G_{δ}-SEPARATION AXIOMS
 IN ORDERED FUZZY TOPOLOGICAL SPACES

Elango Roja, Mallasamudram Kuppusamy Uma and Ganesan BalaSUBRAMANIAN

G_{δ}-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn's lemma.

Keywords: fuzzy G_{δ}-neighbourhood, fuzzy $\mathrm{G}_{\delta}-T_{1}$-ordered spaces, fuzzy $G_{\delta}-T_{2}$ ordered spaces
AMS Subject Classification: 54A40, 03E72

1. INTRODUCTION

The fuzzy concept has invaded all branches of Mathematics ever since the introduction of fuzzy set by Zadeh [10]. Fuzzy sets have applications in many fields such as information [5] and control [8]. The theory of fuzzy topological spaces was introduced and developed by Chang [3] and since then various notions in classical topology have been extended to fuzzy topological spaces. Sostak [6] introduced the fuzzy topology as an extension of Chang's fuzzy topology. It has been developed in many directions. Sostak [7] also published a new survey article of the developed areas of fuzzy topological spaces. Katsaras [4] introduced and studied ordered fuzzy topological spaces. Motivated by the concepts of fuzzy $G_{\boldsymbol{\delta}}$-set [2] and ordered fuzzy topological spaces the concept of increasing (decreasing) fuzzy G_{δ}-sets, fuzzy $G_{\delta}-T_{1}$ ordered spaces and fuzzy $G_{\delta}-T_{2}$ ordered spaces are studied. In this paper we introduce some new separation axioms in the ordered fuzzy topological spaces and we establish an analogue of Urysohn's lemma.

2. PRELIMINARIES

Definition 1. Let (X, T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy $G_{\boldsymbol{\delta}}$-set [2] if $\lambda=\lambda_{i}$ where each $\lambda_{i} \in T$ for $i \in I$.

Definition 2. Let X, T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy F_{σ}-set if $\lambda=\lambda_{i}$ where each $1-\lambda_{i} \in T$ for $i \in I$ (see [2]).

Definition 3. A fuzzy set μ is a fuzzy topological space (X, T) is called a fuzzy G_{δ}-neighbourhood of $x \in X$ if there exists a fuzzy G_{δ}-set μ_{1} with $\mu_{1} \leq \mu$ and $\mu_{1}(x)=\mu(x)>0$.

It is easy to see that a fuzzy set is fuzzy $G_{\delta^{-}}$if and only if μ is a fuzzy $G_{\delta^{-}}$ neighbourhood of each $x \in X$ for which $\mu(x)>0$.

Definition 4. A family H of fuzzy $G_{\boldsymbol{\delta}}$-neighbourhoods of a point x is called a base for the system of all fuzzy G_{δ}-neighbourhood μ of x if the following condition is satisfied. For each fuzzy G_{δ}-neighbourhood μ of x and for each θ, with $0<\theta<\mu(x)$ there exists $\mu_{1} \in H$ with $\mu_{1} \leq \mu$ and $\mu_{1}(x)>0$.

Definition 5. A function f from a fuzzy topological space (X, T) to a fuzzy topological space (Y, S) is called fuzzy irresolute if $f^{-1}(\mu)$ is fuzzy $G_{\delta^{-}}$in X for each fuzzy G_{δ}-set μ in Y. The function f is said to be fuzzy irresolute at $x \in X$ if $f^{-1}(\mu)$ is a fuzzy G_{δ}-neighbourhood of x for each fuzzy G_{δ}-neighbourhood μ of $f(x)$. Following the idea of Warren [10] it is easy to see that f is fuzzy irresolute $\Leftrightarrow f$ is-fuzzy irresolute at each $x \in X$.

Definition 6. A fuzzy set λ in (X, T) is called increasing/decreasing if $\lambda(x) \leq$ $\lambda(y) / \lambda(x) \geq \lambda(y)$ whenever $x \leq y$ in (X, T) and $x, y \in X$.

Definition 7. (Katsaras [4]) An ordered set on which there is given a fuzzy topology is called an ordered fuzzy topological space.

Definition 8. If λ is a fuzzy set of X and μ is a fuzzy set of Y then $\lambda \times \mu$ is a fuzzy set of $X \times Y$, defined by $(\lambda \times \mu)(x, y)=\min (\lambda(x), \mu(y))$, for each $(x, y) \in X \times Y$ [1]. A fuzzy topological space X is product related [1] to another fuzzy topological space Y if for any fuzzy set γ of X and η of Y whenever $(1-\lambda) \geq \gamma$ and $1-\mu \geq \eta \Rightarrow$ $((1-\lambda) \times 1) \vee(1 \times(1-\mu)) \geq \gamma \times \eta$, where λ is a fuzzy open set in X and μ is a fuzzy open set in Y, there exist λ_{1} a fuzzy open set in X and μ_{1} a fuzzy open set in Y such that $1-\lambda_{1} \geq \gamma$ or $1-\mu_{1} \geq \eta$ and $\left(\left(1-\lambda_{1}\right) \times 1\right) \vee\left(1 \times\left(1-\mu_{1}\right)\right)=((1-\lambda) \times 1) \vee(1 \times(1-\mu))$.

Definition 9. (Katsaras [4]) An ordered fuzzy topological space (X, T, \leq) is called normally ordered if the following condition is satisfied. Given a decreasing fuzzy closed set μ and a decreasing fuzzy open set γ such that $\mu \leq \gamma$, there are decreasing fuzzy open set γ_{1} and a decreasing fuzzy closed set μ_{1} such that $\mu \leq \gamma_{1} \leq \mu_{1} \leq \gamma$.

3. FUZZY $G_{\delta}-T_{1}$-ORDERED SPACES

Let (X, T, \leq) be an ordered fuzzy topological space and let λ be any fuzzy set in $(X, T, \leq), \lambda$ is called increasing fuzzy G_{δ} / F_{σ} if $\lambda=\bigwedge_{i=1}^{\infty} \lambda_{i} /$ if $\lambda=\bigvee_{i=1}^{\infty} \lambda_{i}$, where each λ_{i} is increasing fuzzy open/closed in (X, T, \leq). The complement of fuzzy increasing G_{δ} / F_{σ}-set is decreasing fuzzy F_{σ} / G_{δ}.

Definition 10. Let λ be any fuzzy set in the ordered fuzzy topological space (X, T, \leq). Then we define

$$
\begin{aligned}
I_{\sigma}(\lambda) & =\text { increasing fuzzy } \sigma \text {-closure of } \lambda \\
& =\text { the smallest increasing fuzzy } F_{\sigma} \text {-set containing } \lambda ; \\
D_{\sigma}(\lambda) & =\text { decreasing fuzzy } \sigma \text {-closure of } \lambda \\
& =\text { the smallest decreasing fuzzy } F_{\sigma} \text {-set containing } \lambda ; \\
I_{\sigma}^{0}(\lambda) & =\text { increasing fuzzy } \sigma \text {-interior of } \lambda \\
& =\text { the greatest increasing fuzzy } G_{\delta} \text {-set contained in } \lambda ; \\
D_{\sigma}^{0}(\lambda) & =\text { decreasing fuzzy } \sigma \text {-interior of } \lambda \\
& =\text { the greatest decreasing fuzzy } \mathrm{G}_{\delta} \text {-set contained in } \lambda .
\end{aligned}
$$

Proposition 1. For any fuzzy set λ of an ordered fuzzy topological space (X, T, \leq), the following are valid.
(a) $1-I_{\sigma}(\lambda)=D_{\sigma}^{0}(1-\lambda)$,
(b) $1-D_{\sigma}(\lambda)=I_{\sigma}^{0}(1-\lambda)$,
(c) $1-I_{\sigma}^{0}(\lambda)=D_{\sigma}(1-\lambda)$,
(d) $1-D_{\sigma}^{0}(\lambda)=I_{\sigma}(1-\lambda)$.

Proof. We shall prove (a) only, (b), (c) and (d) can be proved in a similar manner.

Since $I_{\sigma}(\lambda)$ is a increasing fuzzy F_{σ}-set containing $\lambda, 1-I_{\sigma}(\lambda)$ is a decreasing fuzzy G_{δ}-set such that $1-I_{\sigma}(\lambda) \leq 1-\lambda$. Let μ be another decreasing fuzzy G_{δ}-set such that $\mu \leq 1-\lambda$. Then $1-\mu$ is a increasing fuzzy F_{σ}-set such that $1-\mu \geq \lambda$. It follows that $I_{\sigma}(\lambda) \leq 1-\mu$. That is, $\mu \leq 1-I_{\sigma}(\lambda)$. Thus, $1-I_{\sigma}(\lambda)$ is the largest decreasing fuzzy G_{δ}-set such that $1-I_{\sigma}(\lambda) \leq 1-\lambda$. That is, $1-I_{\sigma}(\lambda)=1-D_{\sigma}^{0}(1-\lambda)$.

Definition 11. An ordered fuzzy topological space (X, τ, \leq) is said to be lower/upper fuzzy $G_{\delta}-T_{1}$-ordered if for each pair of elements $a \not \leq b$ in X, there exists an increasing/decreasing fuzzy G_{δ}-neighbourhood λ such that $\lambda(a)>0 / \lambda(b)>0$ and λ is not a fuzzy G_{δ}-neighbourhood of $b / a . X$ is said to be fuzzy $G_{\delta}-T_{1}$-ordered if it is both lower and upper $G_{\delta}-T_{1}$-ordered.

Proposition 2. For an ordered fuzzy topological space (X, τ, \leq) the following are equivalent.

1. (X, τ, \leq) is lower/upper fuzzy $G_{\delta}-T_{1}$-ordered.
2. For each $a, b \in X$ such that $a \not \leq b$, there exists an increasing/decreasing fuzzy G_{δ}-set λ such that $\lambda(a)>0 / \lambda(b)>0$ and λ is not a fuzzy G_{δ}-neighbourhood of b / a.
3. For all $x \in X, \chi_{[\leftarrow, x] /} \chi_{[x, \rightarrow]}$ is fuzzy F_{σ} / G_{δ} - where $[\leftarrow, x]=\{y \in X \mid y \leq x\}$ and $[x, \rightarrow]=\{y \in X \mid y \geq x\}$.

Proof. (1) $\Rightarrow(2)$ Let (X, τ, \leq) be lower fuzzy $G_{\delta}-T_{1}$-ordered. Let $a, b \in X$ be such that $a \leq b$. There exists an increasing fuzzy G_{δ}-neighbourhood λ of a such that λ is not a fuzzy G_{δ}-neigbourhood of b. It follows that there exists a fuzzy G_{δ}-set μ_{1} with $\mu_{1} \leq \lambda$ and $\mu_{1}(a)=\lambda(a)>0$. As λ is increasing, $\lambda(a)>\lambda(b)$ and since λ is not a fuzzy G_{δ}-neighbourhood of $b, \mu_{1}(b)<\lambda(b) \Rightarrow \mu_{1}(a)=\lambda(a)>\lambda(b)>\mu_{1}(b)$. This shows μ_{1} is increasing and μ_{1} is not a fuzzy G_{δ}-neighbourhood of b since λ is not a fuzzy G_{δ}-neighbourhood of b.
$(2) \Rightarrow(3)$ consider $1-\chi_{[\leftarrow, x]}$. Let y be such that $1-\chi_{[\leftarrow, x]}(y)>0$. This means $y \leq x$. Therefore by (2) there exists increasing fuzzy G_{δ}-set λ such that $\lambda(y)>0$ and λ is not a fuzzy G_{δ}-neighbourhood of x and $\lambda \leq 1-\chi_{[\leftarrow, x]}$. This means $1-\chi_{[\leftarrow, x]}$ is fuzzy $G_{\delta^{-}}$and so $X_{(\leftarrow, x]}$ is fuzzy F_{σ}.
$(3) \Rightarrow(1)$ This is obvious.
Corollary 1. If (X, τ, \leq) is lower/upper fuzzy $G_{\delta}-T_{1}$-ordered and $\tau \leq \tau^{*}$, then $\left(X, \tau^{*}, \leq\right)$ is also lower/upper fuzzy $G_{\delta}-T_{1}$-ordered.

Proposition 3. Let f be order preserving (that is $x \leq y$ in X if and only if $f(x) \leq * f(y)$ in X^{*}), fuzzy irresolute mapping from an ordered fuzzy topological space (X, τ, \leq) to an ordered fuzzy topological space $\left(X^{*}, \tau^{*}, \leq^{*}\right)$. If $\left(X^{*}, \tau^{*}, \leq^{*}\right)$ is fuzzy $G_{\delta}-T_{1}$-ordered, then (X, τ, \leq) is fuzzy $G_{\delta}-T_{1}$-ordered.

Proof. Let $a \leq b$ in X. As f is order preserving, $f(a) \leq^{*} f(b)$ in X^{*}. Hence there exists an increasing/decreasing fuzzy G_{δ}-set λ^{*} in X such that $\lambda^{*}(f(a))>$ $0 / \lambda^{*}(f(b))>0$ and λ^{*} is not a fuzzy G_{δ}-neighbourhood of $f(b) / f(a)$. Let $\lambda=$ $f^{-1}\left(\lambda^{*}\right)$. As f is order preserving and fuzzy irresolute λ is an increasing/decreasing fuzzy G_{δ}-set in X. Also $\lambda(a)>0 / \lambda(b)>0$ and λ is not a fuzzy G_{δ}-neighbourhood of b / a. Thus we have shown that X is lower/upper fuzzy $G_{\delta}-T_{1}$-ordered. That is (X, τ, \leq) is fuzzy $G_{\delta}-T_{1}$-ordered.

Proposition 4. Suppose $\left(X_{t 1}, \tau_{t 1}, \leq_{t 1}\right)$ and $\left(X_{t 2}, \tau_{t 2}, \leq_{t 2}\right)$ be any two ordered fuzzy topological spaces such that $X_{t 1}$ and $X_{t 2}$ are product related (Zadeh [11]). Assume $X_{t 1}$ and $X_{t 2}$ are fuzzy $G_{\delta}-T_{1}$-ordered. Let (X, τ, \leq) be the product ordered fuzzy topological space. Then (X, τ, \leq) is also fuzzy $G_{\delta}-T_{1}$-ordered.

Proof. Let $a=\left(a_{t 1}, a_{t 2}\right)$ and $b=\left(b_{t 1}, b_{t 2}\right)$ be two elements of the product X such that $a \not \leq b$. Thus $a_{t 1} \not \leq b_{t 1}$ or $a_{t 2} \not \leq b_{t 2}$ or both. To be definite let us assume that $a_{t 1} \not \leq b_{t 1}$. Since $\left(X_{t 1}, \tau_{t 1}, \leq_{t 1}\right)$ is fuzzy $G_{\delta}-T_{1}$-ordered, there exists an increasing fuzzy G_{δ}-set $\theta_{t 1}$ in $\tau_{t 1}$, such that $\theta_{t 1}\left(a_{t 1}\right)>0$ and $\theta_{t 1}\left(b_{t 1}\right)=0$. Define $\theta=\theta_{t 1} \times 1_{X t 2}$. Then θ is an increasing fuzzy G_{δ}-set in X such that $\theta(a)>0$ and $\theta(b)=0$. (Since $\left.\theta(b)=\theta\left(b_{t 1}, b_{t 2}\right)=\theta_{t 1} \times 1_{x t 2}\left(b_{t 1}, b_{t 2}\right)=\operatorname{Min}\left\{\theta_{t 1}\left(b_{t 1}\right), 1_{x t 2}\left(b_{t 2}\right)\right\}=\operatorname{Min}\{0,1\}=0\right)$.

Therefore (X, τ, \leq) is lower fuzzy $G_{\delta}-T_{1}$-ordered. Similarly we can prove it is also upper fuzzy $G_{\delta}-T_{1}$-ordered. That is (X, τ, \leq) is fuzzy $G_{\delta}-T_{1}$-ordered.

Definition 12. Let $\left\{\left(X_{t}, \tau_{t 1}, \leq_{t}\right)\right\}_{t \in \Delta}$ be a collection of disjoint ordered fuzzy topological spaces. Let $X=\bigcup_{t \in \Delta} X_{t}, T=\left\{\lambda \in I^{X} \mid \lambda / X_{t} \in \tau_{t}\right\}$ and " \leq " be a partial order on X such that $x \leq y$ if and only if $x, y \in X_{t}$ for some $t \in \Delta$ and $x \leq_{t} y$. Then (X, τ, \leq) is called ordered fuzzy topological sum of $\left\{\left(X_{t}, \tau_{t}, \leq_{t}\right)\right\}_{t \in \Delta}$.

In this connection we prove the following proposition.

Proposition 5. (X, τ, \leq) is fuzzy $G_{\delta}-T_{1}$-ordered $\Leftrightarrow\left(X_{t}, \tau_{t}, \leq_{t}\right)$ is fuzzy $G_{\delta}-T_{1}$ ordered for each $t \in \Delta$.

Proof. Let (X, τ, \leq) be fuzzy $G_{\delta}-T_{1}$-ordered that $t \in \Delta$. Suppose $x, y \in X_{t}$ such that $x \not Z_{t} y$. Then $x \not \leq y$. Hence there exists an increasing fuzzy G_{δ}-set λ in X such that $\lambda(x)>0$ and $\lambda(y)=0$. But λ / X_{t} is an increasing fuzzy $G_{\delta^{-}}$of X_{t}, such that $\lambda / X_{t}(x)>0$ and $\lambda / X_{t}(y)=0$. Therefore, $\left(X_{t}, \tau_{t}, \leq_{t}\right)$ is lower fuzzy $G_{\delta}-T_{1}$-ordered. Similarly, we can show that it is an upper fuzzy $G_{\delta}-T_{1}$-ordered space.

Conversely, let $\left(X_{t}, \tau_{t}, \leq_{t}\right)$ be fuzzy $G_{\delta}-T_{1}$-ordered for all $t \in \Delta$. Consider $x, y \in$ X such that $x \leq y$. Then there exists $t_{0} \in \Delta$ such that $x, y \in X_{t_{0}}$, with $x \not \leq t_{0} y$ or $x \in X_{t}, y \in X_{s}, t \neq s t, s \in \Delta$. If $x, y \in X_{t_{0}}, t_{0} \in \Delta$, then by hypothesis there exists an increasing fuzzy G_{δ}-set λ in $X_{t_{0}}$ such that $\lambda(x)>0, \lambda(y)=0$. Then λ is the required increasing fuzzy G_{δ}-set of X. But if $x \in X_{t}, y \in X_{s}, t \neq s$, $t, s \in \Delta$ then $1_{X t}$, is the required increasing fuzzy G_{δ}-set of X. Hence in either cases (X, τ, \leq) is lower fuzzy $G_{\delta}-T_{1}$-ordered. Similarly we can prove that (X, τ, \leq) is upper $G_{\delta}-T_{1}$-ordered.

4. FUZZY $G_{\delta}-T_{2}$-ORDERED SPACES

Definition 13. (X, τ, \leq) is said to be fuzzy $G_{\delta}-T_{2}$-ordered if for $a, b \in X$, with $a \not \leq b$, there exists fuzzy G_{δ}-sets λ and μ such that λ is an increasing fuzzy $G_{\delta^{-}}$ neighbourhood of a, μ is a decreasing fuzzy G_{δ}-neighbourhood of a and $\lambda \wedge \mu=0$.

Definition 14. Let $(X \leq)$ be any partially ordered set. Let $G=\{(x, y) \in X \times$ $X \mid x \leq y\}$. Then G is called the graph of the partial order " \leq ".

Proposition 6. For an ordered fuzzy topological space (X, τ, \leq) the following are equivalent.
(1) X is fuzzy $G_{\delta}-T_{2}$-ordered.
(2) For each pair $a, b \in X$ such that $a \not \leq b$, there exists fuzzy G_{δ}-sets λ and μ such that $\lambda(a)>0, \mu(b)>0$ and $\lambda(x)>0$ and $\mu(y)>0$ together imply that $x \leq y$.
(3) The characteristic function χ_{G} where G is the graph of the partial order of G, is fuzzy $F_{\sigma^{-}}$in $(X \times X, \tau \times \tau, \leq)$.

Proof. (1) \Rightarrow (2) Suppose $\lambda(x)>0$, and $\mu(y)>0$ and suppose $x \leq y$. Since λ is increasing and μ is decreasing, $\lambda(x) \leq \lambda(y)$ and $\mu(x) \geq \mu(y)$. Therefore, $0<$ $\lambda(x) \wedge \mu(y) \leq \lambda(y) \wedge \mu(x)$, which is a contradiction to the fact that $\lambda \wedge \mu=0$. Therefore $x \not \leq y$.
(2) \Rightarrow (1) Let $a, b \in X$ with $a \not \leq b$. Then there exist fuzzy sets λ and μ satisfying the properties in (2). Consider $I_{\sigma}^{0}(\lambda)$ and $D_{\sigma}^{0}(\mu)$. Clearly $I_{\sigma}^{0}(\lambda)$ in increasing and $D_{\sigma}^{0}(\mu)$ is decreasing. So the proof is complete if we show that $I_{\sigma}^{0}(\lambda) \wedge D_{\sigma}^{0}(\mu)=0$. Suppose $z \in X$ is such that $I_{\sigma}^{0}(\lambda)(z) \wedge D_{\sigma}^{0}(\mu)(z)>0$. Then $I_{\sigma}^{0}(\lambda)(z)>0$ and $D_{\sigma}^{0}(\mu)(z)>0$. So if $y \leq z \leq x$, then $y \leq z \Rightarrow D_{\sigma}^{0}(\mu)(y) \geq D_{\sigma}^{0}(\mu)(z)$ and $z \leq$ $x \Rightarrow I_{\sigma}^{0}(\lambda)(x) \geq I_{\sigma}^{0}(\lambda)(z)>0$. Hence by (2) $x \not \leq y$; but then $x \leq y$ and this is a contradiction.
(1) \Rightarrow (3) We want to show that χ_{G} is fuzzy $F_{\sigma^{-}}$in $(X \times X, \tau \times \tau)$. So it is sufficient if we show that $1-\chi_{G}$ is a fuzzy G_{δ}-neighbourhood of $(x, y) \in X \times X$ such that $\left(1-\chi_{G}\right)(x, y)>0$. Suppose $(x, y) \in X \times X$ is such that $\left(1-\chi_{G}\right)(x, y)>0$. That is $\chi_{G}(x, y)<1$. This means $\chi_{G}(x, y)=0$. That is $(x, y) \not \leq G$. That is, $x \not \leq y$. Therefore by (1) there exists fuzzy G_{δ}-sets λ and μ such that λ is increasing fuzzy G_{δ}-neighbourhood of a, μ is a decreasing fuzzy G_{δ}-neighbourhood of b and $\lambda \wedge \mu=0$. Clearly, $\lambda \times \mu$ is a fuzzy G_{δ}-neighbourhood of (x, y). It is easy to verify that $\lambda \times \mu<1-\chi_{G}$. Thus we find that $1-\chi_{G}$ is fuzzy $G_{\delta^{-}}$. Hence (3) is established.
$(3) \Rightarrow$ (1) Suppose $x \leq y$. Then $(x, y) \notin G$, where G is the graph of the partial order. Given that χ_{G} is fuzzy F_{σ} in $(X, \times X, \tau \times \tau), 1-\chi_{G}$ is fuzzy $G_{\delta^{-}}$in $(X \times$ $X, \tau \times \tau)$. Now, $(x, y) \notin G \Rightarrow\left(1-\chi_{G}\right)(x, y)=1>0$. Therefore, $\left(1-\chi_{G}\right)$ is a fuzzy G_{δ}-neighbourhood of $(x, y) \in X \times X$. Hence we can find a fuzzy G_{δ}-set $\lambda \times \mu$ such that $\lambda \times \mu<\left(1-\chi_{G}\right)$ and λ is fuzzy G_{δ}-set such that $\lambda(x)>0$ and μ is a fuzzy G_{δ}-set such that $\mu(y)>0$.

We now claim that $I_{\sigma}^{0}(\lambda) \wedge D_{\sigma}^{0}(\mu)=0$. For if $z \in X$ is such that $\left(I_{\sigma}^{0}(\lambda) \wedge\right.$ $D_{\sigma}^{0}(\mu)(z)>0$, then $I_{\sigma}^{0}(\lambda)(z) \wedge D_{\sigma}^{0}(\mu)(z)>0$. This means $I_{\sigma}^{0}(\lambda)(z)>0$ and $D_{\sigma}^{0}(\mu)(z)>0$. And if $b \leq z \leq a$, then $z \leq a \Rightarrow I_{\sigma}^{0}(\lambda)(a)>I_{\sigma}^{0}(\lambda)(z)>0$, and $b \leq z \Rightarrow D_{\sigma}^{0}(\mu)(b) \geq D_{\sigma}^{0}(\mu)(z)>0$. Then $I_{\sigma}^{0}(\lambda)(a)>0, D_{\sigma}^{0}(\mu)(b)>0 \Rightarrow a \not \leq b$; but then $a \leq b$. This is a contradiction. Hence (1) is established.

Definition 15. (X, τ, \leq) is said to be weakly fuzzy $G_{\delta}-T_{2}$-ordered if given $b<a$ (i. e., $b \leq a$, and $b \neq a$) there exists fuzzy G_{δ}-sets λ and μ such that $\lambda(a)>0$ and $\mu(b)>0$ and such that if $x, y \in X, \lambda(x)>0, \mu(y)>0$ together imply that $y<x$.

Notation. The symbol $x \| y$ means that $x \not \leq y$ and $y \not \leq x$.

Definition 16. (X, τ, \leq) is said to be almost fuzzy $G_{\delta}-T_{2}$-ordered if given $a \| b$ there exists fuzzy G_{δ}-sets λ and μ such that $\lambda(a)>0$ and $\mu(b)>0$ and such that if $x, y \in X, \lambda(x)>0$ and $\mu(y)>0$ together imply that $x \| y$.

Proposition 7. (X, τ, \leq) is fuzzy $G_{\delta}-T_{2}$-ordered, $\Leftrightarrow(X, \tau, \leq)$ is weakly fuzzy $G_{\delta^{-}}$ T_{2}-ordered and almost fuzzy $G_{\delta}-T_{2}$-ordered.

Proof. Clearly if X is a fuzzy $G_{\delta}-T_{2}$-ordered, then it is weakly fuzzy $G_{\delta}-T_{2^{-}}$ ordered. So now let $a \| b$. Then $a \not \leq b$ and $b \not \leq a$. Since $a \not \leq b$ and since X is fuzzy $G_{\delta}-T_{2}$-ordered we have fuzzy G_{δ}-sets λ and μ such that $\lambda(a)>0, \mu(b)>0, \lambda(x)>0$ and $\mu(y)>0$ together imply that $x \leq y$. Also since $b \leq a$, there exists fuzzy G_{δ}-sets μ^{*} and λ^{*} such that $\lambda^{*}(a)>0$, and $\mu^{*}(b)>0$, and $\lambda^{*}(x)>0$ and $\mu^{*}(y)>0$ together $\Rightarrow y \not \leq x$. Thus $I_{\sigma}^{0}\left(\lambda \wedge \lambda^{*}\right)$ is a fuzzy G_{δ}-set such that $I_{\sigma}^{0}\left(\lambda \wedge \lambda^{*}\right)(a)>0$ and $I_{\sigma}^{0}\left(\mu \wedge \mu^{*}\right)$ is such that $I_{\sigma}^{0}\left(\mu \wedge \mu^{*}\right)(b)>0$ and $I_{\sigma}^{0}\left(\lambda \wedge \lambda^{*}\right)(x)>0$ and $I_{\sigma}^{0}\left(\mu \wedge \mu^{*}\right)(y)>0$ together imply that $x \| y$. Hence X is almost fuzzy $G_{\delta}-T_{2}$-ordered.

Conversely let X be weakly fuzzy $G_{\delta}-T_{2}$-ordered and almost fuzzy $G_{\delta}-T_{2}$-ordered. We want to show that X is fuzzy $G_{\delta}-T_{2}$-ordered. So let $a \not \leq b$. Then either $b<a$ or $b \leq a$. If $b<a$, then X being weakly fuzzy $G_{\delta}-T_{2}$-ordered there exists fuzzy G_{δ}-sets λ and μ such that $\lambda(a)>0$ and $\mu(b)>0$ and such that $\lambda(x)>0, \mu(y)>0$ together imply $y<x$. That is $x \not \leq y$. If $b \not \leq a$, then $a \| b$ and the result follows easily since X is almost fuzzy $G_{\delta}-T_{2}$-ordered.

Definition 17. Let λ and μ be fuzzy sets in $(X, \tau, \leq) . \lambda$ is called a fuzzy $G_{\delta^{-}}$ neighbourhood of μ if $\mu \leq \lambda$ and there exists a fuzzy G_{δ}-set δ such that $\mu \leq \delta \leq \lambda$.

Proposition 8. An ordered fuzzy topological space (X, τ, \leq) is fuzzy $G_{\delta^{-}} T_{2^{-}}$ ordered \Leftrightarrow For each pair of points $x \not \leq y$ in X, there exists a function f of (X, τ, \leq) into a fuzzy $G_{\delta}-T_{2}$-ordered space ($X^{*}, \tau^{*}, \leq^{*}$) such that (1) f is increasing/decreasing; (2) f is fuzzy irresolute; (3) $f(x) \leq^{*} f(y) / f(y) \leq^{*} f(x)$.

Proof. If (X, τ, \leq) is fuzzy $G_{\delta}-T_{2}$-ordered space, then the identity mapping is the required function.

Conversely let $x \not \leq y$ in X. Hence by hypothesis, there exists a function f of (X, τ, \leq) into a fuzzy $G_{\delta}-T_{2}$-ordered space $\left(X^{*}, \tau^{*}, \leq^{*}\right)$ satisfying the conditions (1), (2) and (3).

Since $f(x) \not \mathbb{Z}^{*} f(y)$ and $\left(X^{*}, \tau^{*}, \leq^{*}\right)$ is fuzzy $G_{\delta}-T_{2}$-ordered there exists an increasing fuzzy G_{δ}-set λ and a decreasing fuzzy G_{δ}-set μ such that λ is a fuzzy $G_{\delta^{\prime}}$-neighbourhood of $f(a)$ and μ is a fuzzy $G_{\delta^{-}}$neighbourhood of $f(b)$ such that $\lambda \wedge \mu=0$. Since f is increasing and λ is increasing it follows by Proposition 3.8 of [4], $F^{-1}(\lambda)$ is increasing. Also since f is increasing and μ is decreasing again by Proposition 3.8 of [4], $f^{-1}(\mu)$ is decreasing. Also since f is fuzzy irresolute $f^{-1}(\lambda)$ and $f^{-1}(\mu)$ are fuzzy G_{δ}-sets in X and also $f^{-1}(\lambda) \wedge f^{-1}(\mu)=f^{-1}(\lambda \wedge \mu)=f^{-1}(0)=0$.

Hence X is fuzzy $G_{\delta}-T_{2}$-ordered. Analogously one can prove the proposition for decreasing function.

Proposition 9. The product of a family of fuzzy $G_{\delta}-T_{2}$-ordered spaces is also fuzzy $G_{\delta}-T_{2}$-ordered.

Proof. Let $\left.\left\{X_{t}, \tau_{t}, \leq_{t}\right) \mid t \in \Delta\right\}$ be a family of fuzzy $G_{\delta}-T_{2}$-ordered spaces and (X, τ, \leq) be the product of ordered fuzzy topological spaces. If $\left(x(t),\left(y_{t}\right) \in X\right.$ such that $\left(x_{t}\right) \not \leq\left(y_{t}\right)$, then there exists $t_{0} \in \Delta$ such that $x_{t_{0}} \not \leq y_{t_{0}}$. Thus there exists fuzzy G_{δ}-sets $\lambda_{t_{0}}$ and $\mu_{t_{0}}$ in $X_{t_{0}}$, where $\lambda_{t_{0}}$ is increasing and $\mu_{t_{0}}$ is decreasing and $\lambda_{t_{0}}$ is
fuzzy G_{δ}-neighbourhood of $x_{t_{0}}, \mu_{t_{0}}$ is a fuzzy G_{δ}-neighbourhood of $y_{t_{0}}, \lambda_{t_{0}} \wedge \mu_{t_{0}}=0$. Define

$$
\lambda=\prod_{t \in \Delta} \lambda_{t} \quad \text { where } \quad \lambda_{t_{0}}=1_{x_{t}} \quad \text { if } \quad t \neq t_{0}
$$

and

$$
\mu=\prod_{t \in \Delta} \mu_{t} \quad \text { where } \quad \mu_{t_{0}}=1_{x_{t}} \quad \text { if } \quad t \neq t_{0} .
$$

Then λ is an increasing fuzzy G_{δ}-set of X and μ is decreasing fuzzy G_{δ}-set of X such that λ is a fuzzy G_{δ}-neighbourhood of $\left(x_{t}\right)$ and μ is a fuzzy G_{δ}-neighbourhood of $\left(y_{t}\right)$ and $\lambda \wedge \mu=0$. Hence (X, τ, \leq) is fuzzy $G_{\delta}-T_{2}$-ordered.

Proposition 10. Let $\left\{\left(X_{t}, \tau_{t}, \leq\right) \mid t \in \Delta\right\}$ be a family of disjoint ordered fuzzy topological spaces and let (X, τ, \leq) be the ordered fuzzy topological sum. Then (X, τ, \leq) is fuzzy $G_{\delta}-T_{2}$-ordered $\Leftrightarrow\left(X_{t}, \tau_{t}, \leq_{t}\right)$ is fuzzy $G_{\delta}-T_{2}$-ordered for each $t \in \Delta$.

Proof. The proof is similar to Proposition 5.

Definition 18. (X, τ, \leq) is said to be fuzzy G_{δ}-normally ordered if and only if the following condition is satisfied: Given decreasing fuzzy F_{σ}-set μ and decreasing fuzzy G_{δ}-set ρ such that $\mu \leq \rho$, there are decreasing fuzzy G_{δ}-set ρ_{1} and a decreasing fuzzy F_{σ}-set μ_{1} such that $\mu \leq \rho_{1} \leq \mu_{1} \leq \rho$.

Clearly every normally ordered space (see Katsaras [4]) is fuzzy G_{δ}-normally ordered.

Proposition 11. In an ordered fuzzy topological spaces (X, τ, \leq) the following are equivalent:
(1) (X, τ, \leq) is fuzzy G_{δ}-normally ordered;
(2) Given a decreasing fuzzy G_{σ}-set μ and a decreasing fuzzy $G_{\boldsymbol{\delta}}$-set ρ with $\mu \leq \rho$, there exists a decreasing fuzzy G_{δ}-set ρ_{1} such that $\mu<\rho_{1}<D_{\sigma}\left(\rho_{1}\right) \leq \rho$.

Proof. (1) \Rightarrow (2) Let μ and ρ be as given in (2).
Hence by (1) we have fuzzy G_{δ}-decreasing set ρ_{1} a decreasing fuzzy F_{σ}-set μ_{1} such that $\mu \leq \rho_{1} \leq \mu_{1} \leq \rho$. Since μ_{1} is a decreasing fuzzy F_{σ}-set such that $\rho_{1} \leq \mu_{1}$, we have $\mu \leq \rho_{1} \leq D_{\sigma}\left(\rho_{1}\right) \leq \mu_{1} \leq \rho$. This proves (1) $\Rightarrow(2)$.
$(2) \Rightarrow(1)$. Let μ be a decreasing fuzzy F_{σ}-set and ρ be a decreasing fuzzy G_{δ}-set such that $\mu \leq \rho$. Hence by (2) there exists a decreasing fuzzy G_{δ}-set ρ_{1} such that $\mu \leq \rho_{1} \leq D_{\sigma}\left(\rho_{1}\right) \leq \rho$.

Clearly $D_{\sigma}\left(\rho_{1}\right)$ is the smallest decreasing fuzzy F_{σ}-set containing ρ_{1}. Put $\mu_{1}=$ $D\left(\rho_{1}\right)$. Then $\mu \leq \rho_{1} \leq \mu_{1} \leq \rho$ shows that $(2) \Rightarrow(1)$ is proved.

We have now the following result which is analogous to Urysohn's lemma.

Definition 19. A function f from a fuzzy topological space (X, T) to a fuzzy topological space (Y, S) is called fuzzy G_{δ}-continuous if $f^{-1}(\lambda)$ is fuzzy G_{δ} in (X, T) whenever λ is fuzzy open in (Y, S).

Theorem 12. (X, τ, \leq) is fuzzy G_{δ}-normally ordered \Leftrightarrow Given a decreasing fuzzy F_{σ}-set μ in X and a decreasing fuzzy G_{δ}-set ρ with $\mu \leq \rho$, there exists an increasing function $f: X \rightarrow I(I)$ such that $\mu(x)<1-f(x)(0+) \leq 1-f(x)(1-) \leq \rho(x)$ and f is fuzzy G_{δ}-continuous and $I(I)$ is fuzzy unit interval (see [4]).

Proof. The proof is similar to that of Theorem 5.3 in [4] with some slight suitable modifications.

ACKNOWLEDGEMENT

The authors acknowledge the referees and the editors for their valuable suggestions resulting in improvement of the paper.
(Received December 12, 2005.)

REFERENCES

[1] K. A. Azad: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82 (1981), 14-32.
[2] G. Balasubramanian: Maximal fuzzy topologies. Kybernetika 31 (1995), 459-464.
[3] C. L. Chang: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182-190.
[4] A. K. Katsaras: Ordered fuzzy topological spaces. J. Math. Anal. Appl. 84 (1981), 44-58.
[5] P. Smets: The degree of belief in a fuzzy event. Inform. Sci. 25 (1981), 1-19.
[6] A. P. Sostak: On a fuzzy topological structure. Suppl. Rend. Circ. Mat. Palermo 11 (1985), 89-103.
[7] A. P. Sostak: Basic structure of fuzzy topology. J. Math. Sci. 78 (1996), 662-701.
[8] M. Sugeno: An introductory survey of fuzzy control. Inform. Sci. 36 (1985), 59-83.
[9] R.H. Warren: Neighbourhoods, bases and continuity in fuzzy topological spaces. Rocky Mountain J. Math. 8 (1978), 459-470.
[10] L. A. Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338-353.

Elango Roja and Mallasamudram Kuppusamy Uma, Department of Mathematics, Sri Sarada College for Women, Salem-16, Tamil Nadu. India.
e-mails: rpbalan@sancharnet.in, ar.udhay@yahoo.co.in
Ganesan Balasubramanian, Department of Mathematics, Periyar University, Salem 636 011, Tamil Nadu. India.

