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ESTIMATES FOR PERTURBATIONS OF AVERAGE 
MARKOV DECISION PROCESSES WITH A MINIMAL 
STATE AND UPPER BOUNDED BY STOCHASTICALLY 
ORDERED MARKOV CHAINS 

R A U L M O N T E S - D E - O C A AND F R A N C I S C O SALEM-SILVA* 

This paper deals with Markov decision processes (MDPs) with real state space for which 
its minimum is attained, and that are upper bounded by (uncontrolled) stochastically 
ordered (SO) Markov chains. We consider MDPs with (possibly) unbounded costs, and 
to evaluate the quality of each policy, we use the objective function known as the average 
cost. For this objective function we consider two Markov control models P and P i . P and 
Pi have the same components except for the transition laws. The transition q of P is taken 
as unknown, and the transition q\ of Pi , as a known approximation of q. Under certain 
irreducibility, recurrence and ergodic conditions imposed on the bounding SO Markov chain 
(these conditions give the rate of convergence of the transition probability in t-steps, t = 
1,2,... to the invariant measure), the difference between the optimal cost to drive P and 
the cost obtained to drive P using the optimal policy of Pi is estimated. That difference 
is defined as the index of perturbations, and in this work upper bounds of it are provided. 
An example to illustrate the theory developed here is added. 
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1. INTRODUCTION 

This paper concerns with Markov Decision Processes (MDPs) with real s ta te space 
for which its minimum is at tained, and tha t are upper bounded by (uncontrolled) 
stochastically ordered Markov Chains. The MDPs, considered (possibly) have an 
unbounded one-step cost function. The quality of each policy will be evaluated by 
the objective function (or the performance index) known as the average cost. Denote 
it by J ( I I , x) , where II is the policy tha t drives the system, and x is the initial s tate . 
Now consider the following: 

There are two Markov control models (see [7] and [8]): P and P i , and we suppose 
tha t they have the same state and action spaces, and the same one-step cost function, 
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but different transition probability laws. They are denoted by q and q\, respectively. 
It is supposed that q\ is known but near, in the sense of the total variation metric, 
to the "unknown" transition probability law q. Since q is unknown, q\ will be used 
as an approximation of q to find an optimal control for Pi and then it will be used 
to control P. Hence, assuming the existence of stationary optimal policies /* and 
/* for P and Pi, respectively, the additional cost can be evaluated when using /j* to 
control P, instead of /*, by means of the so-called Index of Perturbations (see, for 
instance, [1, 2, 3, 5, 6] and [14]). For the average case, this Index is defined as: 

A{x):=J(K,x)-J(f*,x), (1.1) 

where x is the initial state. 

The main goal of the present paper is to find a measure for the perturbation of 
the MDP generated for P. That means an inequality with the following structure is 
wanted to be found for an upper bound for Index (1.1): 

A(x)<MTx(\\q-qi\\) (1.2) 

where M is a constant, and rx(-) is a function such that Tx(y) —> 0 if y —> 0, and x 
is the initial state. 

For the discounted case, i. e. when the objective function is the total discounted 
expected cost V^n, x), where n is the policy that drives the system, and x is the 
initial state; upper bounds have been obtained as in (1.2), for the corresponding 
Index of Perturbations i. e., 

A1(x):=V(K,x)-V(f\x), (1.3) 

where /* and /j* are optimal policies for P and Pi, respectively (see, e.g. [2, 3, 5] 
and [6]). (Also look at [1] for the case of total cost with finite horizon.) 

In this paper, for MDPs with real state space for which its minimum is attained; 
the Zolotarev's Method will be used (see [17]) to reduce the problem to one of 
the perturbation of uncontrolled processes. Here, the rate of convergence provided 
by Stochastically Ordered (SO) Markov chains that satisfy certain irreducibility, 
recurrence and ergodic conditions will be applied (see [12]). With this new rate 
of convergence, it will be discovered that the term rx( | |g — gi||) can be calculated 
explicitly in a simple way and more precise bounds are expected. 

In order to use the rate of convergence of the SO it will be supposed that the 
MDPs are upper bounded for SO Markov chains. 

The paper is organized as follows. Firstly, in Section 2 we present the basics on 
stochastically ordered Markov chains including the main assumption (Assumption 
2.1) that assures the rate of convergence. Secondly, in Section 3 we give the pre
liminaries about average MDPs. Section 4 provides the main result of the paper 
(Theorem 4.1). Sections 5 and 6 complete the proof of Theorem 4.1. Finally, in the 
last section an example is presented. 
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2. STOCHASTICALLY ORDERED MARKOV CHAINS 

Notation and terminology 

Let Y = {yt} be a homogeneous Markov chain with values in the state space X with 
discrete time t = 0 ,1 ,2 . . . , and with transition kernel p(B\x), B G B(X), x G X 
where B(X) denotes the sigma-algebra of Borel of X. 

Let Px and Ex be respectively the probability law and the expectation of the 
chain under the initial condition yo = x G X. 

The transition probabilities in £-steps of the chain are denoted by pt(B\x), x G X 
B G B(X), i. e. pl(B\x) = Px[yt G B], t = 0 ,1 ,2 , . . . 

For x G X, B,D e B(X), and, t = 0,1,2, . . . , it is written: 

BPl(D\x) := Px[yt G D and Vj £ B for 1 < j < t - 1]. (2.1) 

Let M := {/i|/x be a probability on B(X)}, and let B M := {# : X —• R : g is 
measurable and bounded}. 

Denote by ||-|| the total variation metric defined on M, i.e. for /xi, [i2 G M, 

H/X! —/x2|| := 2 sup { ^ ( D ) - / i 2 ( D ) | } , (2.2) 
DGB(X) 

or equivalently, 

llMi - //2|| := sup I / f̂d/xi - / gdfi2 : g G B M and |p| < 1 > . (2.3) 

Remark 2 .1 . For random elements x a n ( i K taking values in Ar, we write 

I I X - K | | = I I / * X - M * H » 

where /xx and /xK are the distributions of x a n d K, respectively. 
/i G M is supposed to be invariant (with respect to the Markov chain Y = {yt}) 

if it has the property that 

fi(D) = f p(dy\x)fi(dy)) (2.4) 
JD 

where D G B(X), x G X. 

The Markov chain V = {?/t} is said to be Harris-recurrent if there exists a non-
trivial cr-finite measure 7 such that 

Px[ytGB for some t] = 1, (2.5) 

for all x G X whenever B G B(X), satisfies j(B) > 0. 

It is said that a Harris-recurrent Markov chain Y = {yt} is positive if it has an 
invariant probability measure mY, i.e. ray is a probability measure and satisfies 
(2.4). 
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Stochastically ordered Markov chains 

This paper specifically deals with a Markov chain Y = {yt} having state space X of 
the form: [d, oo), d G R, or more concretely of the form X = [0, oo), for simplicity. 

Remark 2.2. The important clue is that the state space has a minimal element 
(see, [12]). Due to this fact let us obtain explicit bounds on the rate of convergence 
to the invariant measure. 

Let x, y G X. Consider the canonical probability spaces (ft, F, Px) and (ft, F, Py) 
induced by the kernel p and the initial distributions Sx and Sy (here 8X and 5y denote 
the probabilities concentrated in x, and y, respectively), in which it is possible to 
define two copies of the chain Y\ = {y\}, Y<i = {y2}, respectively, whenever y\= x 
and yl = y. Hence, taking the product space (ft x ft, F x F, Px x Py) = (ft*, F*, F*) 
the chains Y1 and Y2 can be described jointly (see [10]). 

Let W and Z be nonnqgative random variables defined on the probability space 
(ft ' jF' jP') . W is considered to be stochastically larger than Z if P'[W < x] < 
P'[Z < x] for all xeR. 

The chain Y = {yt} is stochastically ordered (or stochastically ordered in its 
initial state) if for two copies of the chain Y1 = {y}}, Y2 = {y2}, whenever y$=x 
and y2 = y and y < x, then y1 is stochastically larger than y2 for all t > 1, i.e. 
P*[yl <z]< P*[y? < z] for all z G R and t > 1, where F* := Pxx Py. 

Besides it is supposed that the chain Y = {yt} is pathwise ordered if for two 
copies of the chain Y1 = {y1}, Y2 = {y2}, whenever y$=x and y2 = y and y < x, 
then y2(uj) < y\(u) for all UJ G ft* = ft x ft. 

Remark 2.3. As it was mentioned in [12] (see also, [10]), if the chain is stochasti
cally ordered but not pathwise ordered, then it is possible to change the underlying 
probability space and construct a new chain that is pathwise ordered and distribu-
tionally equivalent to original chain. Hence, it is possible to assume that a ordered 
chain is pathwise ordered. 

Assumption 2 .1 . Let Y = {yt} be a Markov chain. Suppose that 

(a) For each xG X, there exists a positive integer t* such that {o}Pt+ ([̂ > oo)|0) > 0; 

(b) Y is stochastically ordered; 

(c) Let To = inf{£ > 0 : yt = 0}. For each x e X we assume that EX(TQ) < oo; 

(d) There exists L : [0,oo) —> [l,oo) with L(0) = 1 and constants A and b with 
0 < A < 1 , 0 < b < o o , such that, 

JL(y)p(dy\x) < XL(x) + bl{0}(x), (2.6) 

where x G X and I*{0} denotes the indicator function of the set {0}. 
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Remark 2.4. The conditions in Assumption 2.1 are the same that appear in [12], 
except for Assumption 2.1(c).' In [12] is assumed the existence of the invariant 
measure. Notice that latter is implied by Assumption 2.1(c). 

Now, the result that provides the rate of convergence of the transition probabil
ities p t(-|x), x G X to the invariant measure ray (when there are) in the sense of 
the total variation metric (see Assumption 2.1(c)), is presented without proof. This 
proof can be found in Lund and Tweedie [12]. 

Lemma 2.1. Let Y = {yt} be a Markov chain. Suppose that Assumption 2.1 
holds. Then, for each t = 0,1,2 .. . , 

Hp'U*)- mY(-)ll <r-*Mr), (2-7) 

for all r < A"1 and x e X, where hx(r) = Evr
TQ, v = ma,x{Z,x}, and Z is a random 

variable with distribution ray, and 

hx(r) < Ex[rT*] + 6/(1 - A) < oo, (2.8) 

To = inf{£ > 0 : yt = 0}, and b and A are the constants in Assumption 2.1. 

Remark 2.5. a) In Section 7 an example that satisfies the assumptions of Lemma 
2.1, is presented. 

b) Notice that from (2.7) and (2.8), for each x e X, 

| | P t ( - | - r ) - r a y ( . ) | | - 0 , *->oo. 

3. AVERAGE MARKOV DECISION PROCESSES 

In this section a special kind of MDPs, is shown; i. e. MDPs satisfying the condition 
that both the state of space and the action space are subsets of R, are dealt with. 

Specifically, let P = (X,A,{A(x) : x G X},q,c) be a standard Markov control 
model (see, [7]) which consists of the state space X, the action space A. Both X and 
A are assumed to be measurable subsets of R endowed with the usual metric, and 
in fact, it is supposed that X = [0, oo) (see Remark 2.1). The sets A(x), x G X are 
nonempty measurable subsets of A, and represent the constrained action sets. Let 
K= {(x,a) : x G X,a G A(x)}, which is considered to be measurable in the product 
X x A. The transition law q is a stochastic kernel of X given K (i.e. q(-\x,a) is a 
probability measure on X, for each (x,a) G K, and q(B\') is a measurable function 
on K, for each measurable set B C I ) , and the one-step cost c : K —> R is a 
measurable function. 

A policy is defined as a sequence II = {iTt} satisfying that, for each t = 0 ,1 ,2 , . . . , 
7rt is a stochastic kernel of A given Ht, where Ht denotes the set of all admissible 
histories ht = (x0,a0,xi,ai,... ,xt-i,at-i,xt), with (xi,ai) G K, i = 0 , 1 , . . . ,t - 1, 
x e X, and irt concentrated on A(xt). 
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Let A be the set of all policies, and let F denote the set of all measurable functions 
/ : X -> A such that f(x) G A(x), for all x£X. 

A policy II = {7rt} is called stationary if there exists / G F such that for each 
t = 0 , 1 , . . . , nt is concentrated on f(x) if xt = x. In this case, we identify II with / , 
and the set of all stationary policies with F. 

Remark 3.1. It is well-known (see, [7] and [8]) that a MDP in which a stationary 
policy g G F is used to drive the system gives that the sequence of states {xt} is 
a homogeneous Markov chain with stationary transition kernel given by p(-\x) :=-
q(-\x,g(x)) , x G X. This is the connection with the previous section. On the other 
hand, taking in account a stationary policy g G F, the corresponding state process 
is denoted by {xf}. 

Given a policy II G A and x G X, P™ stays for the probability measure induced 
in canonical way by the model P (see, [9] for the construction of -Pj1), and E^ stays 
for the expectation corresponding to P*}. 

Let P = (X, A, {A(x) : x G X}, r/, c) be a Markov control model. 
The long-run expected average cost (AC) while using a policy IT, given the initial 

state xo = x, is defined as: 

Ex [SETo1 c(zt,at)l 
J(IL,x) :=limsup - -k (3.1) 

n—•oo fl 

A policy II* G A is AC-optimal if, 

J (n* ,x) = inf J ( n , x ) , x G X, (3.2) 

and the optimal AC-function is designated as: 

J*(x) := inf J ( n , x ) , x G X. (3.3) 

The following Assumption is supposed to be valid throughout the paper: 

Assumption 3.1. 

(a) The existence of a stationary policy / which is AC-optimal is assumed. 

(b) It is also supposed that for every stationary policy / G F, the average cost 
J ( / , •) is a constant J(f) given by 

J(f,x) = J(f) = Jc(y,f(y))mf(dy), (3.4) 

where m/ is invariant probability corresponding to the stochastic kernel induced by 
/ and x € X. 
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Remark 3.2. 

(a) For sufficient conditions for Assumption 3.1(a), see Assumptions 2.1, 2.2 and 
2.3 in [4]. 

(b) Sufficient conditions for Assumption 3.1(b) are the following: for bounded cost, 
see Section (3.3) in [7], and for unbounded cost, see Assumptions 2.1, 2.2 and 
2.3 in [4]. 

4. BOUNDS FOR THE INDEX OF PERTURBATIONS 

Let P = (X,A,{A(x) : x G X},q,c) and Pi = (X,A,{A(x) : x G X},qx,c) be 
two average Markov control models. Both of them satisfy the definitions and the 
Assumption 3.1 of the previous section. 

Remark 4.1. 

(i) Notice that P and Pi defer only in the transition probability, but q is supposed 
to be unknown and q\ is an approximation known of q. 

(ii) Let F and Fi be the corresponding sets of stationary policies for the models P 
and Pi, respectively. Observe that F = Fi, since P and Pi have the same state 
and action spaces. 

(iii) Given an initial state x and stationary policies / and g, there exist canonical 
spaces ( f i ' ,F ' ,P / ) and (CV,F',P9) to describe, in particular, the processes 
{x{} and {x9}, respectively (see Section 3). Notice that they have the same 
measurable space (fi',F') (see [9]). 

Assumption 4.1. There is a stationary policy g for which the following points 
hold, considering the Markov chain {x9} (see, Remark 3.1): 

(a) The Assumption 2.1, for some constants A and b with 0 < A < 1, 0 < 6 < oo, 
and function L : [0,co) —* [l,oo), it is also supposed that the function L is 
increasing; 

(b) Let x G X. If xf
Q = x9

0 = x, then x{(u) < x9
t(u), for all / G F, u> G fi' and 

t = 1,2, (Here fi' is the set defined in the canonical space - see Remark 
4.1(iii).) 

Moreover, we assume: 

(c) There exists a constant s > 1 such that 

sup \c(x,a)\ < [L(x)]«, x G X. (4.1) 
aGA(x) 

Assumption 4.2. For the model Pi there exists a stationary policy g\ such that 
Assumption 4.1 holds for the transition kernel qi with the same A, b, s and L. 
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Remark 4.2. 

(a) Notice that as L is increasing, then for both models P and Pi it can be applied 
that 

J L(y)q(dy\x,f(x)) < \L(x) + bl{0}(x), (4.2) 

and 

JL(y)ql(dy\x,fl(x)) < \L(x)+bl{0}(x), (4.3) 

where A, b are the constants in Assumptions 4.1 and 4.2, / , f\ G F, and x € X. 

(b) Under Assumption 3.1(a) there exist /* and fl stationary average optimal 
policies for P and Pi, respectively. 

Remember that the Index of Perturbations has already been defined as: 

A(z) := •/( /! ,*) - J{f\x),x G X. (4.4) 

Notice that A(x) > 0, for all x e X. 

Theorem 4.1. Consider the models P and Pi. Suppose that Assumption 3.1 holds 
for both of these models, and let /*, /* G F be average optimal policies for P and 
Pi, respectively. Also, suppose that Assumption 4.1 and 4.2 hold. Then 

A(x) < 2 (Y^J + 2rhx(r) + l) S^1 max{l,logp<>} , (4.5) 

where 5 = supx G X supa(EA(x) ||cIi (-\x,a) - q (-\x,a)\\ and p = £. 

Remark 4.3. If the models P and Pi are obtained by the recurrent equations 

xt+i =F(xt,at,Zt), (4.6) 

and 
xt+i =F(xt,at,lt), (4.7) 

£ = 0,1,2, . . . , respectively, it can be proved (see [6]) that 

8-1 

5^ma.x{l,\ogp5} < ^ - ^ | * , (4.8) 

provided that ||/i£ — /x?|| < e717-", where /i£ and fi7 are the distributions of £ and £, 
respectively. 
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5. TECHNICAL PRELIMINARIES 

Lemma 5.1. Under Assumption 4.1, for each / G F, there exists an invariant 
(actually the limit, in the sense of the total variation metric - see Remark 2.4) 
probability mf corresponding to the kernel q. 

Proof. Fix / G F and let g be the distinguished policy in Assumption 4.1. 
Denote by T* and T9 the time of the first return of {x{} and {xg

t} to XQ = 0, given 
^o = ^o ^ 0? respectively. By Assumption 4.1b), for t = 1,2,..., we get 

E[Tf] < E[T9] < oo. 

Therefore, by Corollary 5.3 of [15], {x{} is positive Harris-recurrent. The exis
tence of m/ follows. Now from Theorem 4.1 in [12], it is clear that mf is the limit 
of {x{}, in the sense of the total variation metric. • 

Let tf > 0 be a fixed number. Define c$(x,a) = c(x,a) if c(x,a) < i? and 
c# (x, a) = 0 if c(x, a) > d. 

Lemma 5.2. Under Assumptions 3.1 and 4.1, for every stationary policy / G F, 

I c(y,f(y))mf(dy) - f ą,(y,f(y))mf(dy) < f L(y)mf(dy) &-, (5-1) 

where m/ is the invariant probability corresponding to the stochastic kernel induced 
by /; b and s are the constants in Assumption 4.1, and d > 0. 

Proof. First, the definition of c^, (4.1), and {c(y,f(y) > d } C {L(y) > ti8} 
yield: 

/ c(y,f(y))mf(dy) - / Cd(y,f(y))mf(dy) 

< J c(y, f(y))I{c(yj(y))>^}(y)mf(dy) 

< J[L(y)]il{L{y)>os}(y)mf(dy). (5.2) 

Now, using the Holder and Chebyshev inequalities, where l/£= 1 — 1/s, it follows 
that: 

J[L(y)}"l{L(y)>^)(y)mf(dy) < [J[L(y)mf(dy)^ ' [P(L(y) > 0')]* 
1 

< [y'[L(y)m/(dy)] ' [J[L(y)mf(dy)}U^ 

= J [L(y)mf(dy)} t?1"* 

hence (5.1) is obtained from (5.2). ---1 
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Remark 5.1. Notice that Lemmas 5.1 and 5.2 also hold under Assumption 4.2 for 
Pi. 

Lemma 5.3. Suppose that Assumptions 3.1, 4.1 and 4.2 hold. Consider for / G F, 
the processes {x{} and {x{} which correspond to the models P and Pi, respectively. 
Then, for each t = 0,1,..., x G X, we get 

xt+i xt+i < X-s- x* + sup sup \\qi(-\x,a)-q('\x,a)\\. (5.3) 
xeX ačA(x) 

Proof. Let H — {h G BM - \h\ < 1} and applying the Chapman-Kolmogorov 
equation we get for x G X: 

H+i - sí-JI = SUP / % ) Í9Í+1 (dy|x,/(x)) - gt+1(dy|x,/(*))} 
II h€H|j 

= sup I / h(y) I q\ (dz\x, f(x)) qx (dy\z, f(z)) (5.4) 
/ i g H | j j 

- 1 /i(y) Jg*(dz|x, /(i)) 9(dy|z, /(z)) . 

Now, applying Pubini 

It+i = sup / q\ (dz\x, f(x)) / h(y)qi (dy\z, f(z)) 
henlj j 

- y 9*(dz|x, /(x)) J h(y)q (dy\z, f(z)) 

< sup I / q\ (dz\x, f(x)) f h(y)Ql (dy\z, f(z)) 
hen|j J 

- J q\dz\x, f(x)) J h(y)q (dy\z, f(z)) 

+ J q\ (dz\x, f(x)) J h(y)q (dy\z, f(z)) 

- J q\(dz\x, f{x)) J h(y)q (dy\z, f(z)) 

< sup I / q\ (dz\x, f(x)) I h(y)Ql (dy\z, f(z)) 
hSH|j J 

- J q\(dz\x, f(x)) J h(y)q (dy\z, f(z)) 

+ sup | / f (dz\x, f(x)) I h(y)q (dy\z, f(z)) 
h€U\J J 

- J q\(dz\x, f{x)) J h(y)q (dy\z, f(z)) 
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< sup sup / h(y)qi (dy|z, f(z)) - [ h(y)q (dy\z, f(z)) (5.5) 
heMz£X\J J 

+ sup I / q* (dz\x, f(x)) h(z) - / q\ (dz\x, f(x)) h(z) 
hen\J J 

where h(z) = J h(y)q (dz|x, f(z)) G HI since, 

h(z)\ <J\h(y)\q(dz\x,f(z)) < Jq(dy\z,f(x)) = 1. 

Then we can observe that the last member on the right side of (5.5) is less than 

sup I / ql (dz\x, f(x)) h(z) - I q\ (dz\x, f(x)) h(z) 
h£H \J J 

Xf Xf 

Also interchanging sups in the first right of (5.5) we obtain 

sup sup / h(y)qi (dy\z,f(z)) - / h(y)q(dy\z,f(z)) 
h € M z 6 X | J J 

= s u p | | g i ( . | z , / ( г ) ) - g ( . | z , / ( г ) ) | | 
zЄX 

< sup sup Цgi (-|z,a)-g(. |2:,a)| | 
zЄX аЄA(z) 

(5-6) 

since f(z) G A(z) for each / G F. Hence combining (5.5) and (5.6) we get (5.3). • 

L e m m a 5.4. Let Y = {yt} be a Markov chain with state space [0, co). Let To = 
ini{t > 0 : yt = 0} and denote by Nx(r) = Ex(rT0), r G R. Assume that Y 
is pathwise ordered and that 1V0(r) < co for some r > 1. Then the function L 
defined by L(0) = 1 and L(x) = Nx(r) for x > 0, and the constants A = r _ 1 and 
b = r"1 (LQ — 1) satisfy (2.6) the equality. 

P r o o f . This is Theorem 5.1 in [12]. D 

6. PROOF OF THE THEOREM 1 

Let x £ X and consider i? > 0. 
Then 

A » = \J(K,x)-J(f*,x)\ 

< |j(/r,x)-ji(/r,x)i + 

< 2 s u p | J ( / ) - J i ( / ) | , 
/ 6F 

inf J i ( / ) - i n f J(f) 
/єғ w / /єғ 

(6.1) 
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where Ji(-) is the average cost for the model Pi . Let D = \J(f) — </i(/)|- so 

D = I c(y,f(y))ŕhf(dy) - / c(y,f(y))mf(dy) 

< D1+D2 + D3, 

where 

Di = \ c(y, f(y))mf(dy) - c^(y, f(y))fhf(dy) 

D2 = \ c(y, f(y))mf(dy) - J og(y, f(y))mf(dy) 

D3 = I c#(y, f(y))rhf(dy) - j cg(y, f(y))mf(dy) 

and, mf and mf are the invariant measures for {x{} and {x{} respectively. 
Observe that from inequality (5.1) it is obtained, for i = 1,2 

and 

D*4J L(y)rnf(dy) ů l - s 

where s appears in Assumption 4.1c). 
In [12] (see also [13]) it has been proved that 

L(y)ŕhf(dy) < ү—^, 

where b and A are the same as in assumption (2.1). 
Hence, from (6.3) and (6.4), it is concluded 

(6.2) 

(6.3) 

(6.4) 

Di + D2 < 2 
1 - Л 

l - s (6.5) 

On the other hand, provided that |ctf(-,-)l < $ and the definition of the total 
variation metric, it is obtained that 

D3<i9||m/-m/||. (6.6) 

Now, an estimation of the right side of (6.6) is going to be giving: 
Let XIQ and x^ be random variables with distribution mf and m/, respectively. 

Then, for each positive integer n, we have: 

| Ш / - T П / | K-*L\\ 
K -3£|| + K -411+ PL -41 (6.7) 
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The first and the last terms in (6.7) are less than r~nhx(r) for each r > A"1 and 
each x e X (see (2.7) in Lemma 2.1). Then we have: 

PL ~XL\\< 2r~nhx(r) + max \\x{ -x{\\. (6.8) 

Applying inductively Lemma 5.3, it can be shown that 

™£x ||*£>-*£>|| <™sup sup | | p i ( . | x , a ) -p ( . | x , a ) | | . (6.9) 

Hence, if S = supx G X sup a G A ( x ) ||pi (-|x,a) - p ( . | x , a ) | | results in (6.8): 

PL ~XL\\< 2r"n/ix(r) + nS. (6.10) 

Taking n = max{l , [log^o*]}, where [z] means the greatest integer < z, p = \ 

and $ = S~ in (6.10) we get 

D3 < 5-i(2phx(r)6)+m*x{l,logpS}S 

< (2p~lhx(r) + 1) S^1 max {l, logp 5} . (6.11) 

Notice that the right side of (6.11) is independent of / G F. 
Now combining (6.1), (6.2), (6.5) and (6.11) it is gotten: 

A(x) < 2 (^Y^TX + 2rh^r) + A ^ max i1.1^*} • 

7. AN EXAMPLE 

The following example has been studied in [4] in order to show the existence of 
AC-optimal policies and the convergence of the value iteration method. Here as
sumptions on the example which allow to illustrate the main results in this paper 
are provided, and conclusions about the average criterion are obtained. 

Let X = [0, oo) and A(x) = A, for all x G l , where .A is a compact subset of the 
interval (0,9] (with 0 G A). Define the models: 

xt+i = (xt + atVt - £t)+ , (7.1) 

and _ , 
xt+\ = (xt + atrjt - et) , (7.2) 

where t = 0 ,1,2, . . . , x0 = x0 G X is given, z+ = max{0, z}, and {rjt} , {77*} , {et} 
and {et} are sequences of independent and identically distributed random variables 
that satisfy the following assumptions: 

Let t],rj,e and e be generic random variables distributed as 770,770, £0 and en, 
respectively. 

Let g and g\ G F be defined as: 

g(x) = 0 , for all x G X, (7.3a) 

and 
0i(x) = 6 , for all a; GX. (7.3b) 
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Assumpt ion 7.1. 

a) Let 77,77, e and e have continuous and bounded densities, concentrated on 
[0,oo); 

b) For each t = 0 ,1 ,2 , . . . rjt is independent of et and rjt is independent of et\ 

Let f := Gry - e and f := 677 - e. Also, let <£(r) := E(r*) and <£(r) := .E(r*) , 
reR. 

c) £ ( 0 < 0 and E (T) < 0; 

d) It is supposed that there exist To > 1 and To > 1 such that: 

* (j)(ro) < 00, </>(r0) < 00 and (t>'(r0) = 0'(ro) = 0. 

e) The function c satisfies Assumption 4.1c) with 

L(x) = max IEX (rT°), Ex (rT°) \ , x > 0, and (7.4) 

L(x) = 1, x = 0, (7.5) 

where To = min {t > 0 : x\ = 0}, ?o = min {t > 0 : x\x = 0} and r will be defined 
later (see (7.8) below). 

It will be seen that this example satisfies the hypotheses of Theorem 4.1. First, 
in [4] it has been proved that Assumptions 7.1a), 7.1b) and 7.1c) imply that the 
processes (7.1) and (7.2) satisfy the Assumption 3.1. 

It is known that the random walks that are obtained when substituting the poli
cies defined in (7.3a) and (7.3b) in the models in (7.1) and (7.2) i.e. 

*t+i = (st + e T f t - 6 ) + , (7.6) 

a n d („ „ ~ \ + 
xt+\ = [xt + ©% - & J , (7.7) 

are ordered Markov chains (see [12]). 
Also, for every policy / G ¥ it can be gotten that: 

xt+i = (xt + fixt)Vt ~ &) + < (xt + &r]t - &)+", 

a n d ~ ( ~ \ + (~ ~ ~\ + 
xt+1 = [xt + f(xt)rjt - &J < [xt + 077t - &J . 

hence Assumption 4.1b) and 4.2 hold. 
Taking in consideration Assumptions 7.1a), 7.1b) and 7.c), it can be concluded 

that (7.6) and (7.7) are irreducible and recurrent (see [15]) so Assumptions 2.1a), 
2.1b) and 2.1 c) hold for (7.6) and (7.7). 

Now using Assumption 7.Id) it is obtained that 

EQ (rT0) < co for 1 < r < ^ ( T o ) 
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and 
Eo ( r ? 0 ) < oo for 1 < r < ø-ҶřЬ), 

(see [11]). _ 

Then taking M = min {0- 1 (r 0) , 0 _ 1 ( r o ) } , we have that ^ ( r 7 " 0 ) < oo and 
E0 (rr°) < oo for some r such that 

Kr <M. (7.8) 

Then (7.6) and (7.7) satisfy Assumption 2.Id) with 

v(x) = E0(rTo),x>0 and 

v(x) = l,a; = 0, 

and A = r " 1 , h = r " 1 [E0 (r r°) - 1] for (7.6), and 

v(x) = E0(r*A ,x>0 and 

v(x) = l ,x = 0, 

and A = r " 1 , b = r"1 [E0 (r*°) - l ] , for (7.7) (see Lemma 5.4). Then the function 
L defined in Assumption 7.1e) with r defined in (7.8) satisfies Assumption 4.1a) and 
4.2a). 

Assumptions 4.1c) and 4.2c) are part of Assumption 7.1e). Then the Theorem 
4.1 and the Remark 4.3 can be applied to obtain the following bound for the Index 
of Perturbations for x G X: 

ДO) 
- » t e 

+ 2rhx{r) + l Mí~M£ 

provided that Mí~M£ < e j - ' . 

Remember that A = r" 1 , b = max{r_1[P;o(rTo) - l ^ r " 1 ^ ^ 0 ) - 1]}, and hx(r) < 
Ex (rT°) + Y -̂j-. Observe that even hx can be estimated for some distribution of £. 

(Received April 22, 2004.) 
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