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In this paper we construct conditional states on semi-simple MV-algebras. We show
that these conditional states are not given uniquely. By using them we construct the joint
probability distributions and discuss the properties of these distributions. We show that
the independence is not symmetric.
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1. INTRODUCTION

It is a well-known fact that the classical probability space (Ω,S, P ) is a measurable
space with a fixed normalized measure (probability measure). This model was in-
troduced by Kolmogoroff in [9]. Afterwards he published a paper [10] on conditional
probability measures. These conditional probability measures are in fact derived
from the original one, P , restricting the σ-algebra S. This system has been studied
by many authors till nowadays.

Except of this (Kolmogorovian) model, also normalized measures (states) on more
general structures, such as von Neumann algebra, Hilbert space, quantum logic
(orthomodular lattice with states), etc. have been studied, e. g., in [1, 5, 7, 8, 12, 13,
15, 18, 25]. In 1958 and 1959 Chang published his papers [2, 3] where he introduced
the notion of an MV-algebra. An MV-algebra (or, more precisely, a semi-simple
MV-algebra) is in fact an algebra of fuzzy sets.

One of the basic problems on all those general structures is a correct definition of a
conditional state in such a way that, in the special case when the structures coincide
with the Boolean algebra (i. e. if we work with the classical probability space), we
would get the same results as those achieved in the Kolmogorovian models.

Our approach is based on a convex combination of some special states. This
model, on a quantum logic, was utilized in the paper [16]. It was shown there that,
in the case of a Boolean algebra, it gives the Full Probability Theorem. But notions
as independence or joint state (joint probability distribution on (Ω,S, P )) have, in
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some sense, the time-axis incorporated in themselves. However, this is not possible
in classical models.

In this paper we define the conditional states on semi-simple MV-algebras using
the above mentioned convex combinations. Using these conditional states we define
the joint states. It is shown in this paper that it is possible to define the joint states
also on MV-algebras which are not necessarily closed under product (in fact, which
are sub-MV-algebras of the so-called product MV-algebras). For results achieved on
product MV-algebras, see e. g. [6, 11, 19, 20, 21, 22, 23].

2. PRELIMINARIES

Definition 1. An MV-algebra is a 5-tuple (M,⊕, ∗, ∅, 1) such that (M,⊕, ∅) is an
Abelian monoid and moreover

• x∗∗ = x

• ∅∗ = 1
• x⊕ 1 = 1
• (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Moreover for all x, y ∈M we can define

x¯ y = (x∗ ⊕ y∗)∗

x ∧ y = (x⊕ y∗)¯ y

x ∨ y = (x¯ y∗)⊕ y

and then (M,∨,∧, ∅, 1) is a bounded distributive lattice with its top and bottom
elements 1, ∅, respectively.

Example 1 (system of functions). Denote by M a system of [0; 1]-valued func-
tions, which are closed under the following operations

(f ⊕ g)(x) = min(1, f(x) + g(x))
(f ¯ g)(x) = max(0, f(x) + g(x)− 1)

f∗(x) = 1− f(x)

and such that 0 ∈M. Then M is an MV-algebra (see [3], also [24]).

Definition 2. Let M be an MV-algebra. A function ν : M→ [0, 1] is said to be
a state iff ν(1) = 1 and

∀f, g ∈M : g ≤ 1− f ⇒ ν(f ⊕ g) = ν(f) + ν(g).

Definition 3. Denote M an MV-algebra and let ν : M→ [0, 1] be a state. Events
f, g ∈M will be called ν-orthogonal if ν(f ∧ g) = 0.
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Definition 4. Let M be an MV-algebra. f ∈M will be called crisp, if

f ∧ f∗ = 0.

An element, which is not crisp, will be called unsharp.

Definition 5. Denote M an MV-algebra and let ν : M→ [0, 1] be a state. We say
that γ : M×M→ [0, 1] is a conditional state if and only if the following conditions
are fulfilled for all f, g ∈M:
(C1) if ν(g) > 0, then γ(.|g) is a state

(C2) ν(f) = ν(g)γ(f |g) + ν(g∗)γ(f |g∗)
(C3) if f, g are ν-orthogonal to each other, then γ(f |g) = 0.

Definition 5 immediately implies the following

Lemma 1. Any g ∈M, such that ν(g) > 0, holds γ(1|g) = 1.

Lemma 2. Denote M an MV-algebra and let ν : M → [0, 1] be a state. Let
g ∈M be a crisp element. Then γ(·|g) is given uniquely.

P r o o f . If ν(g) = 0, then f and g are ν-orthogonal and hence γ(f |g) = 0 by
property (C3) of Definition 5.

If ν(g∗) = 0, then ν(g) = 1 and we get γ(f |g) = ν(f) by property (C2) of
Definition 5.

Otherwise, g ∈ M is a crisp element, hence g and g∗ are orthogonal and we get
for each f ∈M

f = (f ∧ g)⊕ (f ∧ g∗).

The orthogonality of g and g∗ implies

γ(f ∧ g|g∗) = γ(f ∧ g∗|g) = 0.

Hence

γ(f ∧ g|g) =
ν(f ∧ g)

ν(g)
, γ(f ∧ g∗|g∗) =

ν(f ∧ g∗)
ν(g∗)

.

The additivity of γ(·|g) implies the uniqueness. ¤

Denote (Ω,S, µ) a space with measure. In the whole paper M will denote an
MV-algebra of S-measurable functions from Ω to [0, 1], containing some unsharp
elements.

Denote ν(f) =
∫

f dµ, then ν is a state on M, i. e.

ν(f ⊕ g) = ν(f) + ν(g) if f ≤ (1− g). (1)
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3. CONSTRUCTION OF CONDITIONAL STATES ON MV-ALGEBRAS

Notation. Denote F the system of all S-measurable functions f : Ω → [0, 1]
(i. e., F is an MV-algebra with product) and T the system of all transformations
τ : M→ F such that for each f ∈M

1.
∫

f dµ =
∫

τ(f) dµ
2. for any x ∈ Ω such that f(x) = 0 or f(x) = 1 the following holds

(τ(f))(x) = f(x)

3. (τ(f∗))(x) = 1− (τ(f))(x).

We will assume that there is some element f ∈ M and some transformation
τ ∈ T such that τ(f) 6= f .

Theorem 1. Let τ ∈ T . Define for any f, g ∈M

γ(f |g) =





∫
f · τ(g) dµ∫
τ(g) dµ

if 0 < ν(g) ≤ 1

0 if ν(g) = 0.

(2)

Then γ is a conditional state.

Comment 1 (to Theorem 1). It might seem that the condition

γ(f |g) = 0 if ν(g) = 0

is not necessary. However, it is a consequence of the condition (C3) in Definition 5.

P r o o f o f T h e o r em 1 . First, assume that ν(g) = 1. Then, by the properties
of τ ∈ T we get τ(g) = g ν-almost surely and hence

γ(f |g) =
∫

f · τ(g) dµ =
∫

f dµ.

This means γ(.|g) fulfils all properties of a conditional state from Definition 5.
Assume now 0 < ν(g) < 1. We must prove that condition (C2) holds for γ(.|g).

The right-hand-side of Condition (C2) gives

ν(g)
∫

f · τ(g) dµ∫
τ(g) dµ

+ ν(g∗)
∫

f · τ(g∗) dµ∫
τ(g∗) dµ

=
∫

f · τ(g) dµ +
∫

f · τ(g∗) dµ

since the transformation τ preserves the state ν. Then we get
∫

f · τ(g) dµ +
∫

f · τ(g∗) dµ =
∫

f · τ(g) dµ +
∫

f · (1− τ(g)) dµ =
∫

f dµ = ν(f)

Property 2 of transformations from T gives γ(f |g) = 0, or γ(f |g∗) = 0, if f and g,
or f and g∗ are ν-orthogonal, respectively. This concludes the proof. ¤

Throughout this paper we will always denote by γ(.|.) the state given by formula
(2).
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Comment 2. The transformation τ can be understood as the way how we handle
the vague information (we do not transform values 0 and 1 of g in γ(·|g)) we are
apriori given by the condition g.

Definition 6. We say that event f is independent of g with respect to a conditional
state γ iff ν(f) = γ(f |g).

Comment 3. As we will see in the next example, the independence of event f on g
does not imply the independence of the event g on the event f . This nonsymmetric
relation of independence allows us to distinguish between a cause and its effects.
Similar results concerning the orthomodular lattices have been achieved also by
O. Nánásiová in [14, 15, 17, 16].

Next example shows how the independence works.

Example 2. Let Ω = [0; 1] and µ be the Lebesgue measure. Let τ be the trans-
formation given by

(τ(f))(x) =





1
µ(A(f))

∫

A(f)

f dµ iff f(x) ∈ ]0.5; 1[

1
µ(B(f))

∫

B(f)

f dµ iff f(x) ∈ ]0; 0.5[

f(x) otherwise

where A(f) = {x ∈ Ω; f(x) ∈ ]0.5; 1[} and B(f) = {x ∈ Ω; f(x) ∈ ]0; 0.5[}, provided
µ(A(f)) 6= 0, µ(B(f)) 6= 0. If e. g. µ(A(f)) = 0, we can put any value to (τ(g))(x)
for x ∈ A(f).

Take f(x) = x and g(x) = 1
2x. Then we get

(τ(f))(x) =





0.25 iff x ∈ ]0; 0.5[
0.75 iff x ∈ ]0.5; 1[
x otherwise

(τ(g))(x) =
{

0.25 iff x ∈ ]0; 1[
x otherwise.

Now, compute the conditional state

γ(f |g) =

∫ 1

0
f · τ(g) dµ
∫ 1

0
g dµ

= 0.5 = ν(f)

γ(g|g) =

∫ 1

0
g · τ(g) dµ
∫ 1

0
g dµ

= 0.25 = ν(g)

γ(g|f) =

∫ 1

0
g · τ(f) dµ
∫ 1

0
f dµ

=
5
16

6= ν(g) = 0.25

γ(f |f) =

∫ 1

0
f · τ(f) dµ
∫ 1

0
f dµ

=
5
8
6= ν(f) = 0.5.
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Hence we get that f is independent of g and also g is independent of itself. On the
other hand, g is dependent on f and f is also dependent on f .

The definition of the conditional state γ, formula (2), immediately gives the
following:

Theorem 2. (a) Let f ∈ M be µ-almost surely a constant function. Then
γ(f |f) = ν(f).

(b) Let τ ∈ T . Then the following holds: if τ(f) is µ-almost surely a constant
function, then γ(f |f) = ν(f).

Comment 4 (to Theorem 2). Event f depends on g, roughly speaking, if the
knowledge that g has occurred, gives an additional information on f . If f is constant
then, whatever g is, we have no additional information on f – even if g and f are
the same elements! In fact, it is just a generalisation of that what happens in a
Boolean algebra. 0 and 1 are the only constants there and they are independent of
themselves.

Once having defined the values γ(f |g) for any pair f, g of elements of the MV-
algebra M, we can define also the two-dimensional joint distribution on M×M –
the measure (probability) of occurrence of this pair f, g.

Definition 7. The joint distribution of a pair f, g ∈M will be denoted by p(f, g)
and defined as

p(f, g) = γ(f |g)γ(g|1) (3)

If γ is defined as in Theorem 1 we get from formulas (2) and (3)

p(f, g) =
∫

fτ(g) dµ, (4)

where τ is a given transformation from T . Particularly, if τ is the identity, we get

p(f, g) =
∫

fg dµ

which is the joint distribution, additive in both variables. In general f · g 6∈ M.
However, it is possible to compute that value, since f · g ∈ F .

Comment 5. The joint distribution is not an intersection of f and g, since in
formula (4) we use a transformation τ . In fact, it represents the interaction of f and
g. And the interaction can be different if we change the order.
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Theorem 3 (basic properties of p). Let p be a joint distribution on the MV-
algebra M and f, g be any elements of M. Then

1. p(f, 1) = p(1, f) = ν(f)
2. p(f, g) = p(g, f) = 0, if f and g are ν-orthogonal
3. max{0, ν(f) + ν(g)− 1} ≤ p(f, g) ≤ min{ν(f), ν(g)}.

Particularly
max{0, 2ν(f)− 1} ≤ p(f, f) ≤ ν(f)

4. p(f1 ⊕ f2, g) = p(f1, g) + p(f2, g) iff f1(x) + f2(x) ≤ 1 for any x ∈ Ω.

P r o o f . We show the property 3. p(f, g) =
∫

f · τ(g) dµ, hence

p(f, g) ≤ min{ν(f), ν(τ(g))} = min{ν(f), ν(g)}
since the transformation τ is measure preserving. Similarly,

p(f, g) ≥ ν(f) + ν(τ(g))− 1 = ν(f) + ν(g)− 1

since p is a joint probability distribution of f and τ(g).
The proof of the other properties is straightforward given by formula (4) and by

the properties of the transformation τ . ¤

The next example shows that the variables of p need not commute, i. e., for a
suitably chosen transformation τ there exist elements f, g ∈ M such that p(f, g) 6=
p(g, f).

Example 3. Assume that Ω = [0; 1] and µ is the Lebesgue measure. For any
element f of M let the transformation τ be defined by the following

(τ(f))(x) =





0, if f(x) = 0
1, if f(x) = 1

1
µ(A(f))

∫
A(f)

f(x) dµ(x)
otherwise

where A(f) = {x; 0<f(x)<1} (of course, the last item holds provided µ(A(f)) > 0).
Let f(x) = x and g(x) = max{0, x−0.5}. Then

(τ(f))(x) =





0, if x = 0
1, if x = 1
0.5 otherwise

(τ(g))(x) =
{

0, if x ≤ 0.5
0.25 if x > 0.5.

Then

p(g, f) =
∫ 1

0

0.5g dµ = 0.5
∫ 1

0.5

(0.5− x) dµ =
1
16

p(f, g) =
∫ 1

0.5

0.25xdµ =
1
4

3
8

=
3
32

p(f, f) =
∫ 1

0

0.5x dµ =
1
4

p(g, g) =
∫ 1

0.5

0.25(x− 0.5) dµ =
1
32

.
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4. CONDITIONING WITH MORE CONDITIONS

If we add one dimension to the conditional state, we get three-dimensional condi-
tional states. They can be of two different types. Either we condition two elements
of the MV-algebra M by a third one, or we condition one element by two other ones.
These two, in fact different states are linked to each other. This is the reason, why
they are defined in one batch. Their definition is the following:

Definition 8. Three-dimensional conditional states γ2,1 : M×M×M→ [0, 1] and
γ1,2 : M×M×M→ [0, 1] are defined by the following formulas (f1, f2, f3 ∈M):

γ2,1(f1, f2|1) = γ2,1(f1, f2|f3)ν(f3) + γ2,1(f1, f2|f∗3 )ν(f∗3 )
γ1,2(f1|1, f3) = γ1,2(f1|f2, f3)γ2,1(1, f2|f3) + γ1,2(f1|f∗2 , f3)γ2,1(1, f∗2 |f3)

γ2,1(f1, f2|f3) = γ1,2(f1|f2, f3)γ2,1(1, f2|f3)

with the following properties:
1. γ1,2(·|f2, f3) : M→ [0, 1] is a state
2. γ2,1(·, ·|1) : M×M→ [0, 1] has the properties of two-dimensional joint distri-

bution
3. if ν(f1 ∧ f2 ∧ f3) = 0, then γ2,1(f1, f2|f3) = γ1,2(f1|f2, f3) = 0.

Theorem 4. Let τ1, τ2 ∈ T be some transformations. Then γ1,2 : M×M×M→
[0, 1] and γ2,1 : M×M×M→ [0, 1] defined by

γ1,2(g|f1, f2) =

{ R
g·τ1(f1)·τ2(f2) dµR
τ1(f1)·τ2(f2) dµ

, if
∫

τ1(f1) · τ2(f2) dµ 6= 0
0, otherwise

(5)

γ2,1(g, f1|f2) =

{ R
g·τ1(f1)·τ2(f2) dµR

τ2(f2) dµ
, if

∫
τ2(f2) dµ 6= 0

0, otherwise
(6)

are three-dimensional conditional states.

P r o o f of this statement is just a slight modification of that of Theorem 1. That
is way it is omitted.

For the conditional state γ1,2(·|·, ·) the following holds

Lemma 3. Let γ1,2 be a three-dimensional conditional state defined by formula 5
and let g, f1, f2 be any elements ofM. Then, in general, γ1,2(g|f1, f2) 6= γ1,2(g|f2, f1).
Particularly, there exist transformations τ1, τ2 and elements g, f1 such that

γ1,2(g|1, f1) 6= γ1,2(g|f1, 1).

We have γ1,2(g|1, f1) 6= γ1,2(g|f1, 1). Of course, in each of these two cases we
can omit 1 and get (two-dimensional) conditional states (defined by Definition 5).
However, these conditional states are different. By using the three-dimensional con-
ditional states, we can define a three-dimensional joint distribution
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Example 4. Assume that Ω = [0; 1] and µ is the Lebesgue measure. For any
element f of F let the transformation τ2 be defined by the following

(τ2(f))(x) =





f(x), if f(x) ∈ {0, 0.5, 1}

1
µ(A(f))

∫
A(f)

f(x) dµ(x), if 0 < f(x) < 0.5

1
µ(B(f))

∫
B(f)

f(x) dµ(x), if 0.5 < f(x) < 1,

where A(f) = {x; 0 < f(x) < 0.5}, B(f) = {x; 0.5 < f(x) < 1} (of course, the last
two items hold provided µ(A(f)) > 0 and µ(B(f)) > 0).

Further, put

(τ1(f))(x) =

{
f(x), if f(x) ∈ {0, 1}

1
µ(C(f))

∫
C(f)

f(x) dµ(x), if 0 < f(x) < 1

where C(f) = {x; 0 < f(x) < 1} (the second item holds provided µ(C(f)) > 0).
Let f, g, h ∈M be the following functions: g(x) = x,

f(x) =
{

x, if x ≤ 0.5
1− x, if x > 0.5,

h(x) =
{

0, if x ≤ 0.5
2(x− 0.5), if x > 0.5.

Then

(τ2(h))(x) =





0.25, if 0.5 < x < 0.75
0.75, if 0.75 < x < 1
h(x), otherwise

(τ2(g))(x) =





0.25, if 0 < x < 0.5
0.75, if 0.5 < x < 1
g(x), otherwise

(τ1(g))(x) =
{

1, if x = 1
1
2 , otherwise

(τ1(h))(x) =





0, if x ≤ 0.5
1
2 , if 0.5 < x < 1
1, if x = 1.

Hence
γ1,2(f |g, h) =

3
16

, γ1,2(f |h, g) =
1
4

= ν(f),

i. e. f is dependent on the pair (g, h), but independent of (h, g).

Definition 9. The three-dimensional joint probability distribution, p3 : M×M×
M→ [0, 1], will be defined by

p3(f1, f2, f3) = γ1,2(f1|f2, f3) · γ2,1(1, f2|f3) · γ1,2(f3|1, 1).

Basic properties of p3 are the following:
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Theorem 5. Let p3 be a three-dimensional joint probability distribution and let
f1, f2, f3 be any elements of M. Then the following hold

1. p3(f1, 1, 1) = p3(1, f1, 1) = p(1, 1, f1).
2. In general, any two permutations of arguments in p3 may have different values.

Particularly, there exist transformations τ1, τ2 and elements f1, f2 such that

p3(1, f1, f2) 6= p3(f1, 1, f2) 6= p3(f1, f2, 1).

3. p3 is additive in the first variable.
4. If any two elements out of f1, f2, f3 are ν-orthogonal, p3(f1, f2, f3) = 0.

P r o o f . In fact, p3(f1, f2, f3) =
∫

f1 · τ1(f2) · τ2(f3) dµ where τ1, τ2 ∈ T . If we
choose elements f1, f2 and transformations τ1, τ2 in such a way that

f1 6= τ1(f1), f2 6= τ1(f2) 6= τ2(f2),

we get
p3(1, f1, f2) 6= p3(f1, 1, f2) 6= p3(f1, f2, 1).

All the other properties are straightforward, implied by the properties of transfor-
mations from T . ¤

Comment 6. In Theorem 5 we have p3(1, f1, f2) 6= p3(f1, 1, f2) 6= p3(f1, f2, 1).
We can omit 1 in p3(f1, 1, f2) and p3(f1, f2, 1), and get two-dimensional joint dis-
tributions. But if τ1 6= τ2, in each case we get a different two-dimensional joint
distribution. However, if we put p̃(f1, f2) = p3(1, f1, f2), then p̃ is not additive in
the first variable.

Comment 7. The fact that the order of the conditions can influence the value of
the corresponding conditional state – and hence also the dependence or independence
– may be important by time series analysis.

4.1. Some special transformations

In this section we show some special transformations by using of which the corre-
sponding conditional states γ2,1 and the three-dimensional joint distributions are
monotone. In what follows, for each f ∈ M, we denote f̃ : Ω × [0, 1] the two-place
function given by

f̃(x, y) = f(x).

λ will denote the usual Lebesgue measure.

Notation. Let F2 denote the system of all functions from Ω × [0, 1] to [0, 1].
We denote E the family of all transformations η : M → F2 fulfilling the following
properties for all f ∈M and all x ∈ Ω:

1. (η(f)) (x, ·) : [0, 1] → [0, 1] is a Lebesgue measurable function;

2. f(x) =
∫ 1

0
(η(f)) (x, y)λ(dy);
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3. if for any g ∈M f(x) ≥ g(x) then for all y ∈ [0, 1]

(η(f)) (x, y) ≥ (η(g)) (x, y);

4. if f(x) ∈ {0, 0.5, 1}, then (η(f)) (x, y) = f(x);
5. if f(x) < 0.5 then for all y ∈ [0, 1]

(η(f)) (x, y) = 1− (η(f∗)) (x, y).

Theorem 6. Let η2, η3 ∈ E and γ1,2 : M×M×M→ [0, 1] and γ2,1 : M×M×
M→ [0, 1] be defined by

γ1,2 (f1|f2, f3) =

{ R R 1
0
ef1·η2(f2)·η3(f3) dλ dµR
η2(f2)·η3(f3) dµ

, if
∫

η2 (f2) · η3 (f3) dµ 6= 0
0, otherwise

(7)

γ2,1 (f1, f2|f3) =

{ R R 1
0
ef1·η2(f2)·η3(f3) dλ dµR

f3 dµ
, if

∫
f3 dµ 6= 0

0, otherwise.
(8)

Then γ1,2 and γ2,1 are three-dimensional conditional states with the following prop-
erties:

γ1,2(f1|f2, 1) = γ1,2(f1|1, f2)
γ2,1(f1, f2|1) = γ2,1(f2, f1|1)

γ2,1(f1, f2|f3) 6= γ2,1(f2, f1|f3)

γ2,1(·, ·|·) is additive in the first and monotone in the second variable.

P r o o f . In fact, we have embeded the MV-algebra M into an MV-algebra M̃
by putting Ω̃ = Ω × [0, 1]. I.e., γ1,2 and γ2,1, just defined, are conditional states in
the sense of Definition 8. The monotonicity of γ2,1 in the second coordinate is given
by choosing the transformation η2 ∈ E . Furthermore, for any f1, f2 ∈ M and any
x ∈ Ω we get ∫ 1

0

f̃1(x, y) · (η2(f2))(x, y)λ(dy) = f1(x) · f2(x).

This implies the propertis of γ1,2 and γ2,1. ¤

Example 5. Let Ω = [0, 1] and µ the Lebesgue measure. Put f1(x) = 0.5, f2(x) =
0.75, f3(x) = 1

2 (x + 1). Let the transformations η2, η3 ∈ E be the following

(η2(g)) (x, y) =





g(x), if g(x) ∈ {0, 0.5, 1},
1
2 (1 + (1− y)z) , if g(x) ∈]0.5, 1[,
1− 1

2 (1 + (1− y)z) , if g(x) ∈]0, 0.5[,

(η3(g)) (x, y) =





g(x), if g(x) ∈ {0, 0.5, 1},
1
2 (1 + yz) , if g(x) ∈]0.5, 1[,
1− 1

2 (1 + yz) , if g(x) ∈]0, 0.5[,
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where z =
2− 2g(x)
2g(x)− 1

.

Then
γ2,1(f1, f2|1) = γ2,1(f2, f1|1) =

3
8

γ2,1(f1, f2|f3) =
3
16

+
ln 2
8

.= 0.274

γ2,1(f2, f1|f3) =
3
8

= γ2,1(f2, f1|1). ¤

As a corollary to Theorem 6 we get the following:

Theorem 7. Let η2, η3 ∈ E , γ2,1 : M×M×M→ [0, 1] be the three-dimensional
conditional state, defined by formula (8) and let p3 : M×M×M→ [0, 1] be defined
by

p3(f1, f2, f3) = γ2,1 (f1, f2|f3) · γ2,1(1, f3|1).

Then p3 is additive in the first variable and monotone in the second and third vari-
ables. Moreover, the following hold for the two-dimensional marginal distributions

• p3(f1, f2, 1) = p3(f2, f1, 1) = p3(f1, 1, f2) = p3(f2, 1, f1)
• p3(1, ·, ·) is monotone in both variables, but in general, they do not commute.

5. SOME COMMENTS CONCERNING OBSERVABLES
AND THEIR JOINT DISTRIBUTION

First we recall the definition of a tribe and of an observable (see [4]).

Definition 10. An MV-algebra M will be called a tribe iff for any non-decreasing
sequence of elements {fi}∞i=1 the following holds

∞∨

i=1

fi = f ∈M.

From now on we will assume the MV-algebra to be a tribe.

Definition 11. An observable is a mapping λ from Borel sets B into the MV-
algebra M such that

• λ(R) = 1
• If A ∩B = ∅, then λ(A ∪B) = λ(A)⊕ λ(B) and λ(A) ≤ λ(B)∗

• If An ↗ A, then λ(An) ↗ λ(A).

In a natural way for each observable λ we can define also its cumulative distribu-
tive function Fλ and its expectation E(λ) by

Fλ(x) = ν (λ(]−∞; x]))
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E(λ) =
∫ ∞

−∞
xFλ(dx)

(provided that it exists.)
Making a parallel to the joint distribution p from Definition 7, we can define the

joint probability distribution Pλ,κ for any pair of observables λ and κ by

Pλ,κ(A, B) = p(λ(A), κ(B))

where A,B are Borel sets. This can be interpreted as the measure of interaction of
the observables λ and κ. The basic properties of Pλ,κ can be just rewritten from
Theorem 3. It is also possible to define the mean interaction of the observables λ
and κ, denoted by C(λ, κ), as follows

C(λ, κ) =
∫ ∞

−∞

∫ ∞

−∞
(x− E(λ))(y − E(κ))Fλ,κ(dx,dy)

where Fλ,κ(x, y) = Pλ,κ(]−∞; x], ]−∞; y]) is the joint cummulative probability dis-
tribution. The investigation of the joint probability distributions (the interactions)
of observables and of the corresponding mean interactions will be the topic of a
next paper. Here we would like to point just to one very important property of the
introduced notions, namely to the non-commutativity of the variables (observables)
in the joint distribution Fλ,κ and in the mean interaction C(λ, κ).

ACKNOWLEDGEMENT

This work was supported by Science and Technology Assistance Agency under the contract
No. APVT-20-003204, and by the VEGA grant agency, grant numbers 1/3006/06 and
1/3014/06.

(Received May 11, 2005.)

REFERENCES

[1] E. Beltrametti and G. Cassinelli: The logic of quantum mechanics. Addison–Wesley,
Reading, Mass. 1981.

[2] C.C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88
(1958), 467–490.

[3] C.C. Chang: A new proof of the completeness of the ÃLukasiewicz axioms. Trans.
Amer. Math. Soc. 93 (1959), 74–80.

[4] F. Chovanec: States and observables on MV-algebras. Tatra Mountains Math. Publ.
3 (1993), 55–63.

[5] S. P. Gudder: An approach to quantum probability. In: Proc. Conf. Foundations of
Probability and Physics (A. Khrennikov, ed.), Q. Prob. White Noise Anal. 13 (2001),
WSP, Singapure, pp. 147–160.
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