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The asymptotic behaviour of universal fuzzy measures is investigated in the present
paper. For each universal fuzzy measure a class of fuzzy measures preserving some natural
properties is defined by means of convergence with respect to ultrafilters.
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1. INTRODUCTION

Universal fuzzy measures were introduced in [8] and further studied in [10]. Let us
recall some notation and definitions. By N = {1, 2, 3, . . . } we denote the set of all
positive integers. For a set A we denote by |A| the cardinality of A and by 2A the set
of all subsets of A. For every n ∈ N and A ⊂ N let us denote A(n) = A∩{1, 2, . . . , n},
especially N(n) = {1, 2, . . . , n} .

Definition 1. A fuzzy measure on N(n) is any mapping µn : 2N(n) → [0, 1] such
that

(i) µn(∅) = 0, µn(N(n)) = 1,

(ii) µn(A) ≤ µn(B) for all A ⊂ B ⊂ N(n).

Definition 2. Universal fuzzy measure (shortly by UFM) is a system of fuzzy
measures µ∗ = (µn)n∈N defined on measurable spaces (N(n), 2N(n))n∈N.

Definition 3. A UFM (µn)n∈N is called regular, if µn(A) ≥ µn+k(A) for all A ⊂
N(n) and k ∈ N.

Definition 4. Fuzzy measure (shortly by FM) is any monotone set function µ : 2N →
[0,∞] with µ(∅) = 0.

Special interest is focused mainly on those UFM (FM) possessing some natural
additional properties. The list of some follows, for more of them see for example [10].
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A UFM (µn)n∈N possesses a particular property if and only if all µn; n = 1, 2, . . .
have it. A FM possesses a particular property if and only if it holds in the range of
all subsets of N.

Definition 5. A fuzzy measure µn is called

(i) additive, if µn(A ∪B) = µn(A) + µn(B) for all pairs of disjoint A,B ⊂ N(n),

(ii) sub-additive, if µn(A ∪B) ≤ µn(A) + µn(B) for all A,B ⊂ N(n),

(iii) super-additive, if µn(A ∪ B) ≥ µn(A) + µn(B) for all pairs of disjoint A,B ⊂
N(n),

(iv) k-additive, if µn
(⋃k+1

i=1 Ai

)
=

∑
I⊂6={1,2,...,k+1}(−1)k−|I|µn

(⋃
i∈I Ai

)
for ar-

bitrary system of k + 1 disjoint sets A1, A2, . . . Ak+1 ⊂ N(n) and k ∈ N,

(v) symmetric, if µn(A) = µn(B) for all A,B ⊂ N(n) such that |A| = |B|.

Notice that every additive fuzzy measure is also sub-additive and super-additive.
There are several means by which universal fuzzy measures can be defined (see

e. g. [10]), one of them is that using weight functions. A weight function is any
function w : N → (0,∞) and a UFM defined by a particular weight function w is

given by µn(A) =
P
a∈A(n)

w(a)
P
k∈N(n)

w(k) .

Notice that there is a significant difference between both, concept of fuzzy mea-
sures and that of universal fuzzy measures. While a UFM attaches to every finite
subset of N an infinite sequence of numbers, a FM attaches to every subset of N a
unique number. On the other hand, it is evident that both concepts FM and UFM
are intimately related. A natural question arises to investigate these relations in
more details.

In [10] it is shown that to any given locally finite1 FM µ with µ({1}) > 0 one
can attach in a natural way a regular UFM (µn)n∈N defined by µn(A) = µ(A)

µ(N(n))
for

n ∈ N and A ⊂ N(n). Of course, there are also another possibilities how to produce
a universal fuzzy measure from the given fuzzy measure. The purpose of the present
paper is to discuss the reverse process, i. e. how fuzzy measures can be produced
from a given universal fuzzy measure.

2. LOWER AND UPPER ASYMPTOTIC FUZZY MEASURES

In this section we will consider two natural fuzzy measures determined by a given
universal fuzzy measure. The fact that both are fuzzy measures is immediate.

1i. e. µ(A) is finite for every finite A ⊂ N
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Definition 6. Let µ∗ = (µn)n∈N be a given UFM. Lower and upper asymptotic
fuzzy measures determined by µ∗ are given by

µ∗(A) = lim inf
n→∞

µn(A(n))
µn(N(n))

and µ∗(A) = lim sup
n→∞

µn(A(n))
µn(N(n))

for A ⊂ N,

respectively.

Lower and upper asymptotic fuzzy measures determined by universal fuzzy mea-
sures defined by means of weight functions were studied in number theory (see
e. g. [3, 4]) and they are called lower and upper weighted densities. The most impor-
tant among them are the lower and upper asymptotic densities which are defined by
the weight function w(n) = 1; n ∈ N and the lower and upper logarithmic densities
defined by the weight function w(n) = 1

n ; n ∈ N.
Unfortunately, the acceptance either of the lower or the upper asymptotic fuzzy

measure as a natural extension of the original universal fuzzy measure can not be
completely satisfactory. One reason is, as the following example shows, the fact that
none of these FM shares most of natural properties of the original UFM.

Example 1. For n ∈ N and A ⊂ N(n) denote dn(A) = |A|
n . It can be easily seen

that d∗ = (dn)n∈N is a universal fuzzy measure possessing all properties (i) – (v). For
d∗ and d∗ we have the following.

(i*) Define A =
⋃
n∈N((2n)!, (2n+ 1)!] ∩ N and B = N−A. Then we have

d∗(A) = d∗(B) = 0 and d∗(A) = d∗(B) = 1

and, as d∗(N) = d∗(N) = 1, none of d∗ and d∗ is additive.

(ii*) By elementary properties of lim sup, d∗ is sub-additive. On the other hand,
the example in part (i*) shows that d∗ is not sub-additive.

(iii*) By elementary properties of lim inf, d∗ is super-additive. On the other hand,
the example in part (i*) shows that d∗ is not super-additive.

(iv*) It is a routine job to verify k-additivity of each dn. On the other hand, we will
show that neither d∗ nor d∗ is k-additive. Put

Am =
∞⋃

n=0

((n(k + 1) +m)!, (n(k + 1) +m+ 1)!] ∩ N; m = 1, 2, . . . k + 1.

One can easily verify that equalities d∗
(⋃

i∈I Ai
)

= 0, d∗
(⋃

i∈I Ai
)

= 1 hold
for every choice of nonempty I ⊂6= {1, 2, . . . , k+ 1}. Taking into account that⋃k+1
i=1 Ai = N− {1}, we have

d∗
(
k+1⋃

i=1

Ai

)
= 1 6= 0 =

∑

I⊂6={1,2,...,k+1}
(−1)k−|I| d∗

(⋃

i∈I
Ai

)
,
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thus d∗ is not k-additive. To see that d∗ is not k-additive, notice that
d∗

(⋃k+1
i=1 Ai

)
= 1 and, on the other hand,

∑

I⊂6={1,2,...,k+1}
(−1)k−|I| d∗

(⋃

i∈I
Ai

)
=

k∑

j=1

∑

I⊂{1,2,...,k+1},|I|=j
(−1)k−j

=
k∑

j=1

(−1)k−j
(
k + 1
j

)
= −

k+1∑

j=0

(−1)k+1−j
(
k + 1
j

)
+ 1 + (−1)k+1

= 1 + (−1)k+1 6= 1.

(v*) The set B = {2n; n ∈ N} has the same cardinality as the set N. On the other
hand we have

d∗(B) = d∗(B) = 0 and d∗(N) = d∗(N) = 1,

thus none of d∗ and d∗ is symmetric.

The main point why, in general, both µ∗ and µ∗ fail to share nice properties of
original UFM consists in the fact that, although both µ∗(A) and µ∗(A) are limit
points of the sequence (µn(A))n∈N for every A ⊂ N, the sequences of indices with
respect to which these particular limit points are achieved, depend on A substan-
tially. Consequently, one can not apply the standard rules for calculation of limits
to derive required properties. Thus, to produce a FM preserving properties of the
original UFM we need some common base of indices for which the corresponding
subsequences of (µn(A))n∈N converge for all A ⊂ N. The way how to do this provides
a convergence with respect to ultrafilters.

3. ASYMPTOTIC FUZZY MEASURES
WITH RESPECT TO ULTRAFILTERS

First, let us briefly recall some basic notions and properties of filters and filter
convergence.

Definition 7. A nonempty class of subsets F of N is called filter on N if it does
not contain the empty set and it is closed with respect to supersets and with respect
to finite intersections, i. e.

A ∈ F and A ⊂ B imply B ∈ F (1)

and
A,B ∈ F implies A ∩B ∈ F . (2)

Notice that, by definition of filter, N ∈ F for every filter F . A filter is called
ultrafilter if it is maximal with respect to ⊂, i. e. if it is contained properly in no
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filter. An ultrafilter U is called fixed if
⋂
A∈U A 6= ∅, otherwise, it is called free or

uniform.

Recall that ultrafilters are characterized as filters F possessing property

if
n⋃

k=1

Ak ∈ F then Ak ∈ F for at least one k = 1, 2, . . . , n. (3)

Notice that every fixed ultrafilter is of the form U (n) = {A ⊂ N; n ∈ A} for some
fixed n ∈ N. Consequently, there are exactly countably many fixed ultrafilters.
On the other hand an ultrafilter is free if and only if it contains no finite set. A
nontrivial result by Posṕı̌sil [9] says that there are exactly 22ℵ0 (i. e. more than
continuum) free ultrafilters (see also [2], Corollary 3.6.12). The set of all ultrafilters
is denoted by βN. Here we assume that N is naturally embedded in βN via mapping
n→ U (n). In order to understand better the concept of convergence with respect to
a given filter, let us briefly add some more information on βN. It can be endowed
with topology whose base of open (and, at the same time closed) sets is the class
{A = {U ∈ βN; A ∈ U}; A ⊂ N}. The corresponding topological space is compact
and it is called the Stone-Čech compactification of N. Notice that N is an open dense
subset of βN, consequently βN∗ = βN − N, the set off all free ultrafilters is closed
(consequently compact) subset of βN. Also notice that given any filter F , the set

F =
⋂

F∈F
F =

⋂

F∈F
{U ∈ βN; F ∈ U} = {U ∈ βN; F ⊂ U}

is closed in βN.
The following proposition presents an important property of βN and it can be

found in the most of standard textbooks in general topology, e. g. in [2].

Proposition 1. Every sequence of numbers f : N→ [0, 1] can be uniquely extended
to a continuous function f̃ : βN→ [0, 1].

Let us notice that the proposition holds also for every bounded sequence (see
e. g. [2], Corollary 3.6.3).

Definition 8. We say that a sequence of real numbers (an)n∈N is convergent with
respect to a filter F (briefly F-convergent) to a number L if

∀ ε > 0 Aε = {n ∈ N; |an − L| < ε} ∈ F .

In this case we write F-lim an = L.

This kind of convergence can be equivalently defined in terms of dual ideal
I(F) = {N−F ; F ∈ F} and complementary sets N−Aε, it is called I-convergence
(see e. g. [6]). Notice that the usual convergence of sequences is equivalent to the
convergence with respect to the filter C = {A ⊂ N; N−A is finite} of all cofinite sets.
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In the case of a convergent sequence f the extension f̃ , referred in Proposition 1,
is constant on whole space βN∗. In general, a sequence f converges to a number L
with respect to a filter F if and only if F ⊂ f̃−1(L), i. e. f̃ is constantly equal to L
on the whole set F . Thus we have:

a sequence f is F-convergent if and only if f̃ is constant on F .

If F is not ultrafilter then F contains at least two points, by separation axioms
and using density of N in βN one can find a sequence f whose extension f̃ is not
constant on F and, consequently, f is not F-convergent. On the other hand, if F
is ultrafilter, F = {F} and, as every function is constant on one point set, every
sequence is F-convergent. We obtain an important property of ultrafilters (see
e. g. [1], Theorem 8.27).

Proposition 2. For every ultrafilter U on N and every bounded sequence f of real
numbers U-lim f exists.

Definition 9. Let µ∗ = (µn)n∈N be a universal fuzzy measure and U an ultrafilter
on N. The fuzzy measure µ∗U defined by

µ∗U (A) = U-limµn(A(n)); A ⊂ N

is called the asymptotic fuzzy measure (shortly by AFM) with respect to U deter-
mined by UFM µ∗ or U-AFM determined by UFM µ∗.

Now we are going to show that AFM with respect to an ultrafilter preserves some
kind of properties possessing by UFM µ∗. First we define some classes of properties of
UFM. Suppose that positive integers p and m and a continuous function F : Rp → R
are given. Let

Sn ⊂
(
2N(n)

)m
; n = 1, 2, . . . and S ⊂

(
2N

)m

and
ϕnk : Sn → 2N(n) , ϕk : S → 2N; n = 1, 2, . . . , k = 1, 2, . . . , p

be defined so that the conditions

If (A1, A2, . . . , Am) ∈ S then (A1(n), A2(n), . . . , Am(n)) ∈ Sn (4)

and
(ϕk(A1, A2, . . . , Am))(n) = ϕnk (A1(n), A2(n), . . . , Am(n)) (5)

are satisfied for all n ∈ N and all k = 1, 2, . . . , p.

Definition 10. A universal fuzzy measure µ∗ = (µn)n∈N is called (E)-type UFM
((I)-type UFM) if

F (µn(ϕn1 (Qn)), µn(ϕn2 (Qn)), . . . , µn(ϕnp (Qn))) = 0 (≥ 0) (6)

holds for all choices of Qn ∈ Sn for all but finitely many n ∈ N for some collections
of (ϕnk ); k = 1, 2, . . . , p, n ∈ N, (Sn)n∈N and some F defined as above.
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Definition 11. Suppose that a finite set {E1, E2, . . . , Es} of conditions like (6)
are given. A universal fuzzy measure µ∗ = (µn)n∈N is called:
— (∧)-type if for every µn; n ∈ N each Ej ; j = 1, 2, . . . , s is satisfied,
— (∨)-type if for every µn; n ∈ N at least one Ej ; j = 1, 2, . . . , s is satisfied.

Remark 1. A fuzzy measure µ is called (E)-, (I)-, (∧)- or (∨)-type if it satisfies
the corresponding conditions with corresponding inputs.

Theorem 1. Let µ∗ = (µn)n∈N be a (∧)- or (∨)-type UFM and let U ∈ βN be an
arbitrary ultrafilter. Then µ∗U possesses the same property as µ∗.

P r o o f . We will prove theorem for (∨)-type UFM, the proof for (∧)-type UFM
is similar, even easier. Suppose that a UFM µ∗ = (µn)n∈N satisfies for every n ∈ N
at least one of the following conditions

Fj(µn(ϕn1,j(Qnj )), µn(ϕn2,j(Qnj )), . . . , µn(ϕnpj ,j(Q
n
j ))) = 0; j = 1, . . . , s. (7)

for for all possible choices of Qnj ∈ Snj . Here all Fj , ϕnk,j and Snj are as described
above. We will suppose only equations in (7), if inequalities occur, the proof is
similar. Choose U ∈ βN arbitrarily. If U is fixed, say U = Un then µ∗U (A) = µn(A(n))
and the statement of theorem follows. Thus suppose that U is free. By (3) there is
a number j ∈ {1, 2, . . . , s} and a set I ∈ U such that (7) holds for j and every n ∈ I.
To prove theorem for (∨)-type UFM it is sufficient to show that for every choice of

Q = (A1, A2, . . . , Amj ) ∈ Sj
we have

Fj
(
µ∗U (ϕ1,j(Q)), µ∗U (ϕ2,j(Q)), . . . , µ∗U (ϕpj ,j(Q))

)
= 0. (8)

Let ε > 0. By continuity of Fj there is a δ > 0 such that for every (x1, x2, . . . , xpj )
such that |xk − µ∗U (ϕk,j(Q))| < δ; k = 1, 2, . . . , pj we have

∣∣Fj
(
µ∗U (ϕ1,j(Q)), µ∗U (ϕ2,j(Q)), . . . , µ∗U (ϕpj ,j(Q))

)
− Fj(x1, x2, . . . , xpj )

∣∣ < ε. (9)

By (4), for every n ∈ N we have Qn = (A1(n), A2(n), . . . , Amj (n)
) ∈ Snj and by (5)

the equations
(ϕk,j(Q))(n) = ϕnk,j(Qn) (10)

hold for every k = 1, 2, . . . , pj . Definition of the measure µ∗U guarantees the existence
of sets Jk ∈ U ; k = 1, 2, . . . , pj such that, taking into account also (10), for every
n ∈ Jk we have

∣∣µ∗U (ϕk,j(Q))− µn(ϕnk,j(Qn))
∣∣ =

∣∣µ∗U (ϕk,j(Q))− µn((ϕk,j(Q))(n))
∣∣ < δ (11)

By (2) the set K = I ∩
(⋂pj

k=1 Jk
)
∈ U is nonempty. Take n ∈ K, put xk =

µn(ϕnk,j(Qn)) for k = 1, 2, . . . , pj , use definition of the set I and (7), (9), (11) to
obtain

|Fj
(
µ∗U (ϕ1,j(Q)), µ∗U (ϕ2,j(Q)), . . . , µ∗U (ϕpj ,j(Q))

)
|

= |Fj
(
µ∗U (ϕ1,j(Q)), µ∗U (ϕ2,j(Q)), . . . , µ∗U (ϕpj ,j(Q))

)
− Fj(x1, x2, . . . , xpj )| < ε.

As ε > 0 was arbitrary, (8) follows and theorem is proved. 2
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Corollary 1. Let µ∗ = (µn)n∈N fulfils any of properties (i) to (iv) in Definition 5.
Then also µ∗U does so for every U ∈ βN, in particular, any U-limit of additive UFM
is additive FM.

P r o o f . We will sketch the proof for additivity, the proofs for any other of men-
tioned properties are similar. To prove the corollary for additivity, put p = 3, m = 2,
define (A,B) ∈ S if and only if A,B are disjoint, set ϕ1(A,B) = A∪B, ϕ2(A,B) =
A,ϕ3(A,B) = B and F (x1, x2, x3) = x1 − x2 − x3 and just add index n to define
Sn, ϕnj ; j = 1, 2, 3. 2

The following example shows that the statement of Theorem 1 does not hold for
every kind of property of UFM.

Example 2. Consider the same UFM (dn)n∈N as in Example 1. It is easy to
see that every dn is symmetric. On the other hand, use the same argument as in
Example 1 to show that µ∗U is not symmetric.

4. FURTHER RESULTS, COMMENTS, QUESTIONS

FM which are U-limits of UFM

Theorem 1 provides a support for the construction of fuzzy measures derived from
universal fuzzy measures in a natural way and preserving some kind of their proper-
ties. As every such fuzzy measure is necessary normalized (i.e measure of N is one),
there are fuzzy measures which can not be obtained as limits of UFM with respect
to some ultrafilter. One can ask if there are some normalized fuzzy measures which
are not U-limits of UFM. Thus natural problems arise.

Open problem 1. Characterize these normalized fuzzy measures which can be
obtained as U-limits of universal fuzzy measures.

By Posṕı̌sil’s theorem, by U -limits can be produced from every UFM theoretically
22ℵ0 different fuzzy measures (one FM for each of 22ℵ0 ultrafilters). In practice, many
of them can coincide.

Open problem 2. Let µ∗ be UFM and let U ,V be ultrafilters. Find necessary
and sufficient condition for equality µ∗U = µ∗V .

Open problem 3. For each cardinal number λ less than or equal to 22ℵ0 , char-
acterize these universal fuzzy measures for which there are exactly λ many U-
asymptotic fuzzy measures determined by them.
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Values of asymptotic fuzzy measures

It is easy to see that for every UFM µ∗ and every ultrafilter U the inequalities

0 ≤ µ∗(A) ≤ µ∗U (A) ≤ µ∗(A) ≤ 1 (12)

hold for every A ⊂ N. Consider the same UFM (dn)n∈N as in Example 1. In [7]
it is shown that for every given pair 0 ≤ α ≤ β ≤ 1 there is a set A ⊂ N such
that d(A) = α and d(A) = β. More generally, for a given A ⊂ N let us call the
set {(d(X), d(X)); X ⊂ A} the density set of A. These sets were studied and
characterized in papers [3] and [5].

Open problem 4. For a given UFM µ∗ characterize the set

Λµ∗ = {(µ∗(A), µ∗(A)); A ⊂ N}.
For a given UFM µ∗ and given A ⊂ N characterize the set

Λµ∗(A) = {(µ∗(X), µ∗(X)); X ⊂ A}.

It is clear that for a given UFM µ∗ and given A ⊂ N the set {µ∗U (A); U ∈ βN} is
the set of all limit points of the sequence (µn(A))n∈N. It can be also interesting to
characterize the following sets.

Open problem 5. For a given UFM µ∗ and given U ∈ βN characterize the set
{µ∗U (A); A ⊂ N}. For a given UFM µ∗, given U ∈ βN and given A ⊂ N characterize
the set {µ∗U (X); X ⊂ A}.

Continuity of fuzzy measures with respect to a parameter

For every α ∈ [−1,∞) let us define the UFM d∗α = (dα,n)n∈N by dn,α(A) =
P
a∈A a

α

Pn
k=1 k

α

for every n ∈ N, A ⊂ N(n). In [4] a continuity of d∗α and d∗α with respect to parameter
α ∈ (−1,∞) for every A ⊂ N was proved and there were found examples of sets for
which discontinuity at α0 = −1 can occur. Let us consider more general problem.

Open problem 6. Let X be a topological space and suppose that UFM µ∗α; α ∈ X
are defined so that for every n ∈ N and every A ⊂ N(n) the mapping α→ µα,n(A) is
continuous on X. For A ⊂ N and ultrafilter U , what can be said about the continuity
of µ∗α(A), µ∗α(A) and µ∗α,U (A) with respect to α ∈ X?
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[9] B. Posṕı̌sil: Remark on bicompact spaces. Ann. Math. 38 (1937), 845–846.
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