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In this paper, a necessity measure optimization model of linear programming problems
with fuzzy oblique vectors is discussed. It is shown that the problems are reduced to linear
fractional programming problems. Utilizing a special structure of the reduced problem, we
propose a solution algorithm based on Bender’s decomposition. A numerical example is
given.
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1. INTRODUCTION

Fuzzy linear programming has been developed under an implicit assumption that
all uncertain coefficients are non-interactive one another. This assumption makes
the reduced problem very tractable. The tractability can be seen as one of advan-
tages of fuzzy linear programming approaches. However, it is observed that in a
simple problem, such as a portfolio selection problem, solutions of models are of-
ten intuitively unacceptable because of the implicit assumption (see Inuiguchi and
Tanino [5]). This implies that the non-interaction assumption is not sufficient to
model all real world problems.

From this point of view, it is an open problem to solve fuzzy linear program-
ming problems with interactive uncertain variables. However, generally, the reduced
problem becomes intractable because it often loses the linearity and sometimes even
the convexity. In order to overcome such intractableness, we restrict our consid-
erations into special models of interaction so that the reduced problems preserve
the tractability which is the advantage of fuzzy programming approach. Several
attempts [1, 3, 4, 6, 9] have been done. Among them, the results of linear pro-
gramming (LP) problems with fuzzy polytopes are arranged in Table 1. Results in
oblique fuzzy vector and general fuzzy polytope cases of Table 1 are obtained when
necessity measures are adopted.
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Table 1. Results in linear programming with fuzzy polytopes.

Fractile Optimization Modality Optimization

non-interactive
fuzzy numbers – LP problem

– linear fractional program-
ming problem
under L-L fuzzy numbers

– LP + bisection method in
general cases

oblique fuzzy
vectors

– LP problem
– Bender’s decomposition open problem

general fuzzy
polytope

– semi-infinite LP problem
– relaxation procedure

– semi-infinite program-
ming problem

– relaxation procedure +
bisection method

A general fuzzy polytope is a fuzzy set whose h-level sets are all polytopes. An
oblique fuzzy vector is a fuzzy vector which is expressed by an obliquity matrix
and non-interactive fuzzy numbers. Those models of interactive fuzzy numbers were
proposed by Inuiguchi et al. [1, 3, 7]. Inuiguchi et al. [3] proposed oblique fuzzy
vectors to treat the interaction among uncertain variables. They showed that the
necessity fractile optimization models of LP problems with oblique fuzzy vectors
can be reduced to LP problems with dual block angular structures. A solution
algorithm based on Bender’s decomposition method was proposed. Inuiguchi and
Tanino [7] extended the results to LP problems with general fuzzy polytopes. They
showed that the necessity fractile optimization models can be reduced to semi-infinite
LP problems. A solution algorithm based on a relaxation procedure is proposed.
Inuiguchi [1] has discussed the necessity measure optimization models of LP problems
with general fuzzy polytopes. He has shown that the problem can be reduced to
semi-infinite programming problems. A solution algorithm based on a bisection
method and a relaxation procedure has been proposed. In the algorithm, a bisection
method and a relaxation procedure converge simultaneously.

However, there is no discussion on necessity measure optimization models of LP
problems with oblique fuzzy vectors. We discuss this open problem in this paper.
Especially, we investigate the case when oblique fuzzy vectors are defined by L-L
fuzzy numbers and clarify whether the solution procedure becomes simpler than
general cases or not.

This paper is organized as follows. In the next section, we describe the problem
treated in this paper. In Section 3, we discuss the reduction of the formulated
problems. Since the reduced problem has a special structure, a solution algorithm
based on Bender’s decomposition is given in Section 4. A numerical example is given
in Section 5. In the last section, the results and future topics are described.
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Fig. 1. A fuzzy constraint.

2. PROBLEM STATEMENT

Let us consider the following LP problem with oblique fuzzy vectors [3]:

maximize aT
0 x,

subject to aT
i x <∼ gi, i = 1, 2, . . . ,m,
Qx ≤ p,

(1)

where x = (x1, x2, . . . , xn)T is a decision variable vector. Q is a q × n constant
crisp matrix and p = (p1, p2, . . . , pq)T is a constant crisp vector. ai, i = 0, 1, . . . ,m
are uncertain parameters that take values in ranges given by oblique fuzzy vectors
Ai, i = 0, 1, . . . ,m, respectively. Notation r <∼ gi stands for ‘r is substantially
smaller than gi’ and is represented by a fuzzy constraint Ci. It is also assumed
that each Ci has an upper semi-continuous non-increasing membership function µCi
such that µCi(gi) = 1. A fuzzy constraint Ci is depicted in Figure 1. Note that a
crisp constraint aT

i x ≤ gi is a special case when a fuzzy constraint Ci is an interval
(−∞, gi].

We assume that oblique fuzzy vectors Ai, i = 0, 1, . . . ,m have obliquity matrices
Di, i = 1, 2, . . . ,m and non-interactive L-L fuzzy numbersBij = (bLij , b

R
ij , β

L
ij , β

R
ij)LiLi ,

i = 0, 1, . . . ,m, j = 1, 2, . . . , n. Then an oblique fuzzy vector Ai is characterized by
a membership function defined by (see [3])

µAi(r) = min
j=1,2,...,n

µBij (d
T
ijr), (2)

where dT
ij are jth row of Di and an obliquity matrix is nonsingular. An L-L fuzzy

number Bij = (bLij , b
R
ij , β

L
ij , β

R
ij)LiLi has the following membership function;

µBij (r) =





Li

(
bLij − r
βL
ij

)
if r < bLij ,

1 if bLij ≤ r ≤ bRij ,

Li

(
r − bRij
βR
ij

)
if r > bRij ,

(3)
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Fig. 2. An oblique fuzzy vector (n = 2).

where we assume bLij ≤ bRij , β
L
ij > 0 and βR

ij > 0. Li : [0,+∞)→ [0, 1] is a reference
function such that

(L1) Li(0) = 1,

(L2) Li is upper semi-continuous,

(L3) Li is non-increasing,

(L4) limr→+∞ Li(r) = 0.

An oblique fuzzy vector Ai with n = 2 is depicted in Figure 2. In what follows,
‘oblique fuzzy vector’ is abbreviated to OFV.

The range aT
i x may take is given by a fuzzy set Yi(x) with a membership func-

tion

µYi(x)(y) = sup
r:rTx=y

µAi(r). (4)

Since Ai is an OFV with non-interactive L-L fuzzy numbers Bij , j = 1, 2, . . . , n,
by the discussion in [3], Yi(x) is also an L-L fuzzy number (yL

i (x), yR
i (x), γL

i (x),
γR
i (x))LiLi with

yL
i (x) =

∑

j:kij(x)≥0

bLijkij(x) +
∑

j:kij(x)<0

bRijkij(x), (5)

yR
i (x) =

∑

j:kij(x)≥0

bRijkij(x) +
∑

j:kij(x)<0

bLijkij(x), (6)

γL
i (x) =

∑

j:kij(x)≥0

βL
ijkij(x)−

∑

j:kij(x)<0

βR
ijkij(x), (7)

γR
i (x) =

∑

j:kij(x)≥0

βR
ijkij(x)−

∑

j:kij(x)<0

βL
ijkij(x), (8)

and kij(x) is defined by

kij(x) =
n∑

l=1

d∗iljxl. (9)
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Fig. 3. Necessity measure.

d∗ilj is the (l, j) component of D−1
i . Consider a strong h-level set (Yi(x))h of Yi(x),

i. e., (Yi(x))h = {y ∈ R | µYi(x)(y) > h}. Then, its closure cl(Yi(x))h is obtained as

cl(Yi(x))h =
[
yL
i (x)− L#

i (h)γL
i (x), yR

i (x) + L#
i (h)γR

i (x)
]
, (10)

where we define L#
i (h) = sup{r ∈ R | Li(r) > h}.

Based on a necessity measure optimization model [2], Problem (1) can be formu-
lated as

maximize NY0(x)([z0,+∞)),
subject to NYi(x)(Ci) ≥ hi, i = 1, 2, . . . ,m,

Qx ≤ p,
(11)

where NA(B) = infr max(1 − µA(r), µB(r)) is a necessity measure of a fuzzy set B
under a fuzzy set A (see Figure 3). A constant real number z0 is a target objective
function value specified by the decision maker. hi ∈ (0, 1], i = 1, 2, . . . ,m are
constants determined by the decision maker. The higher hi is, the more certain x
satisfies the constraint aT

i x <∼ gi.
Let [A]h and (A)h be an h-level set of A and a strong h-level set of A, i. e.,

[A]h = {r | µA(r) ≥ h} and (A)h = {r | µA(r) > h}. Since we have

NA(B) ≥ h if and only if (A)1−h ⊆ [B]h, (12)

Problem (11) is reduced to

maximize h,

subject to inf(Y0(x))1−h ≥ z0,

sup(Yi(x))1−hi ≤ sup[Ci]hi , i = 1, 2, . . . ,m,
Qx ≤ p.

(13)
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From (10), this problem is rewritten as

maximize h,

subject to yL
i (x)− L#

i (1− h)γL
i (x) ≥ z0,

yR
i (x) + L#

i (1− hi)γR
i (x) ≤ ci(hi), i = 1, 2, . . . ,m,

Qx ≤ p,

(14)

where, for convenience, we define ci(hi) = sup[Ci]hi .

The first constraint of Problem (14) is equivalent to

yL
0 (x)− z0

γL
0 (x)

≥ L#
0 (1− h). (15)

Because L is non-increasing, maximizing h is equivalent to maximizing L#(1 − h),
Problem (14) is reduced to

minimize
yL

0 (x)− z0

γL
0 (x)

,

subject to yR
i (x) + L#

i (1− hi)γR
i (x) ≤ ci(hi), i = 1, 2, . . . ,m,

Qx ≤ p.

(16)

By (5) – (8), this problem can be rewritten as

maximize

∑

j:k0j(x)≥0

bL0jk0j(x) +
∑

j:k0j(x)<0

bR0jk0j(x)− z0

∑

j:k0j(x)≥0

βL
0jk0j(x)−

∑

j:k0j(x)<0

βR
0jk0j(x)

,

subject to
∑

j:kij(x)≥0

b̄Rij(1− hi)kij(x) +
∑

j:kij(x)<0

b̄Lij(1− hi)kij(x) ≤ ci(hi),

i = 1, 2, . . . ,m,
Qx ≤ p,

(17)

where we define b̄Lij(h) = bLij − βL
ijL

#(h), b̄Rij(h) = bRij − βR
ijL

#(h). Let ki(x) =

(ki1(x), ki2(x), . . . , kin(x))T, i = 0, 1, . . . ,m. Then we have ki(x) = D−1
i

T
x, i =

0, 1, . . . ,m. Erasing x and ki(x), i = 0, 1, . . . ,m by introduction of deviational
variable vectors y+

i , y−i ≥ 0 such that ki(x) = y+ − y−i and y+T
y− = 0, we

can rewrite Problem (17) as the following problem with complementary conditions
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y+
i

T
y−i = 0, i = 0, 1, . . . ,m:

maximize

n∑

j=1

bL0jy
+
0j −

n∑

j=1

bR0jy
−
0j − z0

n∑

j=1

βL
0jy

+
0j +

n∑

j=1

βR
0jy
−
0j

,

subject to
n∑

j=1

b̄Rij(1− hi)y+
ij −

n∑

j=1

b̄Lij(1− hi)y−ij ≤ ci(hi), i = 1, 2, . . . ,m,

DT
i (y+

i − y−i ) = DT
0 (y+

0 − y−0 ), i = 1, 2, . . . ,m,

QDT
0 (y+

0 − y−0 ) ≤ p,
y+
i ≥ 0, y−i ≥ 0, i = 0, 1, . . . ,m.

(18)

We can obtain an optimal solution of Problem (18) satisfying complementary
conditions y+

i

T
y−i = 0, i = 0, 1, . . . ,m by a certain modification of an arbitrary

optimal solution of Problem (18) as shown in the following theorem.

Theorem. Assume that the optimal value of Problem (17) is non-negative. An
optimal solution of Problem (18) satisfying complementary conditions y+

i

T
y−i = 0,

i = 0, 1, . . . ,m can be obtained from any optimal solution of Problem (18).

P r o o f . Let ŷ+
i and ŷ−i , i = 0, 1, . . . ,m be an arbitrary optimal solution to

Problem (18). Define ȳ+
i = (ȳ+

1i, ȳ
+
2i, . . . , ȳ

+
in)T and ȳ−i = (ȳ−1i, ȳ

−
2i, . . . , ȳ

−
in)T by ȳ+

ij =
max(0, ŷ+

ij − ŷ−ij) and ȳ−ij = max(0, ŷ−ij − ŷ+
ij), i = 0, 1, . . . ,m, j = 1, 2, . . . , n. Then,

from ȳ+
ij ≤ ŷ+

ij , ȳ
−
ij ≤ ŷ−ij , b̄Lij(1−hi) ≤ b̄Rij(1−hi), i = 1, 2, . . . ,m, j = 1, 2, . . . , n and

ŷ+
i − ŷ−i = ȳ+

i − ȳ−i , i = 0, 1, . . . , n, we know ȳ+
i and ȳ−i , i = 0, 1, . . . ,m can be a

feasible solution. Moreover, from bL0 ≤ bR0 , βL
0j > 0 and βR

0j > 0, we have

n∑

j=1

bL0j ŷ
+
0j −

n∑

j=1

bR0j ŷ
−
0j − z0

n∑

j=1

βL
0j ŷ

+
0j +

n∑

j=1

βR
0j ŷ
−
0j

≤

n∑

j=1

bL0j ȳ
+
0j −

n∑

j=1

bR0j ȳ
−
0j − z0

n∑

j=1

βL
0j ȳ

+
0j +

n∑

j=1

βR
0j ȳ
−
0j

.

Hence, we obtain another optimal solution composed of ȳ+
i and ȳ−i , i = 0, 1, . . . ,m

which satisfies the complementary conditions. ¤

This theorem implies that we can obtain an optimal solution of necessity measure
optimization problem (11) by solving Problem (18). If the optimal value of Problem
(18) is negative, the optimal value of Problem (11) is zero. In this case, the value
z0 is improper and should be replaced with a smaller value. Problem (18) is a
linear fractional programming problem. Applying Charnes and Cooper’s reduction,
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Problem (18) is reduced to the following LP problem:

maximize
n∑

j=1

bL0jv
+
0j −

n∑

j=1

bR0jv
−
0j − z0t,

subject to
n∑

j=1

βL
0jv

+
0j +

n∑

j=1

βR
0jv
−
0j = 1,

n∑

j=1

b̄Rij(1− hi)v+
ij −

n∑

j=1

b̄Lij(1− hi)v−ij ≤ ci(hi)t, i = 1, 2, . . . ,m,

DT
i (v+

i − v−i ) = DT
0 (v+

0 − v−0 ), i = 1, 2, . . . ,m,

QDT
0 (v+

0 − v−0 ) ≤ pt,
t ≥ 0, v+

i ≥ 0, v−i ≥ 0, i = 0, 1, . . . ,m.
(19)

Let v̂+
i , v̂−i , i = 0, 1, . . . ,m and t̂ be an optimal solution to Problem (19). Then an

optimal solution of Problem (11) is obtained as

x̂ =
DT

0 (v̂+
i − v̂−i )
t̂

. (20)

3. A SOLUTION ALGORITHM

Problem (19) has a special structure called a dual block angular structure [8]. Thus
Problem (19) can be solved by the following algorithm based on Bender’s decompo-
sition.

Algorithm.

Step 1. Set s = 0. Select x0 such that Qx0 ≤ p, arbitrarily. The initial solution to
Problem (19) is obtained by

y0 = D−1
0

T
xs, t0 =

1∑

j:y0j≥0

βL
0jy0j −

∑

j:y0j<0

βR
0jy0j

,

v+
0j

0
= t0 max(0, y0j), v−0j

0
= t0 max(0,−y0j), j = 1, 2, . . . , n,

where y0j , v+
0j

0
and v−0j

0
are the jth components of y0, v+

0

0
and v−0

0
, respec-

tively.

Step 2. Calculate

vi = D−1
i

T
DT

0 (v+
0

s − v−0
s
), i = 0, 1, . . . ,m,

bi =
∑

j:vij≥0

b̄Rij(1− hi)vij +
∑

j:vij<0

b̄Lij(1− hi)vij , i = 1, 2, . . . ,m,

where vij is the jth element of vi.
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Step 3. If the following formula is satisfied, terminate the algorithm:

s > 0 and bi ≤ ci(hi)ts, i = 1, 2, . . . ,m.

In this case, v+
0

s
, v−0

s
and ts compose an optimal solution to Problem (11).

Step 4. Update s = s+1. Generate the following linear functions of v = (v1, v2, . . . , vn)T:

fis(v) =
n∑

l=1

( ∑

j:vij≥0

b̄Rij(1− hi)d∗ilj +
∑

j:vij<0

b̄Lij(1− hi)d∗ilj

)
vl,

i = 1, 2, . . . ,m. (21)

Step 5. Solve the following LP problem:

maximize
n∑

j=1

bL0jv
+
0j −

n∑

j=1

bR0jv
−
0j − z0t,

subject to
n∑

j=1

βL
0jv

+
0j +

n∑

j=1

βR
0jv
−
0j = 1,

fij(DT
0 (v+

0 − v−0 )) ≤ ci(hi)t, i = 1, . . . ,m, j = 1, . . . , s,

QDT
0 (v+

0 − v−0 ) ≤ pt,

t ≥ 0, v+
0 ≥ 0, v−0 ≥ 0.

(22)

Let v+
0

s
, v−0

s
and ts be the obtained optimal solution. If the optimal value of

Problem (22) is negative, terminate the algorithm and z0 should be changed
with a smaller value. Otherwise, return to Step 2.

4. A NUMERICAL EXAMPLE

As an example, let us consider Problem (1) with the following parameters:

n = 2, m = 3, q = 2, z0 = 25, g1 = 20, g2 = 14, g3 = 24, Q =
(
−1 0

0 −1

)
,

D0 =
(

1 −1
2 3

)
, D1 =

(
1 2
2 3

)
, D2 =

(
1 2
−1 3

)
, D3 =

(
2 1
1 1

)
,

B01 = (1, 1, 1, 1)LL, B02 = (12, 12, 3, 3)LL, B11 = (4, 4, 0.2, 0.2)LL,

B12 = (7, 7, 0.1, 0.1)LL, B21 = (3, 3, 0.5, 0.5)LL, B22 = (2, 2, 1, 1)LL,

B31 = (4, 4, 0.2, 0.2)LL, B32 = (3, 3, 0.1, 0.1)LL, L(r) = max(1− r, 0).
(23)
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The membership functions of fuzzy constraints are defined by

µCi(r) =





1, if r ≤ gi,
1− r − gi

4
, if gi < r ≤ gi + 4,

0, if r > gi + 4,

i = 1, 2, 3. (24)

Solving the necessity measure optimization model with hi = 0.4, i = 1, 2, 3 and the
initial solution (1, 4)T, the algorithm terminates at the third iteration. Then we
obtain an optimal solution as

x̂ =
DT

0 (v+
0

2 − v−0
2
)

t2
= (7.770, 3.330)T. (25)

The solution procedure is shown in Table 2.

Table 2. The solution procedure in the numerical example.

Step 1. s = 0, x0 = (1, 2)T: y0 = (−1, 1)T, t0 = 1, v+
0

0
= (0, 1)T, v−0

0
=

(−1, 0)T.

Step 2. v1 = (5,−2)T, v2 = (1.4, 0.4)T, v3 = (−3, 7)T, b1 = 6.72, b2 = 5.66,
b3 = 9.78.

Step 3. s = 0. Continue.

Step 4. s = 1. f11(v) = 1.52v1 + 1.3v2, f21(v) = 0.94v1 + 1.18v2 and f31(x) =
0.82v1 + 2.24v2.

Step 5. maximize v+
01 + 12v+

02 − v−01 − 12v−02 − 25t,

subject to v+
01 + 3v+

02 + v−01 + 3v−02 = 1,

0.22v+
01 + 6.94v+

02 − 0.22v−01 − 6.94v−02 ≤ 21.6t,

−0.24v+
01 + 5.42v+

02 + 0.24v−01 − 5.42v−02 ≤ 15.6t,

−1.42v+
01 + 8.36v+

02 + 1.42v−01 − 8.36v−02 ≤ 25.6t,

−v+
01 + v+

02 + v−01 − v−02 ≤ 0,

−2v+
01 + 3v+

02 + 2v−01 − 3v−02 ≤ 0,

v+
01, v

+
02, v

−
01, v

−
02, t ≥ 0.

t1 = 0.0748, v+
0

1
= (0.333, 0.222)T, v−0

1
= (0, 0)T.

Step 2. v1 = (−1.667, 1.222)T, v2 = (0.533,−0.244)T, v3 = (0.444, 0.111)T, b1 =
2.162, b2 = 1.418, b3 = 1.504.
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Step 3. c1(h1)t1 = 1.616 < b1, c2(h2)t2 = 1.167 < b2, c3(h3)t1 = 1.616 > b3.
Continue.

Step 4. s = 2. f12(v) = 2.58v1 + 0.7v2, f22(v) = 1.42v1 + 0.94v2 and f32(x) =
1.18v1 + 1.76v2.

Step 5. maximize v+
01 + 12v+

02 − v−01 − 12v−02 − 25t,

subject to v+
01 + 3v+

02 + v−01 + 3v−02 = 1,

0.22v+
01 + 6.94v+

02 − 0.22v−01 − 6.94v−02 ≤ 21.6t,

−0.24v+
01 + 5.42v+

02 + 0.24v−01 − 5.42v−02 ≤ 15.6t,

−1.42v+
01 + 8.36v+

02 + 1.42v−01 − 8.36v−02 ≤ 25.6t,

1.78v+
01 + 7.06v+

02 − 1.78v−01 − 7.06v−02 ≤ 21.6t,

0.48v+
01 + 5.66v+

02 − 0.48v−01 − 5.66v−02 ≤ 15.6t,

−0.58v+
01 + 7.64v+

02 + 0.58v−01 − 7.64v−02 ≤ 25.6t,

−v+
01 + v+

02 + v−01 − v−02 ≤ 0,

−2v+
01 + 3v+

02 + 2v−01 − 3v−02 ≤ 0,

v+
01, v

+
02, v

−
01, v

−
02, t ≥ 0.

t2 = 0.100, v+
0

2
= (0.333, 0.222)T, v−0

2
= (0, 0)T.

Step 2. v1 = (−1.667, 1.222)T, v2 = (0.533,−0.244)T, v3 = (0.444, 0.111)T, b1 =
2.162, b2 = 1.418, b3 = 1.504.

Step 3. c1(h1)t2 = 2.162 > b1, c2(h2)t2 = 1.562 > b2, c3(h3)t2 = 2.563 > b3.
Terminate.

5. CONCLUDING REMARKS

In this paper, we show that a necessity measure optimization model of an LP problem
with OFVs is reduced to an LP problem with a dual block angular structure if the
OFV of the objective function is defined by L-L fuzzy numbers. A solution algorithm
based on Bender’s decomposition is given. Due to the specialty of the problem,
the proposed algorithm requires much less computational effort than the algorithm
proposed in Inuiguchi [1] for a more general problem. Therefore, the open problem
in Table 1 is solved when the OFV of objective function is defined by L-L fuzzy
numbers, and the solution method is ‘linear fractional programming’ and ‘Bender’s
decomposition’.

However, if the OFV of the objective function is not defined by L-L fuzzy num-
bers, the necessity measure optimization models of LP problems with OFVs are not
always solved by the proposed algorithm because of the nonlinearity of the reduced
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problems. We should introduce the bisection method in this case. The solution
algorithm in this case will be similar to the one proposed in Inuiguchi [1].

We have not yet discussed symmetric models [2] of linear programming problems
with OFVs as well as with a fuzzy polytope. The discussion about symmetric mod-
els [10] which treat an objective function as a constraint by introducing the target
value will be one of our future topics.
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