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Stochastic interdependence of a probability distribution on a product space is measured
by its Kullback–Leibler distance from the exponential family of product distributions (called
multi-information). Here we investigate low-dimensional exponential families that contain
the maximizers of stochastic interdependence in their closure.

Based on a detailed description of the structure of probability distributions with globally
maximal multi-information we obtain our main result: The exponential family of pure pair-
interactions contains all global maximizers of the multi-information in its closure.
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1. INTRODUCTION

The starting point of this article is a geometric interpretation of the interdependence1

of stochastic units. In order to illustrate the basic idea, we consider two units with
the configuration sets Ω1 = Ω2 = {0, 1}. The configuration set of the whole system
is just the Cartesian product Ω1 × Ω2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. The set of
probability distributions (states) is a three-dimensional simplex P(Ω1 × Ω2) with
the four extreme points δ(ω1,ω2), ω1, ω2 ∈ {0, 1} (Dirac measures). The two units are
independent with respect to p ∈ P(Ω1 × Ω2) iff

p(ω1, ω2) = p1(ω1) p2(ω2) for all (ω1, ω2) ∈ Ω1 × Ω2. (1.1)

The set of factorizable distributions (1.1) is a two-dimensional manifold F . Figure 1
shows the simplex P(Ω1 × Ω2) and its submanifold F .

Given an arbitrary probability distribution p, we quantify the interdependence of
the two units with respect to p by its Kullback–Leibler distance from the set F . In
our two-unit case, this distance is nothing but the well known mutual information,
which has been introduced by Shannon [10] as a fundamental quantity that provides
a measure of the capacity of a communication channel.

1Throughout the paper we use the term interdependence to indicate stochastic dependence
among units, as opposed to dependence of general random variables.
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Motivated by so-called Infomax principles within the field of neural networks [8,
11], one of us has investigated maximizers of the interdependence [6, 7] of stochastic
units. In our two-unit example, these are the distributions

1
2

(
δ(0,0) + δ(1,1)

)
, and 1

2

(
δ(1,0) + δ(0,1)

)
(see Figure 1).

This article continues that work by analyzing the structure of maximizers of stochas-
tic interdependence. In particular, this leads to some answers to the question on the
existence and the structure of a natural low dimensional manifold that contains all
maximizers of the stochastic interdependence (see [6], 3.4 (ii) and [7], 4.2.3). We will
prove that the exponential family of pure pair-interactions contains the global max-
imizers of multi-information in its closure. In our example of two binary units this
exponential family is given by the convex hull of the two maximizers 1

2

(
δ(0,0) + δ(1,1)

)

and 1
2

(
δ(1,0) + δ(0,1)

)
shown in Figure 1.

δ(1,1)

1
2

`
δ(0,0) + δ(1,1)

´

1
2

`
δ(1,0) + δ(0,1)

´

δ(1,0)

δ(0,1)

δ(0,0)

F

c
c

c
c

cc

c
c

Fig. 1. The exponential family F in the simplex of probability distributions.

In physics, pair interactions are considered as fundamental mechanisms that un-
derly most theories. Within the field of neural networks, the physical concept of
pair-interactions is used to model the synaptic interactions of neurons.

2. NOTATION

Let Ω be a nonempty and finite set. In the corresponding real vector space RΩ, we
have the canonical basis eω, ω ∈ Ω, which induces the natural scalar product 〈·, ·〉.
The set of probability distributions on Ω is denoted by P(Ω):

P(Ω) :=
{

p =
(
p(ω)

)
ω∈Ω

∈ RΩ : p(ω) ≥ 0 for all ω, and
∑

ω∈Ω p(ω) = 1
}

.
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For a probability distribution p, we consider its support supp p := {ω∈Ω : p(ω)>0}.
The strictly positive distributions P(Ω) have maximal support Ω:

P(Ω) := {p ∈ P(Ω) : supp p = Ω}.

Note that P(Ω) is the closure of P(Ω). For every vector X = (X(ω))ω∈Ω ∈ RΩ, we
consider the corresponding Gibbs measure:

exp(X) ∈ P(Ω), exp(X)(ω) :=
eX(ω)

∑
ω′∈Ω eX(ω′)

.

The image exp(T ) of a linear (or more generally affine) subspace T of RΩ with
respect to the map X 7→ exp(X) is called exponential family (induced by T ).

In this article, we are mainly interested in the “distance” of probability distribu-
tions from a given exponential family E . More precisely, we use the Kullback–Leibler
divergence or relative entropy D : P(Ω)× P(Ω) → [0,∞) ∪ {∞},

(p, q) 7→ D(p ‖ q) :=

{ ∑
ω∈supp p p(ω) ln p(ω)

q(ω) , if supp p ⊂ supp q,

∞, otherwise,

to define the continuous2 function DE : P(Ω) → R+,

p 7→ DE(p) := inf
q∈E

D(p ‖ q).

For k ∈ N we denote the set {1, . . . , k} by [k].

3. SUFFICIENCY OF LOW–DIMENSIONAL EXPONENTIAL FAMILIES
FOR THE MAXIMIZATION OF MULTI–INFORMATION

We consider the set V := [N ] = {1, . . . , N} of N ≥ 2 units, and corresponding
sets Ωi, i ∈ [N ], of configurations. The number |Ωi| of configurations of a unit i is
denoted by ni. Without restriction of generality we assume

2 ≤ n1 ≤ n2 ≤ · · · ≤ nN .

For a subsystem A ⊆ [N ], the set of configurations on A is given by the product
ΩA := ×i∈AΩi. One has the natural restriction

XA : ΩV → ΩA, (ωi)i∈[N ] 7→ (ωi)i∈A,

which induces the projection

P(ΩV ) → P(ΩA), p 7→ pA,

where pA denotes the image measure of p with respect to the variable XA. For
i ∈ [N ] we write pi instead of p{i}.

2See Lemma 4.2 of [6] for a proof.
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A probability distribution p ∈ P(ΩV ) is called factorizable if it satisfies

p(ω1, . . . , ωN ) = p1(ω1) · . . . · pN (ωN ) for all (ω1, . . . , ωN ) ∈ ΩV .

The set F of strictly positive and factorizable probability distributions on ΩV is an
exponential family in P(ΩV ) with

dimF =
N∑

i=1

(ni − 1).

Now let us consider the function DF , which measures the distance from F . We have
DF (p) = 0 if and only if p ∈ P(ΩV ) is factorizable. Thus, this distance function can
be interpreted as a measure that quantifies the stochastic interdependence of the
units in [N ]. The following entropic representation of DF is well known (see [4]):

Ip(X1, . . . , XN ) := DF (p) =
N∑

i=1

Hp(Xi)−Hp(X1, . . . , XN ).

Here, the Hp(Xi)’s denote the marginal entropies and Hp(X1, . . . , XN ) is the global
entropy. This measure of stochastic interdependence of the units, which is called
multi-information, is a generalization of the mutual information (see example in the
introduction).

This article deals with the problem of finding natural low-dimensional exponential
families that contain the maximizers of the multi-information in their closure. To
this end we first consider a result on maximizers of the distance from an arbitrary
exponential family [6], in the improved form obtained in [9]:

Proposition 3. Let E be an exponential family in P(Ω) with dimension d. Then
there exists an exponential family E∗, E ⊂ E∗, with dimension less than or equal to
3d + 2 such that the topological closure of E∗ contains all local maximizers of DE .

This theorem is quite general, and is based on the observation that maximizers of
the information divergence DE have a reduced cardinality of their support, which is
controlled by the dimension d of E . The direct application of Proposition 3 of [9] to
the exponential family F leads to the following statements on the local maximizers
of the multi-information I(X1, . . . , XN ) = DF :

Corollary 3.1. There exists an exponential family F∗ with

dimF∗ ≤ 3
N∑

i=1

(ni − 1) + 2 ≤ 3N(nN − 1) + 2

that contains all local maximizers of I(X1, . . . , XN ) in its topological closure. In
particular, in the binary case ni = 2 for all i, dimF∗ ≤ 3N + 2.

In all such statements about exponential families over product spaces one should
keep in mind, that the dimension of the exponential family P(ΩV ) itself is of expo-
nential growth in the number N = |V | of units. So any exponential subfamily which
is of polynomial growth in N is of large codimension.
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Our main goal is now the following. Knowing about the existence of such low-
dimensional exponential families F∗, we want to analyze the relation between them
and exponential families given by interaction structures between the N units.

More precisely, this article deals with the problem whether one can find low-
dimensional exponential families F∗ like in the Corollary 3.1 that are at the same
time given by a low order of interaction. Before going into the details, we state an
informal version of the main result of the paper (using terminology from statistical
physics):

Informal Version of Theorem 5.1. If the cardinalities n1, . . . , nN fulfill an in-
equality (see Theorem 4.4), the exponential family of pure pair-interactions (that
is, pair-interactions without any external field) is sufficient for generating all global
maximizers of the multi-information.

Let us have a closer look on this result for the binary case. In this case, we
even find an exponential family of pure pair-interaction that has dimension N − 1,
which is stronger than Corollary 3.1. More important, the pair-interactions form an
explicit low dimensional exponential family that appears in many models in physics
and biology (the units being called particles respectively neurons, the interactions
fields resp. dendrites).

In Section 5, we will provide a rigorous formulation of our main result and prove
it. This will be based on results concerning the structure of global maximizers of
multi-information, which is discussed in the following Section 4.

4. THE STRUCTURE OF GLOBAL MAXIMIZERS
OF MULTI–INFORMATION

4.1. General structure

Obviously, the maximal value of I(X1, . . . , XN ) is bounded as

Ip(X1, . . . , XN ) =
N∑

i=1

Hp(Xi)−Hp(X1, . . . , XN ) ≤
N∑

i=1

ln(ni).

In fact, it turns out that in contrast to the quantum setting (see Remark 4.2 below),
this upper bound is never reached. The following lemma gives an upper bound that
is sharp in many interesting as well as important cases.

Lemma 4.1. Let p be a probability distribution on ΩV = Ω1 × · · · × ΩN . Then:

Ip(X1, . . . , XN ) ≤
N−1∑

i=1

ln(ni). (4.1)
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Remark 4.2. With an orthonormal basis f1, . . . , fn of the Hilbert space Cn we
consider the (entangled) unit vector

ψ :=
1√
n

n∑

k=1

N⊗

i=1

fk ∈
N⊗

i=1

Cn,

and the density operator ρ defined by the orthogonal projection onto the subspace
spanned by ψ. In this setting, the mutual information is extended as

I(ρ) =
N∑

i=1

S(ρi)− S(ρ) = tr
(
ρ ln(ρ)

)
−

N∑

i=1

tr
(
ρi ln(ρi)

)

where S denotes von Neumann entropy, and the ρi are the partial traces of ρ. As we
see, this multi-information has the value N ln(n), which, according to Lemma 4.1,
is not possible within the classical setting.

In the following, we consider the set

M(Ω1, . . . , ΩN ) :=

{
p ∈ P(ΩV ) : Ip(X1, . . . , XN ) =

N−1∑

i=1

ln(ni)

}

of probability distributions that maximize, according to Lemma 4.1, in the case
M(Ω1, . . . , ΩN ) 6= ∅ the multi-information I(X1, . . . , XN ). Up to isomorphism,
everything depends only on the cardinalities ni = |Ωi| so that we sometimes write
M(n1, . . . , nN ) instead of M(Ω1, . . . , ΩN ).

The next theorem characterizes the probability distributions in M(Ω1, . . . , ΩN ).

Theorem 4.3. Let p be a probability distribution on ΩV . Then p ∈M(Ω1, . . . , ΩN )
if and only if there exist a probability distribution p(N) ∈ P(ΩN ) and surjective maps
πi : ΩN → Ωi, i = 1, . . . , N − 1, with

p(N) {πi = ωi} =
1
ni

(ωi ∈ Ωi), (4.2)

such that for all (ω1, . . . , ωN ) ∈ ΩV

p(ω1, . . . , ωN ) =

{
p(N)(ωN ), if ωi = πi(ωN ), i = 1, . . . , N − 1,

0, otherwise.
(4.3)

Theorem 4.3 allows us to say precisely under which conditions on the unit sizes
ni the theoretical maximum (4.1) of multi-information can be achieved (we use the
shorthands W := 2[N−1]\{∅} and nA := (ni)i∈A and denote the greatest common
divisor by GCD):
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Theorem 4.4. We have M(Ω1, . . . , ΩN ) 6= ∅ if and only if nN ≥ nmin for

nmin = nmin(n1, . . . , nN−1) :=
∑

A∈W

(−1)|A|−1GCD(nA).

Remarks 4.5.

1. In particular, M(Ω1, . . . , ΩN ) 6= ∅ if

(a) there are only N = 2 units, or

(b) all units are identical (n1 = . . . = nN ).

In the following Sections 4.2 and 4.3 we discuss these two important examples
of Theorem 4.4 more precisely.

2. (a) We have the following inequalities for nmin:

max(n1, . . . , nN−1) ≤ nmin ≤ 1 +
N−1∑

i=1

(ni − 1).

These follow immediately from the defining relation nmin = |⋃i∈[N−1] Tni |
for Tm := { i

m : i ∈ [m]}, since |Tni | = ni and 1 ∈ Tni .
The left inequality becomes an equality iff the least common multiple
LCM(n[N−1]) = nN−1 (still assuming that ni+1 ≥ ni), whereas the right
inequality becomes an equality iff the integers n1, . . . , nN−1 are mutually
prime.

(b) Additionally, one gets

nmin ≤ LCM(n[N−1]) =: l,

since for all i ∈ [N − 1] the inclusion Tni ⊂ Tl holds true. Again we have
equality iff LCM(n[N−1]) = nN−1.

(c) The global maximizers p ∈ M(Ω1, . . . , ΩN ) of multi-information that we
construct simultaneously maximize the mutual information of the pairs
{i,N} of units.
In the case LCM(n[N−1]) = nN they even simultaneously maximize the
mutual information of all pairs {i, j} ⊂ [N ] of units.
Both statements follow from direct inspection of p defined in (6.4).

4.2. The case of two units

We now discuss the case of two units, i. e. N = 2. In this case, the set

M(Ω1,Ω2) =
{
p ∈ P(Ω1 × Ω2) : Ip(X1, X2) = ln(n1)

}

is non-empty and therefore consists of all global maximizers of the mutual informa-
tion of the two units. We want to describe the structure of M(Ω1, Ω2) by stratifying
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it into a disjoint union of relatively open sets. In order to do that, we consider for
Ω∗

1 := Ω1 ∪ {0} the following set of maps

S := {π : Ω2 → Ω∗
1 : π(Ω2) ⊃ Ω1}. (4.4)

The relation
σ ¹ π :⇐⇒ σ−1(ω1) ⊂ π−1(ω1) for all ω1 ∈ Ω1

on S is a partial order which makes S a poset.

Example 4.6. For Ω1 = {1, 2} and Ω2 = {1, 2, 3} we get a poset S of 12 maps.
The right graphics in Figure 2 shows the cover graph of the poset with vertex set S.
On the left we show the graphs of four of these maps. We have σ ¹ π if σ is in the
lower line and connected to π in the upper line (so-called Hasse diagram).
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Fig. 2. The posets for Ω1 = {1, 2}, Ω2 = {1, 2, 3}.

We call a poset connected iff its cover graph is connected.

Lemma 4.7. The poset (4.4) is connected if and only if n1 < n2.

Given π ∈ S we consider the convex and relatively open set

Mπ(Ω1, Ω2) :=

{
p ∈ P(Ω1 × Ω2) : for all ω1 ∈ Ω1,

∑

ω2∈π−1(ω1)

p(ω1, ω2) =
1
n1

and p(ω1, ω2) > 0 iff π(ω2) = ω1

}
.

We denote by Sm,n the Stirling numbers of the second kind (see for example [3]).
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Theorem 4.8.

1. The set of global maximizers of the mutual information is a disjoint union

M(Ω1, Ω2) =
⊎

π∈S
Mπ(Ω1,Ω2)

of sets Mπ(Ω1, Ω2).

2. These sets have dimension

dimMπ(Ω1,Ω2) = |π−1(Ω1)| − |Ω1|,

and there are n1!
(
n2
l

)
Sl,n1 sets Mπ(Ω1,Ω2) of dimension l − n1.

3. The inclusion Mσ(Ω1, Ω2) ⊂ Mπ(Ω1,Ω2) holds if and only if σ ¹ π, and the
set M(Ω1, Ω2) is connected if and only if n1 < n2.

Example 4.9. Continuing Example 4.6, for n1 = 2 and n2 = 3 the set M(2, 3) is
the disjoint union of six points and six open intervals (see Figure 3, left), combined
in the form of a hexagon (see Figure 3, right). So M(2, 3) is homeomorphic to S1

in this case.
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Fig. 3. The structure of M(2, 3).

4.3. The case of N equal units

This section deals with the important example of N units with n1 = · · · = nN =: n.
In that situation, Theorem 4.3 has the following direct implication.
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Corollary 4.10. The set M(Ω1, . . . , ΩN ) consists of all probability distributions

1
n

∑

ωN∈ΩN

δ(π1(ωN ),...,πN−1(ωN ),ωN ),

where πi : ΩN → Ωi, i = 1, . . . , N − 1, are one-to-one mappings. This implies

|M(Ω1, . . . , ΩN )| = (n!)N−1, (4.5)

and for all p ∈M(Ω1, . . . , ΩN ),

Ip(X1, . . . , XN ) = (N − 1) · ln(n),

|supp p| = n. (4.6)

Thus according to (4.5), the number of the maximizers of the multi-information
grows exponentially in N . In particular, for binary units the set M(Ω1, . . . , ΩN ) has
2N−1 elements. In view of this fact, it is interesting that according to Corollary 3.1
there is an exponential family of dimension ≤ 3N + 2 that approximates all these
global maximizers of the multi-information. This bound can even be improved.
Although it is not our main goal to do that we close this subsection by an interesting
N -independent upper bound, which implies that for N binary units there exists an
exponential family with dimension less than or equal to 5 that approximates all
2N−1 elements of M(Ω1, . . . , ΩN ).

Theorem 4.11. There exists an exponential family with dimension less than or
equal to (n2 + 3n)/2 that contains M(Ω1, . . . , ΩN ) in its closure.

This exponential family, however, is based on multibody interactions (in terms of
statistical mechanics) between the units i ∈ [N ].

5. SUFFICIENCY OF LOW–ORDER INTERACTION
FOR THE MAXIMIZATION OF MULTI–INFORMATION

Given a subset A ⊆ [N ] = {1, . . . , N}, we decompose ω ∈ ΩV in the form ω =
(ωA, ω[N ]\A) with ωA ∈ ΩA, ω[N ]\A ∈ Ω[N ]\A. We define IA to be the subspace of
functions that do not depend on the configurations ω[N ]\A:

IA :=
{

f ∈ RΩV :

f(ωA, ωV \A) = f(ωA, ω′[N ]\A) for all ωA∈ΩA, and all ω[N ]\A, ω′[N ]\A∈Ω[N ]\A
}

.

The orthogonal projection ΠA onto this |ΩA|-dimensional space with respect to the
canonical scalar product

〈f, g〉 :=
∑

ω∈ΩV

f(ω)g(ω) (f, g ∈ RΩV )
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in RΩV is given by

ΠA(f)(ωA, ω[N ]\A) :=
1

|Ω[N ]\A|
∑

ω′[N]\A
∈Ω[N]\A

f(ωA, ω′[N ]\A).

In order to describe only the pure contributions of A to a function f , we “subtract”
the contributions from subsets B ( A. This leads to the

∏
i∈A

(
|Ωi|−1

)
-dimensional

subspace

ĨA := IA ∩


 ⋂

B(A

IB
⊥




and the orthogonal decomposition RΩV =
⊕

A⊆[N ] ĨA. Denoting the orthogonal

projections onto ĨA by Π̃A we thus have Π̃AΠ̃B = δA,BΠ̃A and

ΠA =
∑

B⊆A

Π̃B , A ⊆ [N ], (5.1)

and every vector f has a unique representation as a sum of orthogonal vectors:

f =
∑

A⊆[N ]

Π̃A(f).

The fA is called (pure) interaction among the units in A. With the Möbius inversion
(5.1) implies

Π̃A(f) =
∑

B⊆A

(−1)|A\B|ΠB(f)

=
∑

B⊆A

(−1)|A\B|
1

|Ω[N ]\B |
∑

ω′[N]\B
∈Ω[N]\B

f(ωB , ω′[N ]\B).

Now we construct exponential families associated with such interaction spaces. The
most general construction is based on a set of subsets of [N ]. Given such a set
A ⊆ 2[N ], we define the corresponding interaction space by

ĨA :=
⊕

A∈A

ĨA, (5.2)

which generates the exponential family exp(ĨA). We want to apply this definition
to the more specific situation of interactions with fixed order k. Therefore, we define

I(k) := Ĩ{A⊆[N ]:|A|≤k}, and Ĩ(k) := Ĩ{A⊆[N ]:|A|=k}.

We get the flag of vector spaces

R ∼= I(0) ( I(1) ( I(2) · · · ( I(N) = RΩV ,
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and the corresponding hierarchy of exponential families

exp(I(0)) ( exp(I(1)) ( exp(I(2)) · · · ( exp(I(N)) = P(ΩV ),

Here, exp(I(0)) contains exactly one element, namely the center of the simplex.

The exponential family exp(I(1)) is nothing but the exponential family F of fac-
torizable distributions. Thus, the multi-information vanishes exactly on the topo-
logical closure of exp(I(1)).

Now we determine for a nonempty set M(Ω1, . . . , ΩN ) of maximizers the lowest
order k such that M(Ω1, . . . , ΩN ) is contained in the topological closure of exp(I(k)).
The first possible candidate for this is given by k = 2. The following theorem states
that this is also sufficient.

Theorem 5.1. There exists an exponential family F∗ ⊆ exp(Ĩ(2)) of dimension
dim(F∗) = (nN − 1)

∑N−1
i=1 (ni− 1) containing in its closure all global maximizers of

the multi-information (M(Ω1, . . . , ΩN ) ⊂ F∗).

This theorem represents our main result which we already stated informally in
Section 3. Note that compared with Theorem 4.11 for large N Theorem 5.1 leads
to an exponential family F∗ of higher dimension. On the other hand, we still have
an exponential (in N) codimension in the simplex P(ΩV ).

In addition to that, the exponential family of Theorem 5.1 represents a concrete
model that appears in many applications in physics and biology. For instance,
within the field of neural networks, the exponential family exp(I(2)), which contains
exp(Ĩ(2)) as a subfamily, is known as the family of Boltzmann machines, [1, 2, 5].
Applied to this context, our result states that Boltzmann machines are able to
generate all distributions that have globally maximal multi-information, and that
their dimensionality

(
N
2

)
is not minimal for N > 2.

Examples 5.2.

1. The Case of Two Units. In this case, the hierarchy of interactions ends
with k = 2, because we have just two units. Thus the simplex P(Ω1 × Ω2) is
equal to the exponential family exp(I(2)), which has dimension n1n2− 1. The
codimension of the subfamily exp(Ĩ(2)) of Theorem 5.1 then is n1 + n2 − 2.
Applied to our example of two binary units from the introduction, we see that

dim(exp(Ĩ(2))) = 1

In Figure 1, we obtain this family by simply taking the convex combinations
of the two maximizers:

exp(Ĩ(2)) =
{

1− λ

2
(
δ(0,0) + δ(1,1)

)
+

λ

2
(
δ(1,0) + δ(0,1)

)
: 0 < λ < 1

}
.
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2. The Case of N Equal Units. According to Theorem 4.3 for |Ωi| = n we have
|M(Ω1, . . . , ΩN )| = (n!)N−1 maximizers, which are, according to Theorem 5.1,
contained in the closure of an exponential family F∗ of pure pair interactions,
with

dim(F∗) = (N − 1)(n− 1)2.

6. PROOFS

We fix the following notations: For V ′ ⊂ [N ], HV ′ denotes the entropy of the random
variable XV ′ . Obviously HV = H, and H{i} = Hi. For two subsets V ′, V ′′ ⊂ [N ],
H(V ′′ |V ′) is the conditional entropy of XV ′′ given XV ′ . For V ′ = {a1, . . . , aL}
and V ′′ = {b1, . . . , bM} we also write H(b1,...,bM | a1,...,aL) instead of H(V ′′ |V ′) =
H({b1,...,bM} | {a1,...,aL}). Now let V1, . . . , Vr be a set of disjoint subsets of [N ] =
{1, . . . , N}. The multi-information of these subsystems is given by I{V1,...,Vr} =∑r

j=1 HVj
−HV1]···]Vr

. In the case where the subsets of [N ] have cardinality one,
we also write I{i1,...,ir} instead of I{{i1},...,{ir}}. We obviously have IV = I.

P r o o f o f L emma 4.1. By the chain rule H(X,Y ) = H(X) + H(Y | X)

Ip(X1, . . . , XN ) =
N∑

i=1

Hp(Xi)−Hp(X1, . . . , XN )

=
N−1∑

i=1

Hp(Xi)−
(
Hp(X1, . . . , XN )−Hp(XN )

)

=
N−1∑

i=1

Hp(Xi)−Hp(X1, . . . , XN−1 | XN ) ≤
N−1∑

i=1

Hp(Xi) ≤
N−1∑

i=1

ln(ni),

proving the lemma. 2

P r o o f o f Th e o r em 4.3. If a probability distribution p on ΩV has the form
(4.3) with a distribution p(N) ∈ P(ΩN ) and surjective maps πi : ΩN → Ωi that
satisfy (4.2), then I(p) =

∑N−1
i=1 ln(ni):

I(p) =
N∑

i=1

Hi(p)−H(p)

=
N∑

i=1

Hi(p)−HN (p)−H(1|N)(p)−H(2|1,N)(p)− · · · −H(N−1|1,2,...,N−2,N)(p)
︸ ︷︷ ︸

=0

=
N−1∑

i=1

ln(ni).

Now we prove the opposite implication. Therefore we assume I(p) =
∑N−1

i=1 ln(ni).
This gives us
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Hi(p) = ln(ni) (i = 1, . . . , N − 1). (6.1)

Otherwise the existence of an i0 ∈ {1, . . . , N − 1} with Hi0(p) < ln(ni0) would
imply the following contradiction

I(p) =
N∑

i=1

Hi(p)−H(p)

=
N−1∑

i=1

Hi(p) + HN (p)−
(
HN (p) + H(1,...,N−1 |N)(p)

)

≤
N−1∑

i=1
i 6=i0

Hi(p) + Hi0(p) <
N−1∑

i=1

ln(ni).

From (6.1) we have

H(p) =
N∑

i=1

Hi(p)− I(p) =

(
N−1∑

i=1

ln(ni) + HN (p)

)
−

N−1∑

i=1

ln(ni) = HN (p). (6.2)

Now we set p(N) := pN , and define a Markov kernel K : (Ω1×· · ·×ΩN−1)×ΩN →
[0, 1] by

K(ω1, . . . , ωN−1 |ωN ) :=





p(ω1,...,ωN )
pN (ωN ) , if pN (ωN ) > 0

1
n1···nN−1

, if pN (ωN ) = 0š.

In these definitions we get

H(p)−HN (p)

=
∑

ωN∈ΩN
pN (ωN )>0

pN (ωN )

(
ln pN (ωN )

−
∑

(ω1,...,ωN−1)∈
Ω1×···×ΩN−1

K(ω1, . . . , ωN−1 |ωN ) ln
(
pN (ωN ) K(ω1, . . . , ωN−1 |ωN )

))

=
∑

ωN∈ΩN
pN (ωN )>0

pN (ωN )H
(
K(· |ωN )

)
≥ 0.

From (6.2) this implies H
(
K(· |ωN )

)
= 0 for all ωN with pN (ωN ) > 0. This

implies the existence of maps πi : ΩN → Ωi with

p(ω1, . . . , ωN ) = p(N)(ωN )
N−1∏

i=1

δωi,πi(ωN ).

Because of Hi(p) = ln(ni) for all i ∈ {1, . . . , N−1}, these maps must be surjective.
2
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P r o o f o f T h e o r em 4.4.
Proof that M(Ω1, . . . , ΩN ) 6= ∅ if nN ≥ nmin:

For m ∈ N set Tm :=
{

i
m : i ∈ [m]

}
. We claim that the cardinality of

TΩ :=
⋃

i∈[N−1]

Tni

is given by |TΩ| = nmin. This follows by the inclusion-exclusion principle if
∣∣∣∣∣
⋂

i∈A

Tni

∣∣∣∣∣ = GCD(nA) (A ∈ W ), (6.3)

since ∣∣∣∣∣∣
⋃

i∈[N−1]

Tni

∣∣∣∣∣∣
=

∑

A∈W

(−1)|A|−1

∣∣∣∣∣
⋂

i∈A

Tni

∣∣∣∣∣ .

To prove (6.3), we set mA := GCD(nA) and note that Tni ⊇ TmA
(i ∈ A). Thus∣∣⋂

i∈A Tni

∣∣ ≥ |TmA
| = mA.

To show the converse inequality
∣∣⋂

i∈A Tni

∣∣ ≤ mA we note that for some m̃ ∈ N
we have

⋂
i∈A Tni = Tm̃. Thus for all i ∈ A there exist `i ∈ [ni] with `i

ni
= 1

m̃ =
min(Tm̃), or ni = `im̃. Thus m̃ divides all ni (i ∈ A) and – being the largest such
integer – equals mA = GCD(nA).

Now we write TΩV in the form {d1, . . . , dnmin} and set d0 := 0, with ordering
di > di−1 (i ∈ [nmin]). The map

Φ : TΩV
→ ΩV , Φ(dj)i :=

{
ddjnie, i ∈ [N − 1]

j, i = N

is well defined, since ddjnie ∈ [ni] (i ∈ [N − 1]), and by our assumption nN ≥ nmin

which implies j ∈ [nN ]. The function

p : ΩV → R, p :=
nmin∑

j=1

(dj − dj−1)δΦ(dj) (6.4)

is a probability distribution since dj − dj−1 > 0 and
nmin∑

j=1

(dj − dj−1) = dnmin − d0 = 1.

For all i ∈ [N − 1] and ` ∈ [ni] the ith marginal probability equals

pi(`) =
∑

ω∈×j∈[N]\{i} nj

p(`, ω) =
∑

ωN∈[nmin]

ddωN
nie=`

(dωN − dωN−1)

=
∑

j:dj∈
“

`−1
ni

, `
ni

i
(dj − dj−1) =

`

ni
− `− 1

ni
=

1
ni

.

We thus meet the condition of Theorem 4.3 showing that p ∈M(Ω1, . . . , ΩN ).
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Ω1 Ω2E

C1

C2

Fig. 4. A bipartite graph (Ṽ , G) for N + 1 = 3 units, with |Ω1| = 4, |Ω1| = 6, |Ω3| ≥ 8

and a maximizer p ∈M(Ω1, Ω2, Ω3). (Ṽ , G) has the two components C1, C2.

Proof that M(Ω1, . . . , ΩN ) = ∅ if nN < nmin:

• The statement is trivial for N = 2 (remember that we assume ni+1 ≥ ni).
Assume now that it is proven for all product spaces of at most N ∈ N units.
Then for a probability distribution p ∈M(Ω1, . . . , ΩN+1) consider its marginal
p̃ ∈ P(Ω[N ]).

We associate to p̃ a N -partite graph (Ṽ , E) whose vertex set is the disjoint

union Ṽ :=
⋃̇N

i=1Ωi. To every ω = (ω1, . . . , ωN ) ∈ supp(p̃) ⊆ Ω[N ] belongs
the complete graph on the vertex set {ω1, . . . , ωN} ⊂ Ṽ with edge set Gω :={
{ωi, ωj} ⊂ Ṽ | 1 ≤ i < j ≤ N

}
on the N vertices ω1, . . . , ωN . Then the edge

set
E :=

⋃

ω∈supp(p̃)

Gω

on Ṽ is indeed N -partite. By the strict positivity (4.2) of the p-marginals no
vertex v ∈ Ṽ is isolated.

• Every edge set Gω ⊆ E is contained in the induced subgraph of exactly one
connected component C ⊆ Ṽ of the graph (Ṽ , E). We attribute to Gω the
weight p̃(ω), and to a connected component C of the graph (Ṽ , E) the sum of
the weights of the Gω contained in it.

These weights w(C) of the connected components C are not arbitrary numbers
in (0, 1]. Instead, we know from Theorem 4.3 that the marginal distributions
pi : Ωi → [0, 1] of p (and thus of p̃, too) have the Laplace form

pi(ωi) =
1
ni

(i ∈ [N ], ωi ∈ Ωi).
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Therefore w(C) is simultaneously an integer multiple of 1/ni (i ∈ [N ])
and thus an integer multiple of GCD(n[N ]). This implies the upper bound
GCD(n[N ]) for the number of connected components C of the N -partite graph
(Ṽ , E).

• For the case of N + 1 = 3 units this already suffices to show the bound
n3 ≥ nmin = n1 + n2 − GCD(n1, n2). In this case the complete graphs are
of cardinality |Gω| = (N − 1)! = 1 so that |E| = |supp(p̃)|.
In general a graph on a vertex set of v ∈ N vertices with e ∈ N0 edges has at
least max(v − e, 1) connected components. In the case at hand v = n1 + n2,
and there are at most GCD(n1, n2) connected components. So

n3 ≥ |supp(p)| ≥ |supp(p̃)| = |E| = e

≥ v − c = (n1 + n2)−GCD(n1, n2) = nmin.

• For arbitrary N + 1 > 3 this argument must be modified, since then |Gω| =
(N − 1)! > 1.

First of all we can substitute Gω by any spannning tree Tω ⊂ Gω, and still the
connected components C ′ of (Ṽ , E′) with E′ :=

⋃
ω∈supp(p̃) Tω coincide with

the connected components C of (Ṽ , E). Each of these spanning trees has only
|Tω| = N − 1 edges. However in general E′, too is not a disjoint union of the
Tω.

We thus decompose the set supp(p̃) into a disjoint union

supp(p̃) =
N⋃

k=1

Ak, (6.5)

beginning with an arbitrarily chosen set AN of representatives ω ∈ C of the
connected components C ⊆ Ω[N ]. The estimate on the number of these com-
ponents implies |AN | ≥ GCD(n[N ]), and for ω 6= ω′ ∈ AN the edge sets Gω

and Gω′ are disjoint.

Next we arrange the elements ω′ ∈ C of the connected component C containing
ω ∈ AN in the form of a spanning tree, with Gω′ ∩Gω′′ 6= ∅ for {ω′, ω′′} being
an edge of that tree. For ω′ = (ω′1, . . . , ω

′
N ) ∈ C of distance d(ω′) from ω ∈ AN

we put ω′ ∈ Ak if there are exactly k indices i ∈ [N ] with ω′i not being equal
to any ω′′i for ω′′ = (ω′′1 , . . . , ω′′N ) with d(ω′′) < d(ω′). This indeed gives a
partition of the form (6.5).

Then by our induction hypothesis

|Ak| ≥
∑

B⊆[N]
|B|≥k

(−1)|B|−k

(|B|
k

)
GCD(nB) (k = 1, . . . , N). (6.6)

Namely for k = N (6.6) reduces to |AN | ≥ GCD(n[N ]) which has been shown
to be true. So if (6.6) would not hold, for the smallest k < N violating
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(6.6), we would find a B ⊆ [N ] of cardinality |B| = k < N , whose marginal
distribution pB has support of cardinality n̂k+1 := |supp(pB)| < nmin(B) =∑

B̃⊆B

B̃ 6=∅
(−1)|B̃|−1GCD(nB̃), see (6.7) below.

But this would contradict our induction assumption, since then the system
Ω̂ :=

(
×i∈B [ni]

)
× [n̂k+1] would have the optimizing probability distribution

p̂ : Ω̂ → [0, 1], p̂(ωB , l) := δe(l),ωB
pB(ωB)

for some bijection e : [n̂k+1] → supp(pB), but yet not meet the criterium
n̂k+1 ≥ nmin(B).

Summing the cardinalities (6.6), we obtain

|supp(p̃)| =
N∑

k=1

|Ak| ≥
[N ]∑

k=1

∑

B⊆[N]
|B|≥k

(−1)|B|−k

(|B|
k

)
GCD(nB)

=
∑

B⊆[N]
B 6=∅

(−1)|B|GCD(nB)
|B|∑

k=1

(−1)k

(|B|
k

)

=
∑

B⊆[N]
B 6=∅

(−1)|B|−1GCD(nB) = nmin, (6.7)

which is the induction step. 2

P r o o f o f L emma 4.7. If n1 = n2 then the maps π ∈ S are isomorphisms
π : Ω2 → Ω1, so that σ ¹ π only for σ = π. Thus in that case S is connected iff
|S| = 1, i. e. n1 = n2 = 1. This contradicts our assumption n1, n2 ≥ 2.

If n2 > n1 and |π−1(ω1)| > 1 for π ∈ S and some ω1 ∈ Ω1, say π(ω′2) = ω1, then
σ ¹ π for

σ ∈ S, σ(ω2) :=

{
π(ω2), if ω2 6= ω′2

0, if ω2 = ω′2.

So we need only show that any π′, π′′ ∈ S which are injective onto Ω1 are indeed
connected.

1. In the first step we move π′ along the poset graph in order to decrease the
cardinality of the symmetric difference (π′)−1(0)∆(π′′)−1(0). So we assume
that there exist

ω′ ∈ (π′)−1(0)\(π′′)−1(0) and ω′′ ∈ (π′′)−1(0)\(π′)−1(0)

and set

π ∈ S, π(ω) :=





0, if ω = ω′′

π′(ω′′), if ω = ω′

π′(ω), otherwise.
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Both π′ and π are covered by

ρ ∈ S, ρ(ω) :=

{
π′(ω′′), if ω = ω′

π′(ω), otherwise,

and
|π−1(0)∆(π′′)−1(0)| = |(π′)−1(0)∆(π′′)−1(0)| − 2.

By iterating the argument we can assume w.l.o.g. that (π′)−1(0) = (π′′)−1(0).

2. In fact it is sufficient to treat the case where the permutation

π′′ ◦ (π′)−1 |Ω1 : Ω1 → Ω1

is a transposition, as the transpositions generate the symmetric group. So
there exist ωI 6= ωII ∈ Ω2 with

π′′(ω) =





π′(ωI), if ω = ωII

π′(ωII), if ω = ωI

π′(ω), otherwise,

and we choose ω̂ ∈ Ω2 so that π′(ω̂) = π′′(ω̂) = 0.

Defining ρ, ρ′′ ∈ S by

ρ′(ω) :=





π′(ωII), if ω = ω̂

0, if ω = ωII

π′(ω), otherwise

resp. ρ′′(ω) :=





π′′(ωI), if ω = ω̂

0, if ω = ωI

π′′(ω), otherwise,

π′ and ρ′ are covered by σ′ ∈ S and similarly π′′ and ρ′′ are covered by σ′′ ∈ S
with

σ′(ω) :=

{
π′(ωII), if ω = ω̂

π′(ω), otherwise
resp. σ′′(ω) :=

{
π′′(ωI), if ω = ω̂

π′′(ω), otherwise.

Now as π′(ωII) = π′′(ωI), both ρ′ and ρ′′ are covered by

τ ∈ S, τ(ω) :=





π′(ωII), if ω = ω̂

π′(ωI), if ω = ωII

π′(ω) otherwise.

This shows that the poset graph is connected. 2

P r o o f o f Th e o r em 4.8. To simplify notation, we set M := M(Ω1,Ω2), and
Mπ := Mπ(Ω1, Ω2) for π ∈ S.
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1. We have Mπ ⊂ M since for the elements of Mπ the characterisation of
Theorem 4.3 holds true. Furthermore for σ, π ∈ S with σ 6= π there exists
(ω2, ω1) ∈ graph(π) with (ω2, ω1) 6∈ graph(σ) or vice versa. Thus for p ∈ Mπ

we have p(ω1, ω2) > 0 but for p ∈ Mσ we have p(ω1, ω2) = 0 showing that
Mπ ∩Mσ = ∅.
Finally for p ∈ M by Theorem 4.3 there exists a surjective map π̃ : Ω2 → Ω1

with p(ω1, ω2) = 0 whenever π̃(ω2) 6= ω1. Given π̃, we construct π ∈ S by
setting

π(ω2) :=

{
π̃(ω2), if p(π̃(ω2), ω2) > 0

0, if p(π̃(ω2), ω2) = 0.

As by Theorem 4.3 we have
∑

ω2∈π̃−1(ω1)
p(ω1, ω2) = 1

n1
> 0, the function

π : Ω2 → Ω∗
1 so constructed has the property π(Ω2) ⊃ Ω1 making it an

element of S.

2. Given ω1 ∈ Ω1, the simplex of |π−1(ω1)| numbers p(ω1, ω2) > 0 with ω2 ∈
π−1(ω1) meeting

∑
ω2∈π−1(ω1)

p(ω1, ω2) = 1
n1

has dimension |π−1(ω1)| − 1,
implying the formula for dimMπ.

If dimMπ = l−n1, the surjective map π̂ : Ω̂2 → Ω1 with Ω̂2 := π−1(Ω1) ⊂ Ω2

and π̂ := π |Ω̂2
is defined on a subset Ω̂2 ⊂ Ω2 of size l. There are precisely(

n2
l

)
such subsets, and there are precisely n1!Sl,n1 such surjective maps from

Ω̂2 onto Ω1, see Aigner [3], Chapter 3.1.

(3) If n1 = n2 then S coincides with the set of bijections π : Ω2 → Ω1, and
|Mπ| = 1. Thus in this case M is not connected for n1 ≥ 2. If, however
n2 > n1, the poset S, seen as a graph, is connected.

The topological closure of Mπ is given by

Mπ =



p∈P(Ω1×Ω2) :

∑

ω2∈π−1(ω1)

p(ω1, ω2) =
1
n1

, p(ω1, ω2) = 0 if π(ω2) 6=ω1



 .

Thus Mπ =
⊎

σ¹πMσ. 2

P r o o f o f C o r o l l a r y 4.10. All statements directly follow from Theorem 4.3.
2

P r o o f o f Th e o r em 4.11. We choose a map φ = (φ1, . . . , φn) : ΩV → Rn

such that the points φ(ω), ω ∈ ΩV , are in general position; that is, each k elements
of φ(ΩV ) with k ≤ n + 1 are affinely independent. This property guarantees that
for each set Σ ⊂ ΩV , |Σ| = n, there exist real numbers a1, . . . , an, b such that

{
ω ∈ ΩV :

n∑

i=1

ai φi(ω) = b

}
= Σ (6.8)

holds. We consider the exponential family G∗ that is generated by c and

φ1, . . . , φn, φi φj (1 ≤ i ≤ j ≤ n).
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We have
dimG∗ ≤ n2 + 3n

2
.

Now let p be an element ofM(N×n). From Theorem 4.10 we know that |supp p| = n.
We prove that there exists a sequence in G∗ that converges to p. We choose a
sequence βm ↑ ∞ and real numbers a1, . . . , an, b satisfying (6.8) with Σ = supp p.
Then with

E(m) := −βm

(
n∑

i=1

ai φi − b

)2

,

the sequence expE(m)

∑
ω′∈ΩV

expE(m)(ω′)
∈ G∗

converges to p. 2

P r o o f o f Th e o r em 5.1. Using def. (5.2), we consider for A := {{1, N}, {2, N},
. . . , {N − 1, N}} ⊂ 2[N ] the linear subspace

ĨA ⊂ Î2

of pure pair interactions of the Nth unit with all other units. The exponential family
F∗ := exp(ĨA) ⊂ P(ΩV ) is of dimension

dim(F∗) = (nN − 1)
N−1∑

i=1

(ni − 1),

as asserted in Theorem 5.1.
Given a maximizer p ∈ M(Ω1, . . . , ΩN ), we now construct a sequence of proba-

bility distributions
q(m) := exp(f̃ (m)) ∈ F∗ (m ∈ N)

and show that limm→∞ q(m) = p.
Here the functions f̃ (m) ∈ ĨA are defined as the orthogonal projections onto ĨA

of f (m) ∈ I(2)

f (m)(ω) :=
N−1∏

i=1

δωi,πi(ωN )

m + ln
(
p(N)(ωN ) + 1/m

)

N − 1
(ω ∈ ΩV ).

For ω, ω′ ∈ supp(p)

q(m)(ω)
q(m)(ω′)

= exp
([

m + ln
(

p(N)(ωN ) +
1
m

)]
−

[
m + ln

(
p(N)(ω′N ) +

1
m

)])

=
p(N)(ωN ) + 1

m

p(N)(ω′N ) + 1
m

m→∞−→ p(N)(ωN )
p(N)(ω′N )

in accordance with (4.3).
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On the other hand if ω′ ∈ supp(p) but ω 6∈ supp(p), then there is an i ∈
{1, . . . , N − 1} with ωN 6= π−1

i (ωi) or p(N)(ωN ) = 0. In both cases

lim
m→∞

q(m)(ω)
q(m)(ω′)

= 0,

again in accordance with (4.3). As the p(m) are probability distributions, we have
shown that limm→∞ q(m) = p. 2

(Received September 26, 2005.)
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