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In spite of increasing studies and investigations in the field of aggregation operators,
there are two fundamental problems remaining unsolved: aggregation of L-fuzzy set-
theoretic notions and their justification. In order to solve these problems, we will formu-
late aggregation operators and their special types on partially ordered sets with universal
bounds, and introduce their categories. Furthermore, we will show that there exists a
strong connection between the category of aggregation operators on partially ordered sets
with universal bounds (Agop) and the category of partially ordered groupoids with uni-
versal bounds (Pogpu). Moreover, the subcategories of Agop consisting of associative
aggregation operators, symmetric and associative aggregation operators and associative
aggregation operators with neutral elements are, respectively, isomorphic to the subcate-
gories of Pogpu formed by partially ordered semigroups, commutative partially ordered
semigroups and partially ordered monoids in the sense of Birkhoff. As a justification of the
present notions and results, some relevant examples for aggregations operators on partially
ordered sets are given. Particularly, aggregation process in probabilistic metric spaces is
also considered.
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1. INTRODUCTION

Aggregation operators are an essential mathematical tool for the combination of
several data as a single outcome. Although they have been studied intensively in
the last years [4, 11, 15], there are still some fundamental questions remaining unan-
swered. Because of the fact that aggregation operators have been formulated based
on a particular partially ordered set ([0, 1],≤) (or more generally, ([a, b],≤) for some
a, b ∈ R) [4, 11, 15], the present literature does not provide an aggregation process
for L-fuzzy set theoretic notions that are playing a central role in the development
of various branches of fuzzy mathematics [10], where L is a partial ordered set with
universal bounds (posetu, for short) in general. This is one of the fundamental prob-
lems. In order to solve this problem, we will formulate aggregation operators based
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on a posetu L, and extend the algebraic properties of symmetry, associativity and
the neutral element of aggregation operators to this setting. Furthermore, we design
some relevant examples, and show that aggregation operators on posetus are suffi-
ciently rich and abstract notions for unifying various kinds of aggregation operator
under the same framework.

In addition to the above problem, since aggregation operators are some kinds of
generalization of binary operation on L with some further properties, it is natural to
ask the connections between aggregation operators and such binary operations on
L. This question can also be stated for the connection between the subclass of ag-
gregation operators consisting of symmetric aggregation operators (resp. associative
aggregation operators, aggregation operators with neutral elements) and binary op-
erations on L with some suitable algebraic properties. These questions lead us to the
necessity for considering the category of aggregation operators on posetus (Agop)
and its subcategories of associative aggregation operators (Asagop), of symmetric
and associative aggregation operators (Smasagop), and of associative aggregation
operators with neutral elements (or simply monoidal aggregation operators) ( Mon-
agop). If we take into consideration the category of partially ordered groupoids with
universal bounds (Pogpu) and its subcategories of partially ordered semigroups
(Posmgu), of commutative partially ordered semigroups (Cmposmgu), and of
partially ordered monoids (Pomonu), then the second main problem can be ab-
stracted to the categorical relation between Agop (resp. Asagop, Smasagop and
Monagop) and Pogpu (resp. Posmgu, Cmposmgu and Pomonu). All of these
categories are summarized in Table 1. As an answer to this problem, we will prove
that Pogpu is isomorphic to an isomorphism-closed and full subcategory of Agop.
Furthermore, Asagop, Smasagop and Monagop are, respectively, isomorphic to
Posmgu, Cmposmgu and Pomonu. In addition to these categorical connections,
we will also look at subobjects and fibres in Agop towards the end of this paper, and
establish a meaningful definition of subaggregation operator as a special subobject
in Agop.

2. AGGREGATION OPERATORS ON PARTIALLY ORDERED SETS

Let L = (L,≤,⊥,>) denote a posetu, i. e. (L,≤) is a partially ordered set (poset,
for brevity) with the least element ⊥ and the greatest element >. The ordering
structure on L can be coordinatwisely extended to Ln (n ∈ N+), i. e. for the relation
≤ on Ln, defined by

[(α1, . . . , αn) ≤ (β1, . . . , βn)] ⇔ [(∀ i = 1, . . . , n)(αi ≤ βi)],

and for the elements ⊥(n) = (⊥, . . . ,⊥), >(n) = (>, . . . ,>) of Ln, the four-tuple
Ln = (Ln,≤,⊥(n),>(n)) forms a poset with universal bounds ⊥(n) and >(n).

Definition 1. A mapping A :
∪

n∈N+ Ln → L is called an aggregation operator on
L = (L,≤,⊥,>) if the following conditions are fulfilled:

(AG.1) A preserves the order on Ln for all n ∈ N+, i. e.

[(α1, . . . , αn) ≤ (β1, . . . , βn)] ⇒ [A(α1, . . . , αn) ≤ A(β1, . . . , βn)]
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(AG.2) A is the identity mapping idL on L, i. e. A(α) = α for all α ∈ L,

(AG.3) A preserves universal bounds, i. e.

A(⊥(n)) = ⊥ and A(>(n)) = > for all n ∈ N+.

For n ≥ 2, a mapping B : Ln → L is called an n -ary aggregation operator
on L = (L,≤,⊥,>) iff the conditions (AG.1) and (AG.3) are satisfied. A 1-ary
aggregation operator B : L → L is the identity mapping idL on L.

An aggregation operator A on L can be identified by a family of n-ary aggregation
operators {An | n ∈ N+} . This means that for a given aggregation operator A
on L, we may associate a family of n-ary aggregation operators {An | n ∈ N+}
to A, which is defined by An(α1, . . . , αn) = A(α1, . . . , αn). Conversely, if {An |
n ∈ N+} is a family of n-ary aggregation operators on L, then we can define an
aggregation operator A on L by A(α1, . . . , αn) = An(α1, . . . , αn). It is obvious
that the connection between the aggregation operators and the families of n -ary
aggregation operators are bijective. Thus an aggregation operator and its associated
family of n-ary aggregation operators {An | n ∈ N+} can be conceived as the same
things.

Aggregation operators on posetus in the sense of Definition 1 provide an abstract
and a useful mathematical tool for unifying various kinds of aggregation operator
under the same framework, and they also enable us to apply the notion of aggregation
operator in several branch of mathematics. In order to clarify this, we design the
following example:

Example 2. (a) For the particular posetu I = ([0, 1],≤, 0, 1), an (n-ary) aggrega-
tion operator on I is called an (n-ary) aggregation operator in [4, 11, 15]. Thus an (n
-ary) aggregation operator in the sense of Definition 1 is a straightforward extension
of (n-ary) aggregation operator in the sense of [4, 11, 15] to a general posetu.

(b) Let I[0, 1] denote the set of all closed subintervals of [0, 1], i. e. I[0, 1] =
{[a, b] | a, b ∈ [0, 1], a ≤ b}. If we consider the partial ordering ¹w on I[0, 1] (called
the weak interval-ordering [12]) defined by

[a, b] ¹w [c, d] ⇔ ((a ≤ c) and (b ≤ d)) ,

then [0, 0] and [1, 1] are obviously the least and greatest elements of the poset
(I[0, 1],¹w). An interval-valued aggregation operator (or an extended aggregation
operator) in [12] is nothing else but an aggregation operator on (I[0, 1],¹w, [0, 0],
[1, 1]).

(c) Consider the set L∗ ={(x1, x2) ∈ [0, 1]2 | x1 + x2 ≤ 1}. The relation ≤L∗ on
L∗, defined as

(x1, x2) ≤L∗ (y1, y2) ⇔ ((x1 ≤ y1) and (y2 ≤ x2)) ,
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is a partial ordering [6, 7]. 0L∗ = (0, 1) and 1L∗ = (1, 0) are the least and greatest
elements of the poset (L∗,≤L∗). An aggregation operator on (L∗,≤L∗ , 0L∗ , 1L∗) is
called an aggregation operator on L∗ in [6].

(d) Let NC[0, 1] stand for the set of all normal convex fuzzy subsets of [0, 1] (i. e.
a normal convex fuzzy subset µ of [0, 1] is a mapping µ : [0, 1] → [0, 1] satisfying the
conditions that

∨
x∈[0,1] µ(x) = 1 and µ(x1)∧ µ(x3) ≤ µ(x2) for all x1, x2, x3 ∈ [0, 1]

with x1 ≤ x2 ≤ x3 [13]). Define the relation v on NC[0, 1] by

µ v ν ⇔ µ u ν = µ,

where u : NC[0, 1]×NC[0, 1] → NC[0, 1] is the extended minimum operation m̃in
on NC[0, 1] [8, 13], i. e.

[u(µ, ν)] (x)=
[
m̃in(µ, ν)

]
(x)=

∨
{µ(x1) ∧ ν(x2) | x1, x2 ∈ [0, 1], x=min {x1, x2}} .

Then (NC[0, 1],v) forms a poset [13] . Furthermore the fuzzy subsets 01, 11 of [0, 1]
, defined by

01(x) =
{

1, if x = 0
0, otherwise

}
and 11(x) =

{
1, if x = 1
0, otherwise,

}

are the least and greatest elements of (NC[0, 1],v). We will show in Remark 3 that
aggregation operators on (NC[0, 1],v, 01, 11) enable us to aggregate type 2 fuzzy
sets with normal convex fuzzy grades.

(e) A non-decreasing function F : [−∞,∞] → [0, 1], satisfying the properties that
F is left-continuous on (0,∞), F (0) = 0 and F (∞) = 1, is called a distance distri-
bution function on [−∞,∞] [11, 16]. The set of all distance distribution functions
on [−∞,∞] is denoted by ∆+, and is an essential part of probabilistic metric spaces
[11, 16]. The usual ordering ≤ on [−∞,∞] can be carried to ∆+ pointwisely, i. e.
F ≤ G iff F (x) ≤ G(x) for all x ∈ [−∞,∞] and F,G ∈ ∆+. Then the Dirac
distributions ε∞, ε0 ∈ ∆+ , defined by

ε∞(x) =
{

0, if x ∈ [−∞,∞)
1, if x = ∞

}
and ε0(x) =

{
0, if x ∈ [−∞, 0]
1, if x ∈ (0,∞]

}
,

are the least and greatest elements of the poset (∆+,≤) [11]. Aggregation operators
on (∆+,≤, ε∞, ε0) provide a natural way for combining a finite number of distance
distribution functions as a single one. Furthermore we will later expose that they
can be used for aggregating of probabilistic metrics (see explanations just after
Theorem 9 at the end of this section).

For a posetu L = (L,≤,⊥,>), let LX stand for the set of all L-valued mappings
µ : X → L on X (L-fuzzy sets of X), and 1∅,1X denote the characteristic functions
of ∅ and X, i. e. 1∅(x) = ⊥ and 1∅(x) = > for all x ∈ X [10]. Consider the pointwise
extension of ≤ to LX , i. e. µ ≤ ν iff µ(x) ≤ ν(x) for all x ∈ X . Then the quadruple
(LX ,≤,1∅,1X) obviously forms a poset with the least element 1∅ and the greatest
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element 1X . Therewith an aggregation operator A on L can be extended to an
aggregation operator AX on (LX ,≤,1∅,1X) by the equality

[AX(µ1, . . . , µn)] (x) = A(µ1(x), . . . , µn(x)). (1)

Remark 3. For the particular choice of the underlying posetu L = (L,≤,⊥,>)
in Example 2 (a) (resp. (b), (c) and (d)), an L-fuzzy set of X is named as a fuzzy
set [17] (resp. an interval-valued fuzzy set [14], an intuitionistic fuzzy set [2] and
a type 2 fuzzy set with normal convex fuzzy grades [13]). In other words, LX is
nothing but the set of all fuzzy sets (resp. interval-valued fuzzy sets, intuitionistic
fuzzy sets, type 2 fuzzy sets with normal convex fuzzy grades) of X depending on the
particular choice of L = (L,≤,⊥,>) in Example 2 (a–d). Therefore starting with
an aggregation operator on the special poset stated in Example 2 (a) (resp. (b), (c)
and (d)), and by making use of the equality (1), we can construct an aggregation
operator on the posetu of fuzzy sets (resp. interval-valued fuzzy sets, intuitionistic
fuzzy sets and type 2 fuzzy sets with normal convex fuzzy grades).

Aggregation operators have some important properties leading to useful sub-
classes as introduced below.

Definition 4. Let A be an aggregation operator on L = (L,≤,⊥,>).

(i) A is said to be associative iff

A(α1, . . . , αk, . . . αn) = A2(Ak(α1, . . . , αk), An−k(αk+1, . . . , αn))

for all n ≥ 2, k = 1, . . . , n− 1 and αi ∈ L (i = 1, . . . , n).

(ii) A is said to be symmetric iff

A(α1, . . . , αn) = A(απ(1), . . . , απ(n))

for all n ∈ N+, αi ∈ L (i = 1, . . . , n) and for all permutations π(1),. . . ,π(n) of
{1, . . . , n}.

(iii) A has the neutral element e ∈ L iff for all n ≥ 2 and αi ∈ L (i = 1, . . . , n), if
αk = e for some k ∈ {1, . . . , n}, then

A(α1, . . . , αn) = A(α1, . . . , αk−1, αk+1, . . . , αn).

(iv) An associative aggregation operator with the neutral element is called a monoidal
aggregation operator.

It should be noted here that Definition 4 (i), (ii) and (iii) are straightforward
generalization of associative aggregation operators, symmetric aggregation operators
and aggregation operators with neutral elements in [4, 11] to the present approach.

Aggregation operators with neutral elements are a generalization of binary opera-
tions with identity elements, and they provide some bounds for aggregation operators
as follows:
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Proposition 5. Let A be an aggregation operator on L = (L,≤,⊥,>) with the
neutral element e ∈ L. Then for the binary operation ⊗A = A2 on L, e is the
identity element of the groupoid (L,⊗A), i. e. e ⊗A α = α ⊗A e = α for all α ∈ L .
Furthermore, if the underlying poset (L,≤) is a lattice, and if we denote the meet
and join operations on it by the usual notations

∧
and

∨
respectively, then for the

case e = > (e = ⊥ ), for all n ≥ 2 and αi ∈ L, i = 1, . . . , n, A(α1, . . . , αn) is bounded
above (below) by

∧n
i=1 αi (

∨n
i=1 αi), i. e.

A(α1, . . . , αn) ≤
n∧

i=1

αi

(
n∨

i=1

αi ≤ A(α1, . . . , αn)

)
.

P r o o f . The first part of proposition is clear from Definition 4 (iii). To see the
remaining part of proposition, assume that (L,≤) is a lattice. For the case e = >,
using the condition (AG.1) together with Definition 4 (iii), we easily observe that
for all n ≥ 2, i = 1, . . . , n and αi ∈ L,

A(α1, . . . , αn) ≤ A(>, . . . ,>, αi,>, . . . ,>) = αi, i. e. A(α1, . . . , αn) ≤
n∧

i=1

αi.

If e = ⊥, we similarly see that

αi = A(⊥, . . . ,⊥, αi,⊥, . . . ,⊥) ≤ A(α1, . . . , αn), i. e.
n∨

i=1

αi ≤ A(α1, . . . , αn). ¤

In this section, we will demonstrate the connections between aggregation opera-
tors and partially ordered groupoids in the sense of Birkhoff [3]. For this purpose,
it is useful to recall the definition of partially ordered groupoid and the relevant
notions in [3] at first:

Definition 6. [3] Let (L,≤) be a poset, and ⊗ a binary operation on L.

(i) A triple (L,≤,⊗) is called a partially ordered groupoid, in brevity po-groupoid
iff α ≤ β implies α⊗ γ ≤ β ⊗ γ and γ ⊗ α ≤ γ ⊗ β for all α, β, γ ∈ L.

(ii) A po-groupoid (L,≤,⊗) is called a partially ordered semigroup, in short po-
semigroup iff (L,⊗) forms a semigroup.

(iii) A po-semigroup (L,≤,⊗) is called a partially ordered monoid, in short po-
monoid iff there exist an element e ∈ L (called the identity of (L,⊗)) such
that (L,⊗, e) forms a monoid, i. e. e⊗ α = α⊗ e = α for all α ∈ L.

(iv) A po-groupoid (semigroup, monoid) (L,≤,⊗) is said to be commutative iff ⊗
is commutative.

If the poset (L,≤) in Definition 6 has the least element ⊥ and the greatest element
>, then for the sake of simplicity, we denote a po-groupoid (a po-semigroup or
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a po-monoid) (L,≤,⊗) by the notation (L,≤,⊗,⊥,>). Considering Definition 1
and Definition 6, one can easily note that a binary operation ⊗ on L is a 2 -ary
aggregation operator on L = (L,≤,⊥,>) iff (L,≤,⊗,⊥,>) is a po-groupoid such
that ⊥⊗⊥ = ⊥ and >⊗> = >. If (L,≤,⊗,⊥,>) is a po-monoid, then the equalities
⊥⊗⊥ = ⊥ and>⊗> = > are obviously satisfied, so⊗ is a 2-ary aggregation operator
on L = (L,≤,⊥,>). For some particular choices of L = (L,≤,⊥,>), the operation
⊗ in a commutative po-monoid (L,≤,⊗,⊥,>) has a special interest in various fields:

Example 7.

(a) If ([0, 1],≤,⊗, 0, 1) is a commutative po-monoid with the identity e ∈ [0, 1],
then the operation ⊗ is called a uninorm [9]. For e = 1 (e = 0), the uninorm
⊗ is also called a t-norm (t-conorm) [11, 16].

(b) Consider the posetu (L∗,≤L∗ , 0L∗ , 1L∗) defined in Example 2 (c). In case
(L∗,≤L∗ ,⊗, 0L∗ , 1L∗) is a commutative po-monoid with the identity e ∈ L∗

(resp. e = 1L∗ , e = 0L∗), ⊗ is named as a uninorm (resp. t-norm, t-conorm)
on L∗ [7].

(c) In an analogous manner to (b), if (I[0, 1],¹w,⊗, [0, 0], [1, 1]) is a commutative
po-monoid with the identity, then we call the binary operation ⊗ a uninorm
on I[0, 1]. Since the mapping [a, b] 7→ (a, 1 − b) is an isomorphism between
(I[0, 1],¹w, [0, 0], [1, 1]) and (L∗,≤L∗ , 0L∗ , 1L∗), it is clear that ⊗ is a uninorm
on I[0, 1] iff the binary operation ⊕ on L∗, defined by

(x1, x2)⊕ (y1, y2) = (z1, z2) ⇔ [x1, 1− x2]⊗ [y1, 1− y2] = [z1, 1− z2],

is a uninorm on L∗.

(d) Let us recall the posetu (∆+,≤, ε∞, ε0) stated in Example 2 (d). If (∆+,≤,
τ, ε∞, ε0) is a commutative po-monoid with the identity ε0, then the binary
operation τ is known as a triangle function [11, 16].

In the following theorem, we now show that for a given po-groupoid, we may
construct an aggregation operator, and vice versa.

Theorem 8. If (L,≤,⊗,⊥,>) is a po-groupoid provided that ⊥ ⊗ ⊥ = ⊥ and
>⊗> = >, then the mapping A⊗ :

∪
n∈N+ Ln → L, defined by

A⊗(α1, . . . , αn) = (. . . (α1 ⊗ α2)⊗ α3 . . .)⊗ αn (2)

for all n ≥ 2, and A⊗(α) = α for n = 1, is an aggregation operator on L = (L,≤,
⊥,>).

Conversely, if A is an aggregation operator on L = (L,≤,⊥,>), then for the
binary operation ⊗A = A2, the five-tuple (L,≤,⊗A,⊥,>) forms a po-groupoid with
the property that ⊥⊗⊥ = ⊥ and >⊗> = >. Furthermore ⊗A⊗ = ⊗.
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P r o o f . Let (L,≤,⊗,⊥,>) be a po-groupoid such that ⊥⊗⊥ = ⊥ and >⊗> = >.
From the definition of the mapping A⊗, and by using the assumption that ⊥⊗⊥ = ⊥
and >⊗> = >, A⊗ obviously satisfies the properties (AG.2) and (AG.3). For n ≥ 2
and i = 1, . . . , n, let us pick αi, βi ∈ L with αi ≤ βi. To verify (AG.3), we apply
induction on n, and show the inequality

A⊗(α1, . . . , αn) ≤ A⊗(β1, . . . , βn). (3)

For n = 2, we have
α1 ⊗ α2 ≤ β1 ⊗ α2 ≤ β1 ⊗ β2,

and so (3) is true. Suppose that (3) is true for n− 1, i. e.

A⊗(α1, . . . , αn−1) ≤ A⊗(β1, . . . , βn−1).

Then

A⊗(α1, . . . , αn) = A⊗(α1, . . . , αn−1)⊗ αn ≤ A⊗(β1, . . . , βn−1)⊗ αn

≤ A⊗(β1, . . . , βn−1)⊗ βn = A⊗(β1, . . . , βn).

The converse part of theorem can be easily seen by using the definitions of aggrega-
tion operator and po-groupoid, so it is skipped here. ¤

Theorem 8 establishes a connection between po-groupoids and aggregation oper-
ators. Note here that Theorem 8 does not guarantee the equality A = A⊗A . This
means that this connection is not bijective in general. Nevertheless, we may es-
tablish a bijective connection between some special po-groupoids and some special
aggregation operators:

Theorem 9. If (L,≤,⊗,⊥,>) is a po-semigroup (resp. a commutative po-semigroup,
a po-monoid) with the property that ⊥⊗⊥ = ⊥ and >⊗> = >, then the mapping
A⊗ :

∪
n∈N+ Ln → L, defined by

A⊗(α1, . . . , αn) = α1 ⊗ α2 ⊗ α3 ⊗ . . .⊗ αn (4)

for all n ≥ 2, and A⊗(α) = α for n = 1, is an associative (resp. a symmetric and an
associative, a monoidal) aggregation operator on L = (L,≤,⊥,>).

Conversely, if A is an associative (resp. a symmetric and associative, a monoidal)
aggregation operator on L = (L,≤,⊥,>), then for the binary operation ⊗A =
A2, the five-tuple (L,≤,⊗A,⊥,>) forms a po-semigroup (resp. a commutative po-
semigroup, a po-monoid) with the property that ⊥ ⊗A ⊥ = ⊥ and > ⊗A > = >.
Moreover ⊗A⊗ = ⊗ and A = A⊗A .

P r o o f . Let (L,≤,⊗,⊥,>) be a po-semigroup provided that ⊥⊗⊥ = ⊥ and >⊗
> = >. Since ⊗ is an associative binary operation, the mapping A⊗ :

∪
n∈N+ Ln →

L, given by the equality (2), can be written in the form (4). Thus we have from
Theorem 8 that the mapping A⊗ :

∪
n∈N+ Ln → L, defined by the equality (4),
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forms an aggregation operator on L = (L,≤,⊥,>). Then considering the fact that
(A⊗)2 = ⊗, and by making use of the associativity of ⊗, we may write

A⊗(α1, . . . , αk, . . . αn) = (α1 ⊗ α2 ⊗ . . .⊗ αk)⊗ (αk+1 ⊗ . . .⊗ αn)
= (A⊗)k(α1, . . . , αk)⊗ (A⊗)n−k(αk+1, . . . , αn)
= (A⊗)2((A⊗)k(α1, . . . , αk), (A⊗)n−k(αk+1, . . . , αn)),

and therefore the associativity of A⊗ is achieved. Because of the fact that commuta-
tivity of ⊗ obviously implies the symmetry of A⊗, if (L,≤,⊗,⊥,>) is a commutative
po-semigroup, then A⊗ will be symmetric and associative. Furthermore, it is easy
to see that if e is the identity element of the monoid (L,⊗), then A⊗ has the neu-
tral element e. Thus if (L,≤,⊗,⊥,>) is a po-monoid, then A⊗ will be a monoidal
aggregation operator.

In order to prove the converse part of theorem, let us assume that A is an associa-
tive aggregation operator on L = (L,≤,⊥,>) . Then by considering the definition
⊗A = A2, we obtain from the associativity of A and the property (AG.2) that for
all α1, α2, α3 ∈ L,

(α1 ⊗A α2)⊗A α3 = A2(A2(α1, α2), A1(α3))
= A(α1, α2, α3) = A2(A1(α1), A2(α2, α3))
= α1 ⊗A (α2 ⊗A α3),

i. e. (L,⊗A) is a semigroup, and therefore it follows from Theorem 8 that (L,≤,
⊗A,⊥,>) forms a po-semigroup with the property that ⊥⊗A⊥ = ⊥ and >⊗A> =
>. Since the symmetry of A implies the commutativity of ⊗A, it is clear that if
A is symmetric and associative, then (L,≤,⊗A,⊥,>) will be a commutative po-
semigroup. Furthermore, if A is a monoidal aggregation operator, i. e. A has the
neutral element e, then since e will be the identity element of the monoid (L,⊗),
(L,≤,⊗A,⊥,>) is obviously a po-monoid. To complete the proof, we now prove the
equality A = A⊗A , i. e.

A(α1, . . . , αn) = α1 ⊗A α2 ⊗A α3 ⊗A . . .⊗A αn. (5)

For the confirmation of (5), we use induction on n. For n = 2, the equality (5) is
clear. Assume that (5) is true for n− 1, i. e.

A(α1, . . . , αn−1) = α1 ⊗A α2 ⊗A α3 ⊗A . . .⊗A αn−1.

Then since A(α1, . . . , αn−1) = An(α1, . . . , αn−1), and by making use of the associa-
tivity of A, we observe that

A(α1, . . . , αn) = A2(An−1(α1, α2, . . . , αn−1), A1(αn))
= An−1(α1, α2, . . . , αn−1)⊗A αn

= A(α1, . . . , αn−1)⊗A αn

= α1 ⊗A α2 ⊗A α3 ⊗A . . .⊗A αn. ¤
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As a direct application of Theorem 9, starting with a uninorm in Example 7
(a–c), one can easily construct a symmetric and monoidal aggregation operator on
the corresponding posetu considered in Example 2 (a–c). Similarly, given a triangle
function τ , ,we can put the aggregation operator Aτ on (∆+,≤, ε∞, ε0). Now let us
recall the notion of probabilistic metric space [11, 16]: A probabilistic metric space
is a triple (X,F , τ) such that X is a nonempty set, τ is a triangle function and
F : X2 →∆+ is a mapping provided with the following properties:

(PM1) F(x, x) = ε0,

(PM2) F(x, y) = ε0 ⇒ x = y ,

(PM3) F(x, y) = F(y, x),

(PM4) F(x, y)τF(y, z) ≤ F(x, z)

for all x, y, z ∈ X. If the mapping F : X2 →∆+ satisfies the conditions (PM1),
(PM3) and (PM4), then the triple (X,F , τ) is called a probabilistic pseudometric
space [16]. For fixed X and τ , we call the mapping F : X2 →∆+ a probabilistic
metric (pseudometric) on X w.r.t. τ iff (X,F , τ) forms a probabilistic metric (pseu-
dometric) space, and denote by PM(X, τ) (PPM(X, τ)) the set of all probabilistic
metrics (pseudometrics) on X w.r.t. τ . Define the mappings Fs,Fg : X2 →∆+ by

Fs(x, y) =
{

ε0, if x = y
ε∞, otherwise

}
and Fg(x, y) = ε0,

and consider the pointwise ordering ≤ on PPM(X, τ), i. e. for F ,G ∈ PPM(X, τ)
we have F≤ G iff F(x, y) ≤ G(x, y) for all x, y ∈ X. It is clear that Fs,Fg are
the least and greatest elements of the poset (PPM(X, τ),≤). Furthermore, it is not
difficult to see that the aggregation operator Aτ on (∆+,≤, ε∞, ε0) can be extended
to an aggregation operator P(X,τ) on (PPM(X, τ),≤,Fs,Fg) defined by

[
P(X,τ) (F1, . . . ,Fn)

]
(x, y) = Aτ (F1(x, y), . . . ,Fn(x, y)) .

If we are interested in probabilistic metrics, then it is easy to observe that the poset
(PM(X, τ),≤) has the least element Fs, but not the greatest element. In this case,
although the poset (PM(X, τ),≤) is inadequate to define aggregation operator on
it, the restriction of the mapping P(X,τ) :

∪n
n∈N+ [PPM(X, τ)]n → PPM(X, τ) to∪n

n∈N+ [PM(X, τ)]n, denoted by P ∗
(X,τ), defines a mapping from

∪n
n∈N+ [PM(X, τ)]n

from PM(X, τ). Furthermore, P ∗
(X,τ) holds the conditions (AG1), (AG2) and the

property P ∗
(X,τ) (Fs, . . . ,Fs) = Fs. This means that eventhough P ∗

(X,τ) is not an
aggregation operator, P ∗

(X,τ) is still a reasonable tool for combining a finite number
of probabilistic metrics as a singe one.

3. CATEGORY OF AGGREGATION OPERATORS

In the previous section, we established the connections between aggregation opera-
tors and po-groupoids. In this section, we will formulate these connections in the
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formalism of category theory. For the background materials in the category theory
(categories, morphisms, functors, subcategories, etc.), we refer to [1], and use the
same notations and terminology in [1]. We start with the definition of the category
of aggregation operators:

Definition 10. (The category of aggregation operators (Agop )) Agop consists
of the following items:

(i) Objects: Each object is an ordered pair (L, A), where A is an aggregation
operator on L = (L,≤L,⊥L,>L).

(ii) Morphisms: A morphism (L, A)
f→ (K, B) is an order-preserving function

f : L → K such that f(⊥L) = ⊥K , f(>L) = >K and the following diagram
commutes for all n ∈ N+:

Ln

An

²²

fn

// Kn

Bn

²²
L

f // K

i. e. f ◦An = Bn ◦ fn for all n ∈ N+. Here the function fn : Ln → Kn is defined by
fn(α1, . . . , αn) = (f(α1), . . . , f(αn)).

(iii) The composition of two morphisms (L, A)
f→ (K, B) and (K, B)

g→ (M, C)

is the morphism (L, A)
g◦f→ (M, C), where g ◦ f : L → M is the usual composition of

the functions g and f as in the category of sets and functions (Set) [1]. The identity
morphism (L, A) idL→ (L, A) of (L, A) is the identity function idL of L as in Set.

For a subfamily Ω = (ni)i∈J of N+, for a set X and for mappings Ai : Xni → X
(i ∈ J), the ordered pair (X, (Ai)i∈J) is called an Ω-algebra [1]. Given two Ω-algebras
(X, (Ai)i∈J) and (Y, (Bi)i∈J), a function f : X → Y is called an Ω -homomorphism
iff the diagram

Xni

Ai

²²

fni
// Y ni

Bi

²²
X

f // Y

commutes, i. e. f ◦ Ai = Bi ◦ fni for all i ∈ J , where fni : Xni → Y ni is defined
by fni(x1, . . . , xni

) = (f(x1), . . . , f(xni
)). The category of Ω-algebras Alg(Ω) com-

prises all Ω -algebras and Ω-homomorphisms [1]. The composition and identities in
Alg(Ω) are the same as in Set . If we take into account the functor U :Agop→
Alg(N+) defined by

U((L, A)
f→ (K, B)) = (L, (An)n∈N+)

f→ (K, (Bn)n∈N+),
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it is easy to note that (Agop,U) is a concrete category over Alg(N+). On the other
hand, if we recall the category Pos of posets and order-preserving functions [1], and
define the forgetful functor V :Agop→Pos by

V ((L, A)
f→ (K, B)) = (L,≤L)

f→ (K,≤K),

then we also see that (Agop,V ) is a concrete category over Pos.

In order to point out the categorical relations between aggregation operators
and po-groupoids, we now introduce the category of po-groupoids with universal
bounds:

Definition 11. (The category of po-groupoids with universal bounds (Pogpu))
The category Pogpu comprises the following data:

(i) Objects: Po-groupoids (L,≤L,⊗L,⊥L,>L) satisfying the properties ⊥L ⊗
⊥L = ⊥L and >L ⊗>L = >L.

(ii) Morphisms: All Set morphisms, between the objects of Pogpu, which pre-

serve ≤, ⊗, ⊥ and >, i. e. a Pogpu-morphism (L,≤L,⊗L,⊥L,>L)
f→ (K,≤K ,⊗K ,

⊥K ,>K) is a function f : L → K satisfying the following conditions:

(a) α ≤L β ⇒ f(α) ≤K f(β), ∀α, β ∈ L,

(b) f(α⊗L β) = f(α)⊗K f(β), ∀α, β ∈ L,

(c) f(⊥L) = ⊥K and f(>L) = >K .

(iii) Composition and identities: As in Set.

As stated in Definition 6, we may consider po-groupoids on posets that do not nec-
essarily have universal bounds. Thus one may also define a category of po-groupoids
whose underlying posets may not have universal bounds (Pogp). Although the
category Pogpu can also be introduced as a subcategory of the category Pogp ,
Pogp has no use for establishing the categorical connections between aggregation
operators and po-groupoids. For this reason, we are not interested in the category
Pogp. The letter “u” at the end of the abbreviation Pogpu emphasizes the exis-
tence of universal bounds in the underlying posets of po-groupoids. There exists an
important categorical connection between Pogpu and Agop:

Theorem 12. Pogpu is isomorphic to an isomorphism-closed full subcategory of
Agop.

P r o o f . Using Theorem 8, it is not difficult to see that the mapping F : Pogpu→Ag-
op, defined by

F ((L, ≤ L,⊗L,⊥L,>L)
f→ (K,≤K ,⊗K ,⊥K ,>K))

= (L, A⊗L)
f→ (K, A⊗K ), (6)



AGOPS on Posets and Their Categorical Foundations 273

where L = (L,≤L,⊥L,>L), K = (K,≤K ,⊥K ,>K), and A⊗L , A⊗K are given by the
equality (2) in Theorem 8, is a full and faithful functor. Thus, the image F (Pogpu)
of Pogpu under F forms a full subcategory of Agop. Furthermore since F is
injective on objects of Pogpu, the functor F : Pogpu→ F (Pogpu) is obviously an
isomorphism, i. e. Pogpu is isomorphic to F (Pogpu). On the other hand, one
can also easily show that F (Pogpu) is an isomorphism-closed full subcategory of
Agop. ¤

Theorem 12 shows that Pogpu can be fully embedded into Agop, so aggregation
operators are some kinds of generalization of po-groupoid. Let us denote the full sub-
categories of Agop consisting of associative aggregation operators, symmetric and
associative aggregation operators by Asagop and Smasagop, respectively. Now if
we consider the full subcategory of Pogpu formed by po-semigroups (Posmgu) and
the full subcategory of Pogpu formed by commutative po-semigroups (Cmposmgu),
then we will prove in the following theorem that Asagop (Smasagop) is isomorphic
to Posmgu (Cmposmgu).

Theorem 13. The categories Asagop and Smasagop are, respectively, isomor-
phic to the categories Posmgu, Cmposmgu.

P r o o f . If we reconsider the functor F : Posmgu→ Asagop (F : Cmpos-
mgu→Smasagop) defined by the rule (6) in Theorem 12, then by virtue of Theo-
rem 9, F will be an isomorphism. Hence the assertion follows. ¤

We will conclude this section by establishing an isomorphism between the cate-
gory of monoidal aggregation operators and the category of po-monoids with univer-
sal bounds. This will also justify why an associative aggregation operator with the
neutral element is called a monoidal aggregation operator. For this purpose, we first
give explicit definitions of the categories of monoidal aggregation operators, and of
po-monoids with universal bounds:

Definition 14. (i) The category of monoidal aggregation operators ( Monagop)
is defined by the following items: Each object of Monagop is an Asagop-object
(L, A) such that A has the neutral element eA ∈ L. A morphism of Monagop is an

Agop-morphism (L, A)
f→ (K, B) preserving neutral elements, i. e. f(eA) = eB . As

in Agop, composition and identities in Monagop are taken from Set.

(ii) The category of po-monoids with universal bounds ( Pomonu) consists of
the following items: A Pomonu-object is a po-monoid (L,≤L,⊗L,⊥L,>L) with the
identity element eL ∈ L. A Pomonu-morphism is a Pogpu -morphism (L,≤L,⊗L,

⊥L,>L)
f→ (K,≤K ,⊗K ,⊥K ,>K) preserving identities, i. e. f(eL) = eK . Composi-

tion and identities in Pomonu are the same as Set.

Note here that Monagop (Pomonu) is a non-full subcategory of Asagop (Posm-
gu). In a similar fashion to Theorem 13, the mapping F : Pomonu→Monagop,
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given by the equality (6) in Theorem 12, defines a functor. Furthermore, by making
use of Theorem 9 , we easily observe that F is an isomorphism. This fact proves the
isomorphism between Monagop and Pomonu.

4. FIBRES AND SUBOBJECTS IN Agop

4.1. Subaggregation operators and subobjects in Agop

Given a posetu L = (L,≤L,⊥L,>L) and a nonempty subset K of L with the
property ⊥L,>L ∈ K , if we denote the restriction of ≤L on K by ≤K , then
K = (K,≤K ,⊥L,>L) will be obviously a poset with the universal bounds ⊥L and
>L. For a given aggregation operator A on L taking the values in K over

∪
n∈N+ Kn,

we easily observe that the restriction A|K :
∪

n∈N+ Kn → K of A to
∪

n∈N+ Kn ,
i. e. A|K (α1, . . . , αn) = A(α1, . . . , αn) for all αi ∈ K (i = 1, . . . , n), is an aggregation
operator on K. We call A|K the subaggregation operator of A on K. We now show
that subaggregation operators are nothing but special subobjects of Agop -objects.
For this purpose, we first need to clarify the subobjects of Agop-objects. Monomor-
phisms of the category Agop are obviously morphisms of Agop that are injective
functions. Thus a subject of a given Agop-object (L, A) is a pair ((K, B),m), where
(K, B) is an Agop-object and (K, B) m→ (L, A) is an Agop -monomorphism. For
a given aggregation operator A on L, if A|K is the subaggregation operator of A on
K, then it is clear that ((K, A|K ), i) is a subobject of (L, A), where i : K ↪→ L is the
inclusion function.

4.2. Fibres in Agop

In Section 3, we stated that (Agop,U) is a concrete category over Alg(N+), where
the underlying functor U :Agop→Alg(N+ ) is defined by

U((L, A)
f→ (K, B)) = (L, (An)n∈N+)

f→ (K, (Bn)n∈N+).

The fibre of an Alg(N+)-object (L, (An)n∈N+) is the class F((L, (An)n∈N+)) of all
Agop-objects (L, A) such that U((L, A)) = (L, (An)n∈N+), and is categorically or-
dered by the preorder relation - (see [1, 5.4 Definition (1) in pp. 54]) as follows:

(L, A) - (L, B) ⇔ id(L,(An)n∈N+ ) : (L, (An)n∈N+) → (L, (Bn)n∈N+)
is an Agop-morphism.

More clearly, the preorder relation - on F((L, (An)n∈N+)) can also be expressed by

((L,≤1 ,⊥(1),>(1)), A) - ((L,≤2,⊥(2),>(2)), A)
⇔ [(≤1⊆≤2) and (⊥(1) = ⊥(2)) and (>(1) = >(2))]

for all ((L,≤1,⊥(1),>(1)), A), ((L,≤2,⊥(2),>(2)), A) ∈ F((L, (An)n∈N+)). Since -
is obviously a partial ordering relation on F((L, (An)n∈N+)), (Agop,U) is amnestic
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(see [1, 5.4 Definition (3) in pp. 54]). On the other hand, ( Agop,V ) forms a
concrete category over Pos where the forgetful functor V :Agop→Pos is defined by

V ((L, A)
f→ (K, B)) = (L,≤L)

f→ (K,≤K).

The fibre F((L,≤)) of a Pos-object (L,≤) is the class of all Agop-objects (L, A)
satisfying the condition V ((L, A)) = (L,≤). The preorder relation - on F((L,≤)),
defined by

(L, A) - (L, B) ⇔ id(L,≤L) : (L,≤) → (L,≤)
is an Agop-morphism

for all (L, A), (L, B) ∈ F((L,≤)), is obviously the equality relation on F((L,≤)).
Thus ( Agop,V ) is fibre-discrete (see [1, 5.7 Definition (2) in pp. 56]). Now let us
consider the class F∗(L) = {A | (L, A) ∈ F((L,≤))} of all aggregation operators
on a fixed poset L = (L,≤,⊥,>). The partial ordering relation ≤ on L can be
pointwisely extended to F∗(L), i. e. for A,B ∈F∗(L),

A ≤ B ⇔
(
∀x ∈

∪

n∈N+

Ln

)
(A(x) ≤ B(x)).

Defining the aggregation operators S,G :
∪

n∈N+ Ln → L by

S(α1, . . . , αn) =
{
>, if α1 = . . . = αn = >
⊥, otherwise

}

and G(α1, . . . , αn) =
{
⊥, if α1 = . . . = αn = ⊥
>, otherwise

}

for n ≥ 2, and S(α) = G(α) = α for n = 1, we observe that S and G are the least
and greatest elements of (F∗(L),≤).

5. CONCLUSIONS

In this paper, starting with the generalization of aggregation operators to posetus,
we have established the connections between aggregation operators and po-groupoids
in the sense of [3]. With the help of these connections, we have pointed out that
the category Pogpu of po-groupoids with universal bounds can be fully embed-
ded into the category of aggregation operators, and so aggregation operators are
some kinds of generalization of po-groupoid with universal bounds. Furthermore,
we have proven that the categories of associative aggregation operators, symmetric
and associative aggregation operators and monoidal aggregation operators are, re-
spectively, isomorphic to the subcategories of Pogpu consisting of po-semigroups,
commutative po-semigroups and po-monoids. This means that associative aggre-
gation operators, symmetric and associative aggregation operators and monoidal
aggregation operators are, respectively and essentially, the same as po-semigroups,
commutative po-semigroups and po-monoids in the sense of [3].
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Table 1. List of categories.

Abbreviation Category
Agop Aggregation operators
Asagop Associative aggregation operators
Smasagop Symmetric and associative aggregation operators
Monagop Monoidal aggregation operators
Pogp Partially ordered groupoids
Pogpu Partially ordered groupoids with universal bounds
Posmgu Partially ordered semigroups with universal bounds
Pomonu Partially ordered monoids with universal bounds
Cmposmgu Commutative partially ordered semigroups with universal bounds
Alg(Ω) Ω-algebras
Pos Partially ordered sets
Set Sets

(Received September 12, 2005.)
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