 1

)

and the result follows. ¤

With another restriction put on the prior parameters we can obtain the explicit
form of the estimate of R.

Theorem 2.5. If r = −s, s < q, s > 0, a > 0, then

λ̂ =
I + q − s
W + a

, R̂ =
(

W + a

W + a+ 1

)I+q−s

are the Bayesian estimates under the quadratic loss function. If, moreover I+q−s>1
then

θ̂ =
W + a

I + q − s− 1
, γ̂ =

W + a

W

n− I + s

I + q − s− 1

are the Bayesian estimates under the quadratic loss function.

P r o o f . The estimates are simply the posterior expectations again. The only
explanation is needed for γ̂:

γ̂ = E(γ|W, I) =




∫ ∞

0

γn−I+s
(

1 + γ W
W+a

)n+q dγ







∫ ∞

0

γn−I+s−1

(
1 + γ W

W+a

)n+q dγ




−1

=
W + a

W

∫∞
0

γn−I+s

(1+γ)n+q dγ
∫∞

0
γn−I+s−1

(1+γ)n+q dγ
=
W + a

W
E [B2(I + q − s, n− I + s)] ,

hence the result. ¤
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Jeffrey’s prior

The Fisher information matrix is

J(λ, γ) = E
[
−

(− 1
λ2 −W1

−W1 − 1
γ2 (1− I1)

)]
=

(
1
λ2

1
λ(1+γ)

1
λ(1+γ)

1
γ(1+γ)

)
.

Hence the Jeffrey’s prior density function of the pair (λ, γ) may be expressed as

q(λ, γ) ∼ |detJ(λ, γ)|1/2 =
1

λ(1 + γ)
√
γ

(2..8)

with marginal densities

q(λ) ∼ 1
λ
, q(γ) ∼ 1

(1 + γ)
√
γ
, λ and γ independent .

Theorem 2.6. Suppose the Jeffrey’s prior distribution (2..8). Then

λ̂ =
I + 1

2

W

n

n+ 1
, θ̂ =

W

I − 1
2

n

n− 1
, p̂ =

I + 1
2

n+ 1
, γ̂ =

n− I + 1
2

I − 1
2

are the Bayesian estimates under the quadratic loss function.

P r o o f . Jeffrey’s prior is the special case of Theorem 2.4 where we put q = 0,
r = s = 1

2 . ¤

3.. ASYMPTOTIC RESULTS

In this Section we present some asymptotic results for the estimates given above.
For the purpose of this Section denote In = I/n and Wn = W/n.

Bayesian risks

Theorem 3.1. If r > 8 then for the natural conjugate prior (2..2)

lim
n−→∞

n%?λ =
r(r + s+ 1)

a2

lim
n−→∞

n%?θ =
a2(r + s− 3)

(r − 1)(r − 2)(r − 3)

lim
n−→∞

n%?γ =
(r + s− 1)(r + s− 2)s
(r − 1)(r − 2)(r − 3)

lim
n−→∞

n%?p =
rs

(r + s)(r + s− 1)

lim
n−→∞

n%?R =
rar−1

(a+ 2)r+1

(
s+

a

a+ 2
(r + 1)

)

are the Bayesian risks of the corresponding estimates.
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P r o o f . Since the posterior variances are known, we can compute the Bayesian
risk using (1..12). Derivation of the first four formulæ is analogous so that we present
the details for %?λ only. We make use of Theorem 5, b1) in Hurt [7] to obtain the
asymptotic expansion for

%?λ = E
I + r

(W + a)2
=

1
n

E
In + r/n

(Wn + a/n)2
.

Put g(w, i, n) = (i+r/n)/(w+r/n)2, q = 1, u = 0, p = 6 in the mentioned theorem.
We have |g(w, i, n)| ≤ C1 + C2n

2, max[E∗(In − E I1)2,E∗(Wn − E∗W1)2] = C3/n,
max[E∗(In−E I1)6,E∗(Wn−E∗W1)6] = C4/n

3 +O(1/n4), where we denote E∗(·) =
E[·|λ, γ], so that the assumptions of the Theorem 5, loc. cit., are satisfied. If we
moreover add the existence of E(E∗W1)6 (r+s > 6) we can even conclude (following
the proof of the mentioned theorem) E g(Wn, In, n) = E g(E∗Wn,E∗ In, n) +O(1/n)
and the result follows.

The calculation of %?R is a bit more complicated. If we denote (and apply expan-
sion of ln(1 + x))

A1 = (I + r) ln
(

1 +
2

W + a

)
= 2

I + r

W + a
− 22

2
I + r

(W + a)2
+R1,

A2 = 2(I + r) ln
(

1 +
1

W + a

)
= 2

I + r

W + a
− 2

2
I + r

(W + a)2
+R2,

where 0 ≤ R1 ≤ 23

3
I+r

(W+a)3 and 0 ≤ R2 ≤ 2
3

I+r
(W+a)3 , the Bayesian risk is

n%?R = E n(exp(−A1)− exp(−A2)).
Since

exp
(

2
I + r

(W + a)2

)
= 1 + 2

I + r

(W + a)2
+
eS1

2!

(
2

I + r

(W + a)2

)2

,

exp(−R1) = 1− e−T1R1,

where 0 ≤ S1 ≤ 2 I+r
(W+a)2 and 0 ≤ T1 ≤ R1, we have

exp(−A1) = e−2 I+r
W+a (1− e−T1R1)

(
1 + 2

I + r

(W + a)2

)

+ e−2 I+r
W+a e−R1

eS1

2!

(
2

I + r

(W + a)2

)2

= e−2 I+r
W+a

(
1 + 2

I + r

(W + a)2

)
+Q1,

where

|Q1| ≤ e−2 I+r
W+a e−T1R1

(
1 + 2

I + r

(W + a)2

)
+

1
2!

(
2

I + r

(W + a)2

)2

e−2 I+r
W+a−R1+S1

≤ 1 · 1 · 8
3

I + r

(W + a)3

(
1 + 2

I + r

(W + a)2

)
+ 2

(
I + r

(W + a)2

)2

e−A1

≤ K1
n

W 3
+K2

n2

W 5
+K3

n2

W 4
· 1.
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Similarly we could get

exp(−A2) = e−2 I+r
W+a

(
1 +

I + r

(W + a)2

)
+Q2.

Together

n%?R = E ne−2(I+r)/(W+a)

(
2

I + r

(W + a)2
− I + r

(W + a)2

)
+ E n(Q1 −Q2).

Applying the cited theorem to the first term finishes the proof, since the second term
is of the order O(1/n): E(1/W )k is O(1/nk) (given λ, γ, 1/W ∼ IG(λ(1 + γ), n)).¤

Almost sure convergence

It has been shown that given λ, γ, p = 1/(1 + γ), R = e−λ, θ = 1/λ

E I1 = p, var I1 = p(1− p), EW1 = p/λ, varW1 = p2/λ2

hold. Since the derived estimates are of the similar form we can state the general
theorem concerning the almost sure convergence.

Theorem 3.2. If a, c1, c2, c are arbitrary constants then

lim
n−→∞

n− I + c1
I + c2

= γ a. s., lim
n−→∞

I + c1
n+ c2

= p a. s.,

lim
n−→∞

I + c1
W + c2

= λ a. s., lim
n−→∞

W + c2
I + c1

= θ a. s.,

lim
n−→∞

(
W + a

W + a+ 1

)I+c
= R a. s.

holds.

P r o o f . The assertion is a simple consequence of the fact that In −→ p and
Wn −→ p/λ almost surely for n −→∞. ¤

Asymptotic normality

Theorem 3.3. If a, c1, c2, c are arbitrary constants then

lim
n−→∞

£

(√
n(
I + c1
n+ c2

− p)
)

= N (0, p(1− p)) ,

lim
n−→∞

£

(√
n(
n− I + c1
I + c2

− γ)
)

= N
(
0, γ(1 + γ)2

)
,

lim
n−→∞

£

(√
n(

I + c1
W + c2

− λ)
)

= N

(
0,
λ2

p

)
,

lim
n−→∞

£

(√
n(
W + c1
I + c2

− θ)
)

= N

(
0,
θ2

p

)
,
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lim
n−→∞

£

(
√
n(

(
W + a

W + a+ 1

)I+c
−R)

)
= N

(
0,
R2(lnR)2

p

)
.

P r o o f . It follows from the central limit theorem for i.i.d. with the finite nonzero
variance that

lim
n−→∞

£

(√
n(
I

n
− p)

)
= N (0, p(1− p)) ,

lim
n−→∞

£

(√
n(
W

n
− p

λ
)
)

= N
(
0, p2/λ2

)
.

Using Cramér–Slutsky and Sverdrup theorem we get

lim
n−→∞

£

(√
n(
I + c1
n+ c2

− p)
)

= lim
n−→∞

£

(√
n

n

n+ c2
(
I

n
− p) +

√
n

c1
n+ c2

+
√
n(

n

n+ c2
− 1)p

)

= lim
n−→∞

£

(√
n(
I

n
− p)

)
= N (0, p(1− p)) ,

lim
n−→∞

£

(√
n(
n− I + c1
I + c2

− γ)
)

= lim
n−→∞

£

(√
n

I

I + c2
(
n− I
I
− γ) +

√
n

c1
I + c2

+
√
n(

I

I + c2
− 1)γ

)

= lim
n−→∞

£

(√
n(
n− I
I
− γ)

)
= lim
n−→∞

£

(√
n(1− In − γIn)

In

)

= lim
n−→∞

£

(√
n(p− In)
pp

)
= N

(
0,
p(1− p)
p4

)

= N

(
0,

(1− p)
p3

)
= N

(
0, γ(1 + γ)2

)
.

Also

lim
n−→∞

£

(√
n(

I + c1
W + c2

− λ)
)

= lim
n−→∞

£

(√
n

W

W + c2
(
I

W
− λ) +

√
n

c1
W + c2

+
√
n(

W

W + c2
− 1)λ

)

= lim
n−→∞

£

(√
n(

I

W
− λ)

)
= lim
n−→∞

£

(√
n(In − λWn)

Wn

)

= lim
n−→∞

£

(
In − λWn
p/λ

)
= N

(
0,

1
p2/λ2

(
p(1− p) + λ2 p

2

λ2

))

= N

(
0,
λ2

p

)
,
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since W1 and I1 are independent and thus
(

In − p
Wn − p/λ

)
D−→

n→∞
N

((
0
0

)
,

(
p(1− p) 0

0 p2/λ2

))

and the limiting distribution limn−→∞ £(In − λWn) may be obtained as the limit of
the linear combination of the independent normal distributions. Similarly

lim
n−→∞

£

(√
n(
W + c1
I + c2

− θ)
)

=

= lim
n−→∞

£

(√
n(
W

I
− θ) +

√
n(

W

I + c2
− W

I
) +
√
n

c1
I + c2

)

= lim
n−→∞

£

(√
n

1
In

(Wn − θIn)
)

= N

(
0,

1
p2

(
p2

λ2
+ θ2p(1− p)

))
= N

(
0, θ2(1 +

1− p
p

)
)

= N

(
0,
θ2

p

)
.

To justify the next relationship let us note that

n2/3 I

(W + a)2
= n−1/3 In(

Wn + a
n

)2 −→n→∞ 0 a. s.,

so that I/(W + a)2 = o(n−2/3) for n→∞ with probability 1 which together with

Q1 =
∞∑

m=2

(−1)m+1

m(W + a)m
= O

(
1

(W + a)2

)
for n→∞ a. s.,

(following from the expansion ln(1 + x) for x→ 0) gives
√
nIQ1 −→

n→∞
0 a. s.

and

lim
n−→∞

£

(√
n

(
I ln(1 +

1
W + a

)− λ
))

= lim
n−→∞

£

(√
n

(
I

W + a
+ IQ1

))

= lim
n−→∞

£

(√
n

I

W + a

)
= N

(
0,
λ2

p

)
.

It now follows that

n1/3

(
I ln(1 +

1
W + a

)− λ
)

P−→
n→∞

0

and √
n

(
I ln(1 +

1
W + a

)− λ
)2

P−→
n→∞

0.
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We use Taylor expansion of the exponential function to derive the last assertion
for c = 0. Let us denote

Q2 =
∞∑

m=2

I ln(1 + 1
W+a )− λ
m!

.

There exist K > 0 and δ > 0 such that for |I ln(1 + 1/(W + a)) − λ| < δ we have
|Q2| < K(I ln(1 + 1/(W + a))− λ)2 and

Pr
[
|√ne−λQ2| > ε

]
≤ Pr

[√
ne−λK(I ln(1 + 1/(W + a))− λ)2 > ε

]
−→
n→∞

0

for every ε > 0 or √
ne−λQ2

P−→
n→∞

0.
Hence

lim
n−→∞

£

(
√
n(

(
W + a

W + a+ 1

)I
−R)

)

= lim
n−→∞

£
(√

ne−λ(e−I ln W+a+1
W+a +λ − 1)

)

= lim
n−→∞

£

(
√
ne−λ(1−

I ln(1 + 1
W+a )− λ
1!

+Q2 − 1)

)

= lim
n−→∞

£

(√
ne−λ(I ln(1 +

1
W + a

)− λ)
)

= N

(
0, e−2λλ

2

p

)
= N

(
0,
R2(lnR)2

p

)
.

For arbitrary c

lim
n−→∞

£

(
√
n(

(
W + a

W + a+ 1

)I+c
−R)

)

= lim
n−→∞

£

(√
n

(
W + a

W + a+ 1

)c

×
((

W + a

W + a+ 1

)I
−R

)
−√nR

(
1−

(
W + a

W + a+ 1

)c))

= N

(
0,
R2(lnR)2

p

)
,

since
lim

n−→∞

(
W + a

W + a+ 1

)c
=

(
Wn + a

n

Wn + a+1
n

)c

= 1 a. s.,

√
n

((
W + a

W + a+ 1

)I
−R

)
D−→

n→∞
N

(
0,
R2(lnR)2

p

)
and

lim
n−→∞

√
nR

(
1−

(
W + a

W + a+ 1

)c)
= lim
n−→∞

√
nR

(
1−

(
1− 1

W + a+ 1

)c)
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= lim
n−→∞

√
nR

(
1−

(
1 +O

(
1

W + a+ 1

)))
= 0 a. s. ¤

4.. SIMULATION

In case of the independent gamma priors (2..5) we were not able to express the
Bayesian risks in a close form. To get an idea about the behaviour of the Bayesian
risks we performed a limited simulation study. The prior parameters were chosen
as to achieve the expected value of λ equal to 1 and the expected value of γ cor-
responding to the portion of uncensored observations p = 1/(1 + γ) equal to 0.5,
0.8, and 0.9. The accuracy of the prior knowledge is expressed by the coefficients of
variation (the standard deviation divided by the mean) Vλ and Vγ equal to 0.5, 0.3,
and 0.1. The estimated n-multiples of the Bayesian risks for 5000 realizations of the
samples of size n = 20, 50, and 100 are summarized in the following tables.

n·%?λ Vγ = 0.5 n Vγ = 0.3 n Vγ = 0.1

Vλ
=
0.5

1.33 1.12 1.01
1.72 1.29 1.16
2.02 1.39 1.24

20
50
100

1.22 1.04 1.05
1.60 1.23 1.21
1.88 1.31 1.21

20
50
100

1.06 1.01 0.95
1.23 1.12 1.12
1.42 1.19 1.16

Vλ
=
0.5

p 0.5 0.8 0.9 0.5 0.8 0.9 0.5 0.8 0.9 p
Vλ
=
0.3

0.86 0.70 0.69
1.30 1.01 0.96
1.62 1.12 1.04

20
50
100

0.80 0.71 0.70
1.21 0.94 0.90
1.47 1.09 0.99

20
50
100

0.70 0.69 0.69
0.93 0.87 0.90
1.12 1.04 0.96

Vλ
=
0.3

p 0.5 0.8 0.9 0.5 0.8 0.9 0.5 0.8 0.9 p
Vλ
=
0.1

0.18 0.16 0.16
0.39 0.34 0.33
0.63 0.55 0.51

20
50
100

0.17 0.16 0.17
0.37 0.33 0.34
0.63 0.53 0.50

20
50
100

0.16 0.16 0.17
0.34 0.33 0.34
0.53 0.51 0.49

Vλ
=
0.1

Vγ = 0.5 n Vγ = 0.3 n Vγ = 0.1

n·%?γ Vγ = 0.5 n Vγ = 0.3 n Vγ = 0.1

Vλ
=
0.5

2.154 0.193 0.047
3.240 0.297 0.085
4.082 0.346 0.109

20
50
100

1.219 0.089 0.020
2.154 0.164 0.042
2.865 0.234 0.062

20
50
100

0.184 0.012 0.002
0.434 0.028 0.006
0.783 0.051 0.011

Vλ
=
0.5

p 0.5 0.8 0.9 0.5 0.8 0.9 0.5 0.8 0.9 p
Vλ
=
0.3

2.114 0.191 0.048
3.227 0.286 0.082
3.677 0.340 0.109

20
50
100

1.134 0.091 0.020
2.029 0.172 0.042
2.755 0.233 0.062

20
50
100

0.181 0.011 0.002
0.426 0.028 0.006
0.768 0.052 0.011

Vλ
=
0.3

p 0.5 0.8 0.9 0.5 0.8 0.9 0.5 0.8 0.9 p
Vλ
=
0.1

1.712 0.184 0.050
2.293 0.259 0.079
2.812 0.311 0.101

20
50
100

1.047 0.087 0.020
1.639 0.155 0.041
2.152 0.237 0.063

20
50
100

0.183 0.012 0.002
0.389 0.028 0.006
0.738 0.052 0.011

Vλ
=
0.1

Vγ = 0.5 n Vγ = 0.3 n Vγ = 0.1

We can see that under the accurate knowledge of λ the Bayesian risk is not
too much influenced either by the accuracy of the knowledge of p or the value p
itself. Similarly, under the accurate knowledge of γ the risk is not influenced by
the accuracy of λ. The risk %?γ substantially depends on the portion of uncensored
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observations p, however. Obviously, with the increasing portion of the uncensored
observations and increasing sample sizes the risks decrease.
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J. Mogyoród́ı, and W. Wertz, eds.), Visegrád 1985, pp. 255–266.

[7] J. Hurt: Asymptotic expansions for moments of functions of stochastic processes and
their Applications. Statist. Decisions 4 (1992), 251–271.

[8] J. Hurt: On Statistical Methods for Survival Data Analysis. In: Proc. Summer School
ROBUST’92 (J. Antoch and G. Dohnal, eds.), Union of the Czech Mathematicians
and Physicists, Prague 1992, pp. 54–74.

[9] J. A. Koziol and S. B. Green: A Cramér–von Mises statistic for randomly censored
data. Biometrika 63 (1976), 465–474.

[10] T. Liang: Empirical Bayes estimation with random right censoring. Internat. J. Inform.
Manag. Sci. 15 (2004), 4, 1–12.

[11] H. F. Martz and R. A. Waller: Bayesian Reliability Analysis. Wiley, New York 1982.
[12] M. Z. Raqab and M. T. Madi: Bayesian inference for the generalized exponential dis-

tribution. J. Statist. Comput. Simulation 75 (2005), 10, 841–852.
[13] A. M. Sarhan: Empirical Bayes estimates in exponential reliability model. Appl. Math.

Comput. 135 (2003), 2–3, 319–332.

Michal Friesl, Department of Mathematics, Faculty of Applied Sciences, University of
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