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In this paper a fuzzy relation-based framework is shown to be suitable to describe not
only knowledge-based medical systems, explicitly using fuzzy approaches, but other ways of
knowledge representation and processing. A particular example, the practically tested med-
ical expert system Disco, is investigated from this point of view. The system is described
in the fuzzy relation-based framework and compared with CADIAG-II-like systems that
are a “pattern” for computer-assisted diagnosis systems based on a fuzzy technology. Simi-
larities and discrepancies in – representation of knowledge, patient’s information, inference
mechanism and interpretation of results (diagnoses) – of the systems are established.

This work can be considered as another step towards a general framework for computer-
assisted medical diagnosis.
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1. INTRODUCTION

Following a classification done in [12], medical knowledge-based systems (KBS) com-
prise medical consultation systems and medical expert systems, that are aimed to
support physicians in decision making. To deal with uncertainty of medical knowl-
edge, the fuzzy sets mechanism has been successfully applied in different KBS.
Sanchez [29] was the first, who introduced a fuzzy relation-based framework to med-
ical diagnosis. The author separated the problem of medical diagnosis into three
stages: determination of symptoms, medical knowledge, diagnosis. These parts can
be considered as components of medical KBS – knowledge acquisition, knowledge
representation, knowledge processing – in the narrow sense. The representations of
Sanchez are formalized by fuzzy relations and a composition of fuzzy relations is
used as an inference mechanism. Since the end of 1970s the fuzzy relations area
together with fuzzy control were successfully applied at the University of Vienna
Medical School: several generations of medical consultation CADIAG-systems were
developed (see, for example, [1, 3, 4, 19, 31]). They are the representative examples
of fuzzy technology applications in medical expert systems.
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In this paper we develop an idea, that a fuzzy relation based framework is suitable
to describe not only medical systems, explicitly using fuzzy approaches, but other
ways of knowledge representation and processing.

Several works in this direction have been done recently. The school of Adlassnig
continues to develop a new generation of expert system MedFrame/CADIAG-IV,
where fuzzy relations are extended with type-2 fuzzy relations and negative associ-
ations [3, 4, 19]. Kolousek [18] considered various kinds of knowledge representa-
tion schemes, such as graph-based, rule-based, tables, time information in the fuzzy
relation-based framework. Hájek et al. [5, 6, 10, 11] have done deep investigations
to understand MYCIN and CADIAG-like systems. Among them are E(MYCIN),
PROSPECTOR [10, 20, 32] and CADIAG, CADIAG-II, CADIAG-IV [4, 31], both
types defined as compositional rule based systems. Conditions to embed CADIAG-
II, CADIAG-IV into MYCIN-like systems and vice versa were proved. Proposals
for generalization of the compositional rule based systems were discussed. It was
mentioned that this process is far from its final stage. Open problems such as formu-
lation and validity of embedding theorems for knowledge bases with general formula
using conjunction, disjunction and negation in antecedents of rules are among others
to be further developed [5].

In this paper we compare the system Disco based on discrimination analysis
(adapted from [2] in [13]) with CADIAG-II and with generalization of both CADIAG-
II and MYCIN-like systems [6]. Our intention is to show that Disco can be described
in the fuzzy relation-based terminology and to establish similarities and discrepancies
of systems in representation of medical knowledge, patient’s information, inference
mechanism, diagnosis. A formal representation of these components, denoted as

〈RSD, RPS , RPS ◦RSD, RPD〉 (1)

correspondingly, will be described in the next sections. It serves as a point of depar-
ture for a comparison of the above mentioned systems and their generalization. The
results of a comparison can be considered as a contribution to the possible general-
ization of the different fuzzy relation-based systems. Although their “facades” often
differ on the first glance. Under “the possible generalization” or “general frame-
work” we understand the possible complete description of the different variants,
representations, interpretations of the above listed components in (1).

Disco, based on the discrimination analysis, solves similar to CADIAG-II-like
systems problems, but in a different way. Disco handles incomplete information,
partial inconsistency, fuzzy description of relations in a natural way and avoids many
problems associated with probabilistic approaches. Thus it is interesting also to
compare how the questionable point of CADIAG-II – interpretation of membership
degrees of fuzzy relations together with the compositional inference – is solved in
Disco. The properties of the systems are different. But it will be shown that they
can be described in the same language that allows to find similarities and differences
between these systems. This “unification” in representation does not relate to the
quality of results. But the description of Disco in the fuzzy relation-based framework
will show that the discrimination-based system is not a separate approach valid only
for a particular application, but a part of a unique approach. From one side this view
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allows to understand better the described processes and from another imparts a nice
flexibility and variety of representations under the unique theoretical background. It
should be mentioned, that Disco was tested for venal diseases at the Tbilisi Medical
University and gave satisfactory results [13].

In the next section we give a description of CADIAG-II-like systems and their
generalization – Conorm-CADIAG-II – including negative knowledge. Three main
aspects of the systems, namely, determination of symptoms, medical knowledge and
diagnosis are interpreted in terms of fuzzy sets theory in details. This clarification
is examined, because not everything, described linguistically, can be considered as
fuzzy sets; sometime it leads to a misunderstanding. We begin the next section
with basic notions and definitions of the fuzzy domain. System Disco is described in
Section 3 as was originally proposed in [2] and further specified in [13]. Translation
of Disco to the general fuzzy relation-based framework is described in Section 4.
Sections are summarized by main characteristics of systems needed for the following
comparison in Section 5. Finally, Section 6 concludes the discussion.

2. CADIAG–II LIKE SYSTEMS

CADIAG-II [1] and other similar systems [23] are computer assisted medical diag-
nosis systems for different applications. All of them are based on fuzzy set theory
and corresponding fuzzy logic reasoning mechanisms. In particular, they are based
on fuzzy rules and an inference procedure – a composition of fuzzy relations – is
applied.

In the next section we introduce main denotations and definitions of the fuzzy
approach needed for the following discussions. An important remark is, that defining
a fuzzy set F as a mapping from a universe of discourse to the unit interval, we
identify F and its membership function µF . The same concerns fuzzy relations,
since fuzzy relations are a special case of fuzzy sets.

2.1. Basic notions for the fuzzy relation–based framework

2.1.1. Fuzzy sets

Let U be a collection of objects (universe of discourse), for example, the set of real
numbers, or the set of real numbers between 0 and 10, etc.

Definition 1. Assume U is a universe. A fuzzy set F 1 is defined as a mapping:

µF : U → [0, 1].

In the framework of fuzzy set theory µF is called also the membership function.
This terminology stresses the idea that for each x ∈ U , µF (x) indicates the corre-
sponding membership value [7, 15, 17, 33, 38, 41]. We identify F and µF to simplify
the notations.

1or a fuzzy subset F of U .
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2.1.2. Power sets

Definition 2. Let U be a universe. The set of all fuzzy sets (the fuzzy power set)
on U is defined as

F(U) =def {F |F : U → [0, 1]}.

In the case of crisp sets this definition corresponds to the definition of a power
set:

P(U) =def {A|A ⊂ U}.

2.1.3. Type-2 fuzzy sets

A type-2 fuzzy set F̃ of a set U is a fuzzy set whose degrees of membership are
themselves fuzzy sets.

Definition 3. A type-2 fuzzy set F̃ is a mapping:

F̃ : U → F(V )

where F(V ) is the fuzzy power set of a universe V (Definition 2).

2.1.4. Basic set-theoretical operations on fuzzy sets

Let F , G be fuzzy sets, defined on the same universe U .

Definition 4. The intersection F ∩G is point-wise defined as

(F ∩G)(x) =def min(F (x), G(x)), x ∈ U.

Definition 5. The union F ∪G is point-wise defined as

(F ∪G)(x) =def max(F (x), G(x)), x ∈ U.

Definition 6. The complement of fuzzy set F is defined as

F (x) =def 1− F (x), x ∈ U.

2.1.5. t-norms and t-conorms

The concept of triangular norms (t-norms) comes from the ideas of probabilistic
metric spaces originally proposed in [22, 30] and actively pursued by many authors,
especially [14].

In fuzzy sets, triangular norms and conorms play the key role by providing generic
models for intersection and union operations on fuzzy sets.
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Definition 7. Let τ : [0, 1] × [0, 1] → [0, 1] be a binary operation [14, 33], τ is
called t-norm iff the following properties T1, T2, T3, T4 hold:

T1: (boundary condition) ∀ x ∈ [0, 1] :

τ(x, 1) = x

T2: τ is monotone, i. e., ∀ x, x′, y, y′ ∈ [0, 1] :

if x ≤ x′ and y ≤ y′ then τ(x, y) ≤ τ(x′, y′)

T3: τ is commutative, i. e., ∀ x, y ∈ [0, 1] :

τ(x, y) = τ(y, x)

T4: τ is associative, i. e., ∀ x, y, z ∈ [0, 1] :

τ(x, τ(y, z)) = τ(τ(x, y), z).

For each t-norm holds:
T0: τ(0, 1) = τ(1, 0) = τ(0, 0) = 0 and τ(1, 1) = 1, i. e., τ is an extension of

the boolean conjunction. T0 is an immediate consequence of the commutativity,
monotonicity and the boundary condition of t-norms.

Examples of t-norms:
τm(x, y) =def min(x, y)

τb(x, y) =def max(0, x+ y − 1)

τa(x, y) =def x · y.
Sometimes τb(x, y) (bounded difference) is called ÃLukasiewicz t-norm and τa(x, y)
(algebraic product) is called product t-norm as well [14].

Definition 8. Let σ : [0, 1]× [0, 1]→ [0, 1], σ is called t-conorm iff
the following properties S1, S2, S3, S4 hold:

S1: (boundary condition) ∀ x ∈ [0, 1] :

σ(x, 0) = x

S2: σ is monotone, i. e., ∀ x, x′, y, y′ ∈ [0, 1] :

if x ≤ x′ and y ≤ y′ then σ(x, y) ≤ σ(x′, y′)

S3: σ is commutative, i. e., ∀ x, y ∈ [0, 1] :

σ(x, y) = σ(y, x)

S4: σ is associative, i. e., ∀ x, y, z ∈ [0, 1] :

σ(x, σ(y, z)) = σ(σ(x, y), z).

For each t-conorm is:
S0 : σ(0, 0) = 0 and σ(0, 1) = σ(1, 0) = σ(1, 1) = 1, i. e., σ is an extension of the

boolean disjunction.
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Examples of t-conorms:

σm(x, y) =def max(x, y)

σb(x, y) =def min(1, x+ y)

σa(x, y) =def x+ y − x · y.

Sometimes σb(x, y) (bounded sum) is called ÃLukasiewicz t-conorm and σa(x, y) (al-
gebraic sum) is called probabilistic sum [14] as well.

2.1.6. Aggregation operators

As was mentioned in [14] aggregation (fusion) of several input values into a single
output value is an indispensable tool not only of mathematics or physics, but of
majority of other sciences. If it is assumed that the number of input values is fixed,
say n ∈ N, an aggregation operator is a real function of n variables, and both inputs
and outputs are from the unit interval I = [0, 1], then n-ary aggregation operator h
is always a mapping: h : [0, 1]n → [0, 1].

2.1.7. Averaging operators

Averaging operators are special aggregation operators and defined as follows.

Definition 9. An averaging operator A is a mapping A : [0, 1]n → [0, 1] that is
characterized by the following set of axioms [16]:

(A1) idempotency – for all a ∈ [0, 1],

A(a, a, a, . . . , a︸ ︷︷ ︸
n times

) = a

(A2) monotonicity – for any pair of n-tuples 〈a1, a2, . . . , an〉 ∈ [0, 1]n and

〈b1, b2, . . . , bn〉 ∈ [0, 1]n, if ak ≤ bk for all k = 1, . . . , n, then

A(a1, a2, . . . , an) ≤ A(b1, b2, . . . , bn).

It is significant that any function A, that satisfies these axioms, gives values that,
for any n-tuple 〈a1, a2, . . . , an〉 ∈ [0, 1]n, lie in the closed interval defined by the
inequalities

min(a1, a2, . . . , an) ≤ A(a1, a2, . . . , an) ≤ max(a1, a2, . . . , an). (2)

Examples of averaging operators are generalized means, ordered weighted averag-
ing operators (OWA), λ-averages [8, 9, 17, 37].
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Definition 10. (Yager [36]) An ordered weighted averaging (OWA) operator of
dimension n is a mapping OWA : Rn → R characterized by an n-dimensional vector
W , called the weighting vector, such that its components wj , j = 1, . . . , n, lie in the
unit interval and sum to one. The OWA operator is defined as

OWA(a1, . . . , an) =
n∑

j=1

wjbj

where bj is the jth largest of the ai.

The arithmetic mean M, the harmonic mean H, the quadratic mean Q, and Mp

for p ∈]0,∞[2, p-mean, and the geometric mean G are given by, respectively,

M(x1, . . . , xn) =
1
n

n∑

i=1

xi (3)

H(x1, . . . , xn) =
n∑n
i=1

1
xi

Q(x1, . . . , xn) =

(
1
n

n∑

i=1

x2
i

) 1
2

Mp(x1, . . . , xn) =

(
1
n

n∑

i=1

xpi

) 1
p

G(x1, . . . , xn) =

(
n∏

i=1

xi

) 1
n

.

2.1.8. Fuzzy relations

Definition 11. Let U1, . . . , Un be non-empty universa, U1×· · ·×Un be a product
space. A fuzzy relation R on U1 × · · · × Un is defined as

R : U1 × · · · × Un → [0, 1].

Fuzzy relations are only a special case of fuzzy sets (with U expanded to U1×· · ·×Un),
therefore the standard set operations for fuzzy sets are valid for fuzzy relations, too.

2.1.9. Type-2 fuzzy relations

By analogy to the definition of type-2 fuzzy sets (Definition 3) a type-2 fuzzy relation
is defined as follows:

Definition 12. A type-2 fuzzy relation R̃ is a mapping:

R̃ : U1 × U2 → F(U)

where F(U) is the fuzzy power set of a universe U .

2]0,∞[ denotes the open interval between 0 and ∞.
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2.2. Predefined knowledge base in CADIAG–II–like systems

Let ΘC denote a knowledge base of CADIAG-II-like systems. This knowledge base
consists of fuzzy IF–THEN rules that describe the relationships between

• symptoms, signs, test results and findings – for all these medical entities we
use a term “symptom” or its abbreviation “S”;

and
• diseases, diagnoses – with denotation “D”.

To build these fuzzy relations the crisp sets of patients Π = {p1, . . . , pr}, symptoms
Σ = {s1, . . . , sm} and diseases ∆ = {d1, . . . , dn} under consideration are used. For
example, ∆ can denote rheumatic diseases, Σ are symptoms of these diseases, and
Π are investigated patients for rheumatic diseases.

Fuzzy relations between symptoms and diseases are defined as RSD : Σ × ∆ →
[0, 1]. CADIAG-II-like systems use two types of symptom-disease relations: con-
firmation RcSD and occurrence RoSD relations. These fuzzy relations estimate each
symptom-diagnose connection from two perspectives, that are strength of confirma-
tion and frequency of occurrence.

The rules in CADIAG-II-like systems have the form:

IF (antecedent) THEN (consequent) WITH (o, c). (4)

The rules are used in the following way: IF symptom(s), THEN disease(s), with a
degree “o” of occurrence and a degree “c” of confirmation. CADIAG-II-like systems
use not only relations between a symptom and a disease, but between a symptoms
combination and disease(s) as well. A symptom combination is a simultaneous
presence (conjunction) of symptoms or its negation.

A single symptom can be considered as a special case of a symptom combination
(as one-element elementary conjunction of symptoms) [5]. We will use notation si
for a single symptom and a combination of symptoms in the text of the paper until
the explicite distinguishing will be needed.

Parameters o, c contain numeric and/or linguistic information, for example, crisp
numbers, fuzzy numbers. In our notation they coincide with RcSD and RoSD.

These relations can be interpreted statistically and linguistically.
If a statistical way is taken, RoSD(si, dj) and RcSD(si, dj) are derived from relative

frequencies, i. e., numerically [6]:

RoSD(si, dj) = f(si|dj)
and

RcSD(si, dj) = f(dj |si)

where f(si|dj) = f(dj∩si)
f(dj)

, f(dj |si) = f(dj∩si)
f(si)

. f(si|dj) is a conditional frequency
of si given dj , f(dj |si) is a conditional frequency of dj given si, f(dj ∩ si) is the
absolute frequency of joint occurrence of dj and si, f(dj) and f(si) are absolute
frequencies of dj and si, correspondingly.

A linguistic way opens a possibility to estimate relations RoSD and RcSD using
fuzzy sets representing values of a linguistic variable, e. g., almost always, often,
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medium, seldom, very seldom, almost never for linguistic variables occurrence and
confirmation.

These fuzzy sets are defined as mappings from [0, 1] to [0, 1].
The numerical and linguistic definitions of symptom-disease relations seem to

belong to different types of fuzzy sets. If numerical values represent the membership
degrees of fuzzy sets RoSD or RcSD in points (si, dj), linguistic values are close to
the fuzzy sets type-2, where degrees of membership of a fuzzy relation are fuzzy
sets themselves [21]. To unify the representation of symptom-disease relations, the
statistical way can also be represented by fuzzy relations type-2, where numerical
values f(si|dj) and f(dj |si) are fuzzy singletons. In this way the numerical and
linguistic representations can be uniquely described.

The possibility to define fuzzy relations as fuzzy intervals was discussed in [19].
It is based on the assumption, that different patient settings influence all-purpose
consultant systems. In particular, this approach was realized in CADIAG-IV [4].

In the rest of our paper we will consider the numerical representation of symptom-
disease relations as “ordinary” fuzzy relations.

2.3. The inference mechanism

To use the inference mechanism of a fuzzy approach described below, information
about a patient (or a group of patients) to whom a diagnosis will be established, has
to be available.

Information about patients’ symptoms in CADIAG-II-like systems is presented in
the form of a fuzzy relation RPS : Π×Σ→ [0, 1]. Clearly, if one patient is observed,
this relation can be written as a fuzzy set Sp : Σ→ [0, 1], where each element of the
fuzzy set Sp shows to which degree it is true, that a patient p has symptom si.

A composition of fuzzy relations introduced by L. Zadeh [39] and interpreted
by him as a max−min composition, later were adopted by Sanchez for medical
diagnoses [29] with the same interpretation. This approach is used in CADIAG-II
as follows:

RPD =def RPS ◦RSD (5)

(5) represents a composition of fuzzy relations and ∀dj ∈ ∆, ∀pq ∈ Π:

RPD(pq, dj) =def max
si∈Σ

min{RPS(pq, si);RSD(si, dj)} (6)

where RPD : Π×∆→ [0, 1] are inferred possible diagnoses for the patient(s).
For one patient schema (5) takes the following form:

Dp =def Sp ◦RSD (7)
and

Dp(dj) = max
si∈Σ

min{Sp(si);RSD(si, dj)} (8)

corresponds to the max−min composition (6), where Dp : ∆→ [0, 1] is a fuzzy set
of possible diagnoses for a patient.

Adlassnig [1] has found two fuzzy relationships, namely, occurrence and confirma-
bility for the scheme (6).

As was mentioned in [6], “because of features of physicians’ thinking” there are
three types of inference rules/compositions for a final diagnosis:
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• confirmation (by present symptoms): R1
PD = RPS ◦RcSD,

• exclusion (by present symptoms): R2
PD = RPS ◦ (1−RcSD),

• exclusion (by absent symptoms): R3
PD = (1−RPS) ◦RoSD.

The similar rules, but with symptom combinations, are used in CADIAG-II-like
systems. They are denoted as R4

PD, R
5
PD, R

6
PD.

2.4. Some remarks concerning the inference mechanism
in CADIAG-II-like systems

As was already told in the previous section, the knowledge base, i. e., symptom-
disease relations, can be defined numerically and linguistically. The numerical rep-
resentation fits well for the max−min composition of fuzzy relations (6): both
information about patient symptoms Sp (in the case of (8)) and symptom-disease
relations are ordinary fuzzy sets.

A linguistic representation often needs additional clarifications. Not everything,
described linguistically, can be considered as fuzzy sets. Sometimes words like al-
ways, often, medium, seldom, never are “coded” by numbers, e. g., 1, .75, .5, .25, 0,
that take part in the calculations together with Sp. The values of Sp are numbers
from [0, 1].

Although information about patient’s symptoms in CADIAG-II-like systems is
given by a fuzzy set, i. e., assuming all values between 0 and 1, a physician (not a
patient himself!) often uses three values to estimate patient’s symptoms practically.
Thus, investigated patient symptoms are considered as present, not present, non-
applicable, that may be “coded” by, e. g., 1, 0, 1

2 , correspondingly. Non-applicable
often has several meanings: for example, “a symptom has not been examined”, “my
experience tells me nothing about this symptom”, etc.

Assigning only unique numbers to words seems to be a rather naive way of medical
knowledge qualification. More realistic is to consider intervals that represent the
verbal physician opinion. If a physician says that a symptom si often meets dj , he
may mean, that approximately in 95% si meets a disease dj . This medical knowledge
can be represented as interval [0.92, 0.98] or a fuzzy number.

How to build these intervals or fuzzy sets is a question of the knowledge ac-
quisition. The problem is not easy at all and has consistently been described as
a bottleneck in the development of computer-consultant systems. Some models of
knowledge acquisition were, in particular, discussed in [4, 19].

Assume now that the problem of knowledge acquisition is solved and a linguistic
representation of symptom-disease relations is, for example, fuzzy sets almost always,
often, medium, seldom, very seldom, almost never. As was already told in the
previous section, a symptom-disease relation is considered to be a fuzzy set type-2.
To visualize this, a symptom-disease relation can be represented in a tabular form
(e. g., Table, Section 3), where each element of the table is a fuzzy set, for example,
almost always, often, medium, seldom, very seldom, or almost never.

In the next steps we return to the ordinary representation of fuzzy sets.
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2.5. Interpretation of inference results

The results of a multiple applications of scheme (5) for different types of a symptom-
disease relation have to be interpreted for obtaining the patient(s) diagnosis.

In CADIAG-II-like systems the possibility to classify all diagnoses in three classes
− confirmed, excluded, possible − is predefined. A diagnosis di is confirmed (i. e.,
Dp(di) = 1) iff there exists a fully present symptom sj (Sp(sj) = 1) which has
full/maximal contribution to the diagnosis, i. e., RcSD(sj , di) = 1. A diagnosis di
is excluded (i. e., Dp(di) = 0) by a present symptom (by R2

PD) iff there exists a
fully present symptom sj (Sp(sj) = 1) which has 0 (i. e. negative) contribution
to the diagnosis, i. e., RcSD(sj , di) = 0. A diagnosis di is excluded (i. e., Dp(di) =
0) by an absent symptom (by R3

PD) iff there exists a fully absent symptom sj
(Sp(sj) = 0) which has full/maximal occurrence for the diagnosis, i. e., RoSD(sj , di) =
1. Analogically, a diagnosis is confirmed if R4

PD = 1 and excluded, if R3
PD = 1 or

R5
PD = 1 or R6

PD = 1.
On other cases the diagnoses are considered as possible. In general, a diagnosis di

is denoted as a generated diagnostic hypothesis, if ε ≤ Dp(di) ≤ 1, where Dp(di) =
max{R1

PD(p, di), R4
PD(p, di)}, i. e., negative parts of inference R2

PD, R3
PD, R5

PD and
R6
PD are fully ignored. Threshold value ε is usually taken to be equal to 0.01. There

are two other categories for a diagnosis: not generated diagnosis, if 0 < Dp(di) < ε,
and diagnostic contradictions if a diagnosis should be confirmed and excluded in the
same time. See also [6, 28].

Let us mention that although RSD can be statistically interpreted (see Section
2.2.), there is no statistical interpretation of results of the inference: the result-
ing values are just weights, not frequencies or probabilities. The diagnoses can be
compared by these weights.

2.6. Conorm-CADIAG-II with negative rules

Conorm-CADIAG-II generalizes CADIAG-II twofold [6]:

1. max-min composition is substituted by t-conorm-min composition: ∀dj ∈ ∆,
∀pq ∈ Π:

RPD(pq, dj) =def

∨

si∈Σ

min{RPS(pq, si);RSD(si, dj)} (9)

where
∨

is a t-conorm.

2. Negative knowledge is introduced in CADIAG-II as an exclusion relation ReSD :
Σ×∆→ [0, 1]. The value ReSD(si, dj) indicates the degree in which the present
symptom (combination) excludes (or disconfirms) the disease dj .

A proposal, that a symptom si (or a given group of symptoms) cannot both con-
firm and exclude a given diagnosis dj , leads to the following assumption: ReSD(si, dj)
= 0 or RcSD(si, dj) = 0 at a given time.

In accordance with previous discussions (Section 2.2.), RcSD(si, dj), ReSD(si, dj)
represent an already defined parameter c and a new parameter e for the rule (4),
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correspondingly. Considered symptoms exclude/confirm the diseases for a patient
due to the scheme (5), i. e.,

RePD =def RPS ◦ReSD (10)

RcPD =def RPS ◦RcSD (11)

and both are interpreted as t-conorm−min composition (9). The extension of
Conorm-CADIAG-II with negative knowledge encompasses the main features of
CADIAG-II without necessity of special types of inference rules R2

PD and R3
PD

for exclusion of diagnoses.
The generalization of CADIAG-II-like systems was at first introduced to compare

CADIAG-II and MYCIN-like systems and to escape some their shortcomings and
disadvantages. For example, CADIAG-II cannot decrease contribution of one rule
by another rule. For combination of positive and negative contributions extended
Abelian group operation ⊕ defined on [−1, 1] is used in [6].

Definition 13. (M. Daniel, P. Hájek, and H. Nguyen [6]) An ordered Abelian
group G = (G, ⊕, ª, 0, ≤), is a set G with an associative and commutative
binary operation ⊕, with a neutral element 0 (x ⊕ 0 = x), with a unary operation
of inverse ª (x ⊕ (ªx) = 0) and with a linear ordering such as monotonicity holds
(x ≤ y → x⊕ z ≤ y ⊕ z).

An extended ordered Abelian group is an extension of an ordered Abelian group
with extremal elements, the greatest one > and the least one ⊥, such that >⊕x = >,
> = ª⊥, where >⊕⊥ is not defined. An example of the extended ordered Abelian
group is MC = ([−1, 1],⊕MC ,−, 0,≤) where

x⊕MC y =def





x+ y − x · y, if y and x are positive;
x+y

1−min{|x|,|y|} , if y · x ∈]− 1, 0];

x+ y + x · y, if y and x are negative.

(12)

In Conorm-CADIAG-II positive contributions are aggregated separately by a t-
conorm and by the same t-conorm the negative contributions are aggregated. After
these performances the group operation ⊕ is used. If t-conorm, denoted as ⊕′, is a
positive part (restricted onto [0, 1]) of an (extended) Abelian group operation, there
can be two group operations used: ⊕′ which serves as t-conorm and ⊕ which plays
role of group operation for combination of positive and negative results together.

If ⊕′ = ⊕, there is the only one operation (it must be an (extended) Abelian group
operation) in such a special case of Conorm-CADIAG-II-like system. In this special
case it is not necessary to combine positive and negative contribution separately
as the operation is commutative and associative. This special case of Conorm-
CADIAG-II is very close to MYCIN-like systems [6], it is a special case of MYCIN-
like system “translated” to the language of CADIAG-II.

A total degree can be calculated as follows:

RtotPD(p, dj) =def R
c
PD(p, dj)⊕−RePD(p, dj) (13)
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where ⊕ is an extended ordered Abelian group operation on [−1, 1].
Thus, for every diagnosis its confirmation is decreased according to its exclusion,

represented as negative confirmation.
Let us emphasize again: diagnoses in CADIAG-II-like systems can be confirmed

and excluded in the same time and this total diagnostic contradiction is an important
feature of these systems.

In [6, 10] it was discussed the possibility to transform the interval [−1, 1] to [0, 1],
sending 0 to 0.5. But then a transformed operation would not be a t-conorm, but
an ordered Abelian group operation on (0, 1) that is a compensatory operation [14].
To preserve t-conorm-min inference, the set of values [−1, 1] is taken in Conorm-
CADIAG-II.

2.7. Some important items of CADIAG-II-like systems

Let us summarize information about CADIAG-II-like systems that will serve as a
point of a comparison for the system Disco.

Predefined information in CADIAG-II-like systems in the form of IF–THEN rules
is formalized by a fuzzy relation RSD that connects symptoms and diseases. This
relation is described from two perspectives, as frequency of occurrence and strength
of confirmation. These two characteristics can be represented statistically and lin-
guistically. To unify them the relations RcSD and RoSD can be defined as fuzzy
sets type-2. The representation of RSD is not limited by these two characteristics:
RSD can be an exclusion relation as well that is applied in Conorm-CADIAG-II.
Max-min composition of fuzzy relations is applied as an inference mechanism in
CADIAG-II-like systems. Conorm-CADIAG-II generalizes CADIAG-II by substitu-
tion of max-min composition with t-conorm-min composition and introduction of
negative knowledge.

Due to at least two above mentioned characteristics of RSD (RcSD and RoSD)
and the presence or absence of patient’s symptoms, the inference scheme (5) in
CADIAG-II-like systems deduces the predefined characteristics of the patient’s di-
agnosis: confirmed, excluded or possible. In Conorm-CADIAG-II the inference rule
RePD is applied for exclusion of diagnoses instead of R2

PD and R3
PD. The results of

negative and positive contributions are combined by a group operation in Conorm-
CADIAG-II.

3. DISCRIMINATION IN MEDICAL DIAGNOSES

For convenience let us call the following considered system, based on the discrimina-
tion analysis, Disco. The system was elaborated for application/utilization in [13],
where the mechanism from [2] was further developed, i. e., better specified and more
precise described the less class of possible computations.

Disco is a computer assisted medical diagnosis system which was practically im-
plemented. The system was tested for venal diseases at the Tbilisi Medical University
and gave satisfactory results [13]. This means that a decision done by the computer
program, based on this method, in most cases coincided with the opinion of an ex-
perience physician that established a diagnosis for the investigated patient. This
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was checked for several real cases. However, due to the known economic situation
on post-soviet countries, practical investigations were not further continued.

As was already mentioned in the Introduction, Disco solves the same problems
as CADIAG-II-like systems. Following the main goal of this paper – to investigate a
general framework for representation of CADIAG-II-like systems and Disco, based
on fuzzy relations, i. e., the general language for both type of systems – we will con-
centrate on some theoretical aspects of Disco approach necessary for this underline
purpose.

First, let us shortly describe the mechanism of Disco proposed in [2] (Sections
3.1, 3.2, 3.3) and then, in the following sections, some specifications done in [13],
needed to represent this system in the same language as CADIAG-systems, will be
presented.

3.1. Predefined knowledge base in Disco

The knowledge base ΘD of the Disco system is presented in a tabular form (Table)

Table. An initial table

for a symptom-disease connection.

d1 d2 . . . dn
s1 f11 f12 . . . f1n

s2 f21 f22 . . . f2n

...
...

... fij
...

sm fm1 fm2 . . . fmn

where relations between symptoms and diagnoses are defined, i. e., the data are taken
from patient records – historical cases. Diagnoses are proven in these historical cases:
they are confirmed by experts-physicians for each case. These relations are described
by relative frequencies {fij , i = 1, . . . ,m, j = 1, . . . , n} where each fij denotes the
proportion of patients with disease dj and symptom si in the entire sample of patients
with disease dj . For example, f23 = 0.7 denotes 70% of those patients who suffered
d3 presented symptom s2.

3.2. Positive and negative discrimination tables

The next step is to transform the initial table into two ones, so called the positive
and negative discrimination tables:

pij =def




n∑

k=1,k 6=j
LargeRatio

(
fij
fik

)
 /(n− 1) (14)

nij =def




n∑

k=1,k 6=j
LargeRatio

(
fik
fij

)
 /(n− 1) (15)
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for i = 1, . . . ,m, j = 1, . . . , n. As presented in [2], LargeRatio is a fuzzy set,
LargeRatio : R → [0, 1]. Clearly, pij , nij ∈ [0, 1]. A heuristic explanation of the
positive and negative discrimination measures is as follows. pij represents the accu-
mulated belief that symptom i is more indicative of disease j than of any remaining
disease, while nij represents the accumulated belief that symptom i is more indica-
tive of not disease j.

3.3. Inference with positive and negative discrimination values

Information about a patient in Disco is a set of symptoms from Σ of “yes–no” type,
i. e., a patient data Sp in this case consists of values 1 and 0; 1 means the patient
has a correspondent symptom, whereas 0 points out that a symptom is absent. All
symptoms used in the system are always examined for any patient.

An inference mechanism described in [2] selects from tables {pij} and {nij} those
rows corresponding to the symptoms of a considered patient and based on the getting
new tables – {p′ij} and {n′ij} i = 1, . . . , q, q ≤ m, j = 1, . . . , n – a diagnosis is
established.

It means that rows for Sp(si) = 0 are ignored and just those for Sp(si) = 1 are
used.

A diagnosis can be defined as follows:

Dp(dj) =def
1
2

(Large(πj) + Small(νj)) , j = 1, . . . , n, (16)

where:

πj =def

∑q
i=1 p

′
ij

|Sp|
(17)

νj =def

∑q
i=1 n

′
ij

|Sp|
. (18)

As presented in [2], Large : [0, 1] → [0, 1] is a fuzzy set monotonously increasing,
Small : [0, 1] → [0, 1] is a fuzzy set monotonously decreasing, |Sp| is the cardinality
of a patient symptoms set that consists of present/absent symptoms, i. e., Sp(si) = 1
or Sp(si) = 0; each Dp(di) is a number from [0, 1] that points out the belief of the
disease di for a patient.

4. TRANSLATION OF DISCO TO THE GENERAL FRAMEWORK (1)

As was already mentioned in the Introduction, Disco can be described in the fuzzy
relation-based framework (1) and this way similarities and differences with CADIAG-
like systems can be established. Below we will discuss them. Notice that in [13] a
solution of some special particular problems were considered, for example, construc-
tion of a membership function, estimation of information (entropy), etc. Some of
solved problems will be presented in the next section to help to translate Disco to
the general framework (1).
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4.1. Medical knowledge, RSD

It can be seen, a statistical interpretation of a symptom-disease occurrence relation
in Disco is defined in the same way as in CADIAG-II-like systems. Therefore fij from
Table can be denoted as RoSD(si, dj). It is necessary to underline that there is only
one source of data in Disco (one table of frequencies {fij , i = 1 . . . ,m, j = 1 . . . , n})
whereas there are two sources both in CADIAG-II-like systems (Rc and Ro) and
Conorm-CADIAG-II (Rc and Re).

One can mention, that expressions fij
fik

and fik
fij

in positive and negative discrimi-
nation tables (see Section 3.2.) are the likelihood ratios [40].

Ratio fij
fik

= 1 says that the symptom si has the same frequency among the
patients with diagnosis dj and dk, that the symptom si is equally likely in both the
diagnoses dj and dk.

fij
fik

> 1 says that the symptom si is more likely for the diagnosis dj than dk.
fij
fik

< 1 says that the symptom si is less likely for the diagnosis dj than dk.

Notice, that fik refers frequency of patients with disease k, regardless of disease
j, i. e., some of those patients can have both disease j and k.

If all ratios fij
fik
, k = 1, . . . , n, k 6= j are summed up and then divided by n − 1,

the resulting value shows, how likely is symptom among patients with disease than
with different disease(s). The higher this mean value is, the likelier is the symptom
among patients with the disease relative to patients with different disease(s). The
role of the fuzzy set LargeRatio is to emphasize the large ratios with the help of
membership degrees, because these large ratios are important when indicativeness
of the symptom for the disease is established.

Absence of a disease means that a person has a different disease from ∆ than that
one in question. It is assumed that any person in question has at least one disease
from ∆, i. e., a patient can have two (or even more diseases), i. e., there are no data
from reference people without any disease.

In general, the fuzzy set LargeRatio reflexes an opinion of an expert what he
understands under large ratios for the data from the Table. In [13] LargeRatio was
build based on Yager’s method [35], whereas in [2] no particular properties were
established for LargeRatio and no particular method was supposed to construct
this function. Also in [13] it was shown that LargeRatio can be considered to be
monotonic increasing, can be piecewise linear or an s-type function. If fik in (14) or
fij in (15) are equal 0, LargeRatio takes the value 1. LargeRatio( 0

0 ) is defined to be
0. In some sense it is not a very good choice, because it says the same as 0

fik
says

for very big fik: si is definitely much more likely for dk than for dj . But it is not
true as 0

0 says only that symptom si is relevant neither to diagnosis dj nor to dk. A
neutral element would be more appropriated in this case.

No special assumptions were done for LargeRatio(1). The ratio fij
fij

is excluded
from (14) and (15) because a comparison of symptom si with itself does not add
any information to the indicativeness of this symptom for a disease dj .

The above explanation of the positive and negative discrimination values leads
to the assumption that, in general, pij and nij can be considered as answers to the
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questions “how strongly does symptom si confirm disease dj” and “how strongly
does symptom si confirm non disease dj (disconfirm disease dj)”, correspondingly.
Thus, using the terminology of Conorm-CADIAG-II-like systems (Section 2.6) pij
and nij can be denoted as RcSD(si, dj) and ReSD(si, dj) to represent knowledge of
both systems in the same language. Thus, a different knowledge represented in
the same way as it is used in CADIAG-II-like systems: relations RcSD and ReSD in
Disco contain transformed (by LargeRatio) arithmetical means of likelihood ratios of
frequencies. Whereas CADIAG-II-like relations RcSD and ReSD can contain relative
frequencies.

4.2. Patient’s information Sp and inference mechanism Dp = Sp ◦RSD
All symptoms used in the system are always examined for any patient and Sp(si)
consists of 0s and/or 1s.

To formalize the selection of corresponding to patient’s symptoms rows from
tables {pij} and {nij} the following equations can be used:

Rc
′
SD =def Ωs ×RcSD (19)

Re
′
SD =def Ωs ×ReSD (20)

where Ωs is a diagonal matrix of dimension (m × m). Diagonal entries ωij are
elements of Sp, i. e., ωii = Sp(si), i = 1, . . . ,m. Fuzzy relations are processed as
matrices in (19) and (20) and × is a usual multiplication of matrices. Matrices RcSD
and Rc

′
SD (ReSD and Rc

′
SD) have the same size, but some of rows are equal to 0s.

None of the rows are really selected or physically removed.
πj and νj can be described as D1

p(dj) and D2
p(dj), j = 1, . . . , n and

D1
p =def

Sp ×Rc
′
SD

|Sp|
(21)

D2
p =def

Sp ×Re
′
SD

|Sp|
. (22)

Notice that |Sp| = m and Sp is in a form of a row vector here. All values including
0s are in row Sp.

The final description of Dp is as follows: for j = 1, . . . , n

Dp(dj) =def

(
Large(D1

p(dj)) + Small(D2
p(dj)

)
/2. (23)

The heuristic explanation of the fuzzy set D1
p is as follows. A mean value of each

column in p′ij shows the mean strength of symptoms, presented by a patient for a
disease. This can be taken as a strength of the disease itself. Values of fuzzy set Large
indicate this strength for each disease from ∆. Meanwhile fuzzy set Small allows to
assign small weights to values, that have large characteristics for non disease.

In general, there are no relations between Large and Small, between Large and
LargeRatio in [2]. They can be constructed autonomously. In [13] an s-type mem-
bership function was taken to build Large and a z-type membership function was
taken for Small. It is another difference between [2] and [13]. For example, an s-type
membership function in Disco is defined as follows:
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f(x;α, β, γ) =





0, x ≤ α;
1
2 ( x−αβ−α )2, α ≤ x ≤ β;

1− 1
2 ( x−γβ−γ )2, β ≤ x ≤ γ;

1, x > γ. α β γ0

0,5

1

A z-type membership function can be constructed from s-type membership function,
for example, mirrored at the line y = 1

2 .
In [13] it is assumed that Large and Small are not necessarily strictly monotonous.
Large and Small can be considered as fuzzy modifiers [34] – operations that modify

the meaning of fuzzy values. In our case, they are fuzzy sets D1
p and D2

p. Recently,
Novák [25, 26] has introduced a general theory of evaluating linguistic expressions
that includes fuzzy modifiers as a part. These evaluating linguistic expressions
characterize linguistically some value or number [24].

Notice that (21), (22) and (23) representing (17), (18), (16) correspondingly, de-
scribe the inference mechanism of Disco in the general fuzzy relation terminology
for medical diagnosis. But the structure of this inference is different from those of
CADIAG-II and Conorm-CADIAG-II-like systems.

4.3. Results of inference, Dp

Choosing maxdj Dp(dj), the corresponding dj can be considered as the most believ-
able diagnosis for a patient. The word belief is used here in the sense of experience,
and has no connections to the theory of belief functions.

In general, an interpretation of diagnostic results can be done in accordance
with the CADIAG-II method (see Section 2.5.): if Dp(dj) = 1, or Dp(dj) = 0, or
0 < Dp(dj) < 1, dj is confirmed, or excluded, or possible, correspondingly. The
combination of fuzzy sets to a final result in (23) – the computational schemata –
resembles the total degree (13) of Conorm-CADIAG-II. (13) and (23) describe the
analogous situation: the confirmation of a diagnosis is increased as the value for the
exclusion of this diagnosis decreases. But (13) and (23) use different operations:
an Abelian group operation in (13) and arithmetic mean in (23). Arithmetic mean
belongs to the class of averaging operations. Moreover, it can be seen that (19) and
(21) (or (20) and (22)) can be considered as a composition of fuzzy relations in the
form of (9), where instead of t-conorm an averaging operation is used and instead
of min the multiplication is used.

A crucial point has to be mentioned here. It is known that the min operator
produces the largest fuzzy set from among those produced by all possible t-norms,
the max operator produces the smallest one by all possible t-conorms and averaging
operations lay between min and max:

aggregation operations︷ ︸︸ ︷
t-norm ≤ min ≤ averaging functions ≤ max︸ ︷︷ ︸

averaging operations

≤ t-conorms

The CADIAG-II-like systems work with aggregation operations from max to the
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right, whereas Disco takes the place from max to the left:

t-norm ≤ min ≤ averaging functions ≤ max ≤ t-conorms
|

CADIAG-II
Disco← | → CADIAG-II-like systems

Remark 1. In investigations of Disco ([2, 13]) and its current representation in
the fuzzy relation framework (19) – (23) the arithmetic mean is used. To apply a
different averaging, a particular generalization of Disco is needed. Some additional
investigations are still left here.

4.4. Averaging operations in the inference mechanism of Disco

Taking the arithmetic mean M as an averaging operator from equation (3), the
diagnostic process in Disco described by (19) and (21) (or (20) and (22)) can be
represented by a composition of fuzzy relations as follows: for all dj ∈ ∆

D1
p(dj) =def M(¯(Sp(s1), RcSD(s1, dj)), . . . ,¯(Sp(sm), RcSD(sm, dj))) (24)

D2
p(dj) =def M(¯(Sp(s1), ReSD(s1, dj)), . . . ,¯(Sp(sm), ReSD(sm, dj))) (25)

and with final description of Dp from (23) as

Dp(dj) =def M(Large(D1
p(dj)), Small(D2

p(dj))) (26)

where ¯ is an operation of multiplication, dj ∈ ∆.

Notice that, for example, an expression D1
p(dj) =

P
si
Sp(si)·RcSD(si,dj)

m is a more
clear expression for understanding (24), but we prefer the last one to support the
uniqueness in the representation in CADIAG-II-like and Disco systems. We call an
inference in (24) and (25) an averaging-multiplication composition, keeping in mind
Remark 1.

In particular, the averaging operator (3) applied in (24) – (26) belongs to the class
of generalized means operators [17]. It can be seen that M (3) is a special instance
of OWA according to the Definition 10. As was mentioned in Section 4.2 Large and
Small fuzzy sets indicate elements due to their strength for the disease.

5. RELATIONS BETWEEN CADIAG–II–LIKE SYSTEMS AND DISCO

In this section we summarize the main similarities, differences, relations between
these systems.

Let us first summarize the description of Disco. The tabular knowledge base of
this system represents the occurrence relations, defined numerically. The initial table
is transformed into two ones, so called positive and negative discrimination tables.
Due to the ability of the fuzzy set LargeRatio to specify the influenced symptoms
for the diseases, the elements of the transformed tables can be interpreted as values
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described “how strong a symptom confirms (disconfirms) a disease”. Therefore, the
denotation of confirmation and exclusion relations RcSD(si, dj) and ReSD(si, dj) from
Conorm-CADIAG-II can be used here: as was already told in the Section 4.1 the
different knowledge is represented in the same way in CADIAG-II-like and Disco
systems.

The new table data are cumulated further. For each disease the mean confir-
mation and non-confirmation values are calculated with a help of fuzzy sets Large
and Small. The value from [0, 1] represents the accumulated belief/experience and
is assigned to each disease.

Full confirmation can be, however, very rare in Disco: it is effected only if all the
present symptoms fully confirm the diagnosis in question. Similarly the diagnosis is
excluded only if all the present symptoms fully exclude the diagnosis (fully confirm
other diagnoses). Moreover, all the symptoms included in the system should be
examined. Whereas a diagnosis is confirmed in Conorm-CADIAG-II iff at least one
of the (fully) present symptoms fully confirms the diagnosis and no (fully) present
symptom fully excluded it. Analogously for exclusion.

To underline again, a diagnosis for a patient can be confirmed and excluded in
the same time in CADIAG-II and CADIAG-II-like systems, but not in Disco.

Interesting correspondences are to see between min operation of max-min infer-
ence and expressions for D1

p (21) and D2
p (22). Multiplication of reals is used in

the similar way (as min) in Disco. The results are numerically the same, as Disco’s
inputs are 0s and 1s only (thus, min(0, x) = 0 = 0 · x and min(1, x) = x = 1 · x for
all 0 ≤ x ≤ 1). But this way of comparison can be done only for separate aggre-
gation of positive contributions (or negative contributions) in Conorm-CADIAG-II.
In Conorm-CADIAG-II the positive and negative impacts of symptoms are effected
almost separately, whereas all the negative impacts of symptoms influence both pij
and πj with averaging in Disco, and similarly positive impacts of symptoms influ-
ence both nij and νj . In Conorm-CADIAG-II the positive and negative impacts of
symptoms can be effected under assumption of statistical interpretation of inputs
RcSD. If this interpretation is refused, relation RcSD can be constructed in such a
way that it has always a positive impact to diagnoses and similarly ReSD which has
always negative impact to diagnoses.

The system Disco allows an investigated patient only to have or not to have a
symptom (“yes–no” case) without any gradations and all of the symptoms must be
examined.

In CADIAG-II-like systems Sp(si) is a fuzzy set. If si is a combination of symp-
toms (see Section 2.2.), Sp(si) is computed from the values of each symptom occur-
ring in this combination, using truth functions of fuzzy logic.

CADIAG-II-like systems and system Disco can be considered as compositional
rule based systems, systems, where effects (contributions) of the rules are composed,
and a numerical result is attached to the diagnosis. As with all compositional rule-
based systems, this compositionality [6] is their weak point, too.

As was already told, the knowledge base of CADIAG-II-like systems consists of
the IF–THEN rules that are usually given in a form of tables. Also Disco uses a
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tabular knowledge base (e. g., Table). Thus, both knowledge bases describe relations
between symptoms and diseases: both systems can work with a knowledge base rep-
resented in the terms of matrices (tables) of frequencies/weights relating symptoms
and diagnoses.

Both considered systems use an occurrence relation. CADIAG-II uses an occur-
rence relation constructed from f(si|dj) only for sure exclusion. On the other hand
it uses a confirmation relation as a more important source of knowledge. A con-
firmation relation Rc in CADIAG-II-like systems is directly built from the initial
source of information, from f(dj |si), and is used for confirmation and as an additive
rule for sure exclusion.

An occurrence relation is the only source of knowledge for Disco, whereas for
CADIAG-II-like systems it is a part of available data.

Negative knowledge was introduced in Conorm-CADIAG-II [6] and its knowledge
base then consists of confirmation and exclusion relations. In Conorm-CADIAG-II
only relation Re is used for exclusion.

In the system Disco confirmation and exclusion relations are a result of a trans-
formation of occurrence relations.

The Disco approach has a disadvantage: it cannot distinguish whether result 0.5 is
computed because of weak arguments or as arithmetical mean of contradiction of full
positive and negative contributions ( 1

2 (0 + 1) = 0.5). This problem is important in
medical applications as physicians often prefer three classes of diagnoses: confirmed,
excluded and possible.

Total diagnostic contradictions (when diagnoses should be confirmed and ex-
cluded in the same time) are underlined in CADIAG’s approaches, whereas they are
hidden among possible diagnoses in Disco’s approach.

The inference mechanism for Disco and Conorm-CADIAG-II can be described by
a composition of fuzzy relations.

An averaging operator is idempotent [16], non-associative [17] (except of max,
min or some other operations) and produces a fuzzy set that is larger than any
fuzzy intersection and smaller than any fuzzy union (2). The general scheme of
the inference mechanism (5), applied to positive and negative discrimination tables
of Disco (respectively confirmation and exclusion relations), can be described with
the arithmetic mean operator (see (24), (25)). Both contributions are computed
together in (26). In the case of Conorm-CADIAG-II, (5) takes the form of (10), (11)
and results are summarized in (13).

Notice that in CADIAG-II the results of inference are not combined in a total
values, they classified into the predefined classes of confirmed, excluded by present
symptoms, excluded by absent symptoms and possible diagnoses.

Concerning a combination of the final results in Disco and Conorm-CADIAG-II,
another important questionable problem is using of fuzzy modifiers in Disco. In
particular, Large and Small are defined only generally in the versions [2, 13] and in
the current investigation. Therefore these functions can change the order of resulting
values (degrees of confirmation) of diagnoses. Moreover, a possible diagnosis di
(Dp(di) < Dp(dj)) with given fuzzy modifiers, can be confirmed diagnosis, whereas
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dj remain a possible diagnosis when the fuzzy modifiers are changed. This “danger”
has to be taken into consideration under the reconstruction of these functions. This
“danger” shows that fuzzy modifiers have an important role which has a big influence
on results, thus their selection must be careful and reasonable to obtain reasonable
results.

These influence of fuzzy modifiers on results deserve further investigations.
Conorm-CADIAG-II is more safe from this point of view.

Another principal difference between Disco and CADIAG-II-like systems is that
computation of positive and negative contributions is both theoretically and numer-
ically same in Conorm-CADIAG-II, but it can be significantly different in Disco.
If there are the same arguments with the same values both for a diagnosis di and
against it, i. e., RcPD(p, di) = RePD(p, di) then resulting RtotPD(p, dj) = RcPD(p, dj) ⊕
−RePD(p, dj) = 0, when (extended) group operation ⊕ is used. It means, in this case
the neutral value, neither argument for nor against the diagnosis is obtained.

This does not hold in Disco, where we can obtain 1
2 corresponding to 0 in

CADIAG-II-like systems, or any other value close to 1 or some another close to
0, depending on a selection of fuzzy modifiers Large and Small. I.e., we can obtain
anything from high support of di to high support that di is not occurred at the
patient p. This underline again the difference between CADIAG-II-like systems and
Disco and the fact, that Large and Small must be selected very carefully.

Let us summarize some important features discussed in this section.

• There is only one source of data in Disco (one table of frequencies f(si|dj)),
whereas there are two sources both in CADIAG-II (Rc and Ro) and Conorm-
CADIAG-II (Rc and Re).

• A knowledge base ΘC given by occurrence relation RoSD of CADIAG-II-like sys-
tems is a knowledge base ΘD of Disco, describing relations between a symptom
(combination) si and a disease dj .

• Differently calculated inputs, positive and negative contributions of symptoms
to the diagnoses – positive and negative discrimination values in Disco, confir-
mation and exclusion relations in Conorm-CADIAG-II – can be denoted by the
same symbols RcSD and ReSD. Thus, a different knowledge can be represented
in the same way as it is used in CADIAG-II-like systems.

• The Conorm-CADIAG-II and Disco differ due to the sets of used values. In
Disco [0, 1] is used, in Conorm-CADIAG-II [−1, 1]. Correspondingly, 0 in Disco
is interpreted as “no”, whereas 0 in Conorm-CADIAG-II is interpreted as a
neutral element.

• Disco and CADIAG-II-like systems can process data in a form of vectors of
patients’ symptoms value. In particular, in Disco only fully present or fully
absent symptoms are considered, Sp(sj) = 1, Sp(sj) = 0, correspondingly,
whereas in CADIAG-II-like systems Sp takes values from [0, 1].
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• The t-conorm-min composition is used in Conorm-CADIAG-II for aggregation
of positive and negative contributions separately whereas in Disco averaging-
multiplication is applied. An extended Abelian group operation is used in
Conorm-CADIAG-II for combination of positive and negative contributions
together, whereas arithmetic mean (or averaging, more generally) is used in
Disco.

• Using fuzzy modifiers in Disco is an important difference between Disco and
Conorm-CADIAG-II.

• The inference mechanism of Conorm-CADIAG-II and Disco can be described
by scheme (5).

6. CONCLUSION

It can be seen from the discussion in the previous sections, the general language for
description and comparison of CADIAG-II-like and Disco systems is based on the
representation (1). Once again, the components of (1) relate to medical knowledge,
patient’s information, inference mechanism, diagnosis, correspondingly. We call this
scheme (1) a general framework for medical diagnoses based on fuzzy relations.
Since (1) describes the natural processes in each decision-support medical system,
it can be interpreted in a framework, different from the fuzzy relations framework,
for example, in a probabilistic one (conditional probability of symptoms given dis-
eases, a priori probabilities of diseases, Bayes’ formula). But for many systems the
last approach would not have enough expressive power to represent some aspect
of indeterminacy [27] – fuzziness (vagueness) – formalized in such systems. Thus,
the general framework (1) based on fuzzy relations can be suitable for description
of the systems where vagueness is present in the different form (relations between
symptoms and diseases, in symptoms’ representation, etc.). Notice that systems
like CADIAG-II-like explicitly use the fuzzy relations in their representation and
reasoning. Therefore the scheme (1) “one-to-one” corresponds to them. Others,
e. g., MYCIN-like and Disco need some transformation to fit the scheme.

In [6] CADIAG-II and MYCIN like systems are compared. In general, the com-
ponents of the scheme (1) were investigated for both types of systems. There are
defined conditions under which it is possible to embed CADIAG-II-like into MYCIN-
like systems and vice versa. [6] shows the procedures (and conditions) how a knowl-
edge base of one class of the systems can be transformed into knowledge base of the
second class such that both give the same results.

In this paper we have presented Disco and CADIAG-II-like systems in the same
fuzzy relation-based framework (1). The systems are different from the theoretical
point of view, but it was shown that they can be described in the same general
language based on the scheme (1). This “generalization” allows to compare both
types of systems on the certain level. Several interpretations of the components of the
scheme were deduced during the present investigation. Similarities and differences
between two types of systems were analyzed. For example, part of medical knowledge
base of CADIAG-II-like systems can be present in Disco as occurrence relations.
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Positive and negative contributions to the diagnoses in both systems are calculated
due to the (5), but with different interpretations: t-conorm-min in CADIAG-II-like
and arithmetic mean-multiplication in Disco. Both contributions are combined also
differently: by an Abelian group operation in Conorm-CADIAG-II and averaging
in Disco. Linguistic modifiers also distinguish the inference mechanism Disco from
CADIAG-II-like systems.

Such a comparison may be interesting not only from the theoretic-academic point
of view. Collected during investigation different variations, interpretations of RSD,
RPS , RPD =def RPS ◦ RSD can help to build new decision support systems in
medicine. Thus from the perspective of applications, the subject of special interest
can be systems with practical realizations. CADIAG-II and Disco belong to this
category [4, 13].

As well as previous investigations in this direction, our contribution, of course,
does not complete the study, but poses new questions, opens new problems and each
step nears the far-reach goal.
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[11] P. Hájek and J. Valdés: An analysis of MYCIN-like expert systems. Mathware and
Soft Computing 1 (1994), 45–68.

[12] F. Hayes-Roth: Expert systems. In: Encyclopedia of Artificial Intelligence – Second
edition (S. C. Shapiro, ed.), Volume 1, Wiley, New York 1992, pp. 477–489.

[13] T. Kiseliova: A Computer Assisted Method in Medical Diagnosis Using New Informa-
tion Technologies. Ph.D. Thesis, Tbilisi State University, Georgia Technical University
1995.

[14] E.-P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer, Dordrecht 2000.
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[27] V. Novák, I. Perfilieva, and J. Močkoř: Mathematical Principles of Fuzzy Logic.
Kluwer, Boston – Dordrecht 1999.
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